T. L. Miller, M. J. Wolin, Z. Hongxue, and M. P. Bryant, Characteristics of methanogens isolated from 484 bovine rumen, Appl Environ Microbiol, vol.51, pp.201-203, 1986.

B. Dridi, M. L. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt, Methanomassiliicoccus luminyensis 486 gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int J Syst Evol, vol.487

. Microbiol, , vol.62, pp.1902-1909, 2012.

K. Paul, J. O. Nonoh, L. Mikulski, and A. Brune, Methanoplasmatales," thermoplasmatales-related 489 archaea in termite guts and other environments, are the seventh order of methanogens, Appl, vol.490

, Environ Microbiol, vol.78, pp.8245-53, 2012.

B. Dridi, D. Raoult, and M. Drancourt, Archaea as emerging organisms in complex human 492 microbiomes, Anaerobe, vol.17, pp.56-63, 2011.

C. A. Carberry, S. M. Waters, D. A. Kenny, and C. J. Creevey, Rumen methanogenic genotypes differ in 494 abundance according to host residual feed intake phenotype and diet type, Appl Env, p.495

. Microbiol, , vol.80, pp.586-94, 2014.

G. Borrel, A. Mccann, J. Deane, M. C. Neto, D. B. Lynch et al., Genomics and 497 metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome, ISME J, vol.498, pp.2059-74, 2017.

C. Bang, K. Weidenbach, T. Gutsmann, H. Heine, and R. A. Schmitz, The intestinal archaea

, Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells

. Ruminococcus-albus and . Methanobrevibacter-smithii, Appl Microbiol Biotechnol, vol.586, issue.1, pp.109-125, 1990.

N. L. Schauer and J. G. Ferry, Metabolism of formate in Methanobacterium formicicum, J Bacteriol, vol.588, pp.800-807, 1980.

A. K. Haydock, I. Porat, W. B. Whitman, and J. A. Leigh, Continuous culture of Methanococcus 590 maripaludis under defined nutrient conditions, FEMS Microbiol Lett, 2004.

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, p.592

. London, , 1997.

R. Muñoz-tamayo, L. Puillet, J. B. Daniel, D. Sauvant, O. Martin et al., Review: To 594 be or not to be an identifiable model. Is this a relevant question in animal science modelling, vol.46, p.595

, Animal, vol.12, pp.701-713, 2018.

G. Bellu, M. P. Saccomani, S. Audoly, D. 'angio, and L. , DAISY: A new software tool to test global 597 identifiability of biological and physiological systems, Comput Methods Programs Biomed, vol.598, pp.52-61, 2007.

P. A. Vanrolleghem, M. Vandaele, and D. Dochain, Practical identifiability of a biokinetic model of 600 activated-sludge respiration, Water Res, vol.29, pp.2561-70, 1995.

R. Muñoz-tamayo, B. Laroche, M. Leclerc, and E. Walter, IDEAS: A parameter identification 602 toolbox with symbolic analysis of uncertainty and its application to biological modelling, IFAC Proceedings Volumes, pp.1271-1277, 2009.

L. I. Lin, A concordance correlation-coefficient to evaluate reproducibility, Biometrics, vol.605, pp.255-68, 1989.

T. Ruiz, A. Bec, M. Danger, A. Koussoroplis, J. Aguer et al., A microcalorimetric 607 approach for investigating stoichiometric constraints on the standard metabolic rate of a small 608 invertebrate, Ecol Lett, vol.21, pp.1714-1736, 2018.

P. H. Janssen and M. Kirs, Structure of the archaeal community of the rumen, Appl Environ, p.610

. Microbiol, , vol.74, pp.3619-3644, 2008.

N. A. Schill, J. S. Liu, V. Stockar, and U. , Thermodynamic analysis of growth of Methanobacterium 612 thermoautotrophicum, Biotechnol Bioeng, vol.64, pp.74-81, 1999.

U. Von-stockar, C. Larsson, and I. W. Marison, Calorimetry and energetic efficiencies in aerobic and 614 anaerobic microbial growth, Pure Appl Chem, vol.65, pp.1889-92, 1993.

V. Stockar, U. Liu, and J. S. , Does microbial life always feed on negative entropy? Thermodynamic 616 analysis of microbial growth, Biochim Biophys Acta -Bioenerg, vol.1412, pp.191-211, 1999.

G. Hardin, The competitive exclusion principle. Science (80-), vol.131, pp.1292-1299, 1960.

T. A. Lynch, Y. Wang, B. Van-brunt, D. Pacheco, and P. H. Janssen, Modelling thermodynamic 619 feedback on the metabolism of hydrogenotrophic methanogens, J Theor Biol, vol.477, pp.14-23, 2019.

P. Udén, T. R. Rounsaville, G. R. Wiggans, and P. J. Van-soest, The measurement of liquid and solid 621 digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay, Br J, vol.622

, Nutr, vol.48, pp.329-339, 1982.

F. Ng, S. Kittelmann, M. L. Patchett, G. T. Attwood, P. H. Janssen et al., An adhesin 624 from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a 625 broad range of hydrogen-producing microorganisms, Env Microbiol, vol.18, pp.3010-3031, 2016.

B. S. Samuel, E. E. Hansen, J. K. Manchester, P. M. Coutinho, B. Henrissat et al., Genomic 627 and metabolic adaptations of Methanobrevibacter smithii to the human gut, Proc Natl Acad, p.628

, Sci, vol.104, pp.10643-10651, 2007.

W. J. Kelly, S. C. Leahy, D. Li, R. Perry, S. C. Lambie et al., The complete genome 630 sequence of the rumen methanogen Methanobacterium formicicum BRM9, p.631

, Sci, vol.9, p.15, 2014.

G. E. Hutchinson, The paradox of the plankton, Am Nat, vol.95, pp.137-182, 1961.

A. Bernalier, M. Lelait, V. Rochet, J. P. Grivet, G. R. Gibson et al., Acetogenesis from H2 and 634 CO2 by methane-and non-methane-producing human colonic bacterial communities

, Microbiol Ecol, vol.19, pp.193-202, 1996.

G. M. Nava, F. Carbonero, J. A. Croix, E. Greenberg, and H. R. Gaskins, Abundance and diversity of 637 mucosa-associated hydrogenotrophic microbes in the healthy human colon, ISME J, vol.638, pp.57-70, 2012.

. Flint, . Hj, S. H. Duncan, and K. P. Scott, Interactions and competition within the microbial community 640 of the human colon : links between diet and health, Environ Microbiol, vol.9, pp.1101-1112, 2007.

S. A. Huws, C. J. Creevey, L. B. Oyama, I. Mizrahi, S. E. Denman et al., Addressing 642 global ruminant agricultural challenges through understanding the rumen microbiome: past, 643 present, and future, Front Microbiol, vol.9, p.2161, 2018.

T. Pfeiffer, S. Schuster, and S. Bonhoeffer, Cooperation and competition in the evolution of ATP-645 producing Pathways. Science (80-), vol.292, pp.50-507, 2001.

J. Vandermeer, M. A. Evans, P. Foster, T. Höök, M. Reiskind et al., Increased competition 647 may promote species coexistence, Proc Natl Acad Sci, vol.99, pp.8731-8737, 2002.

R. C. Maclean and I. Gudelj, Resource competition and social conflict in experimental populations 649 of yeast, Nature, vol.441, pp.498-501, 2006.

A. Rapaport, D. Dochain, and J. Harmand, Long run coexistence in the chemostat with multiple 651 species, J Theor Biol, vol.257, pp.252-261, 2009.

F. Grognard, P. Masci, E. Benoît, and O. Bernard, Competition between phytoplankton and bacteria: 653 exclusion and coexistence, J Math Biol, vol.70, pp.959-1006, 2015.

S. B. Hsu, S. Hubbell, and P. Waltman, A mathematical theory for single-nutrient competition in 655 continuous cultures of micro-organisms, SIAM J Appl Math, vol.32, pp.366-83, 1977.

S. Widder, R. J. Allen, T. Pfeiffer, T. P. Curtis, C. Wiuf et al., Challenges in microbial 657 ecology: Building predictive understanding of community function and dynamics, ISME J, vol.658, pp.2557-68, 2016.

R. Muñoz-tamayo, R. Agudelo, J. F. Dewhurst, R. J. Miller, G. Vernon et al., A 660 parsimonious software sensor for estimating the individual dynamic pattern of methane 661 emissions from cattle, Animal, 2018.

J. Z. Ou, C. K. Yao, A. Rotbart, J. G. Muir, P. R. Gibson et al., Human intestinal gas 663 measurement systems: In vitro fermentation and gas capsules, Trends Biotechnol, vol.664, pp.208-221, 2015.

, Hydrogenotrophic methanogens of the mammalian gut: functionally similar, thermodynamically different -A modelling approach

, Nicole Morel-Desrosiers, vol.3

V. Sup and . Herbivores,

. Université-clermont-auvergne, L. Cnrs, and F. Clermont-ferrand, France 759 760 769 centrifuged at 5 000 g for 15 min. The supernatant was autoclaved and centrifuged again at the same conditions as above. The clarified 770 rumen fluid (decanted supernatant) was stored at -20°C and centrifuged again after thawing prior to media preparation

, Media was boiled to expel dissolved oxygen, a reducing agent (L-cystein) and a redox indicator (resazurin) were added to keep a low 772 redox potential and indicate the oxidative state of the medium

, KH2PO4.2H2O (0.6g), (NH4)2SO4 (0.6g), NaCl (1.2g), MgSO4.7H2O (0.12g), CaCl2.2H2O (0.12g), distilled water qs 100, p.775

, NiCl.6H2O (0.01g), Na2SeO3 (0.001g), distilled water qs 100 ml, p.777

, PABA (0.5 mg), Riboflavine (0.5 mg), Pantothenic acid (0.5 mg), Sodium ascorbate (0.5 mg), p.778

, Choline chloride (0.5 779 mg), Inositol (0.5 mg), Nicotinamide (0.5 mg), Pyridoxal (0.5mg), distilled water qs 100 ml 780 . CC-BY-NC-ND 4.0 International license It is made available under a (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. The copyright holder for this preprint, Pyridoxine (0.10 mg), thiamine (0.05 mg), Vitamin B12 0.1mg/ml (0.1 ml), lipoic acid (0.5 mg), 2018.

R. S. Wolfe, Techniques for cultivating methanogens, Methods Enzymol, vol.494, pp.1-22, 2011.

D. J. Batstone, J. Keller, I. Angelidaki, S. Kalyuzhnyi, S. G. Pavlostathis et al., Anaerobic Digestion Model No.1 (ADM1). IWA Task Group for Mathematical Modelling of Anaerobic Digestion Processes, 2002.

D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow et al., The Nbs Tables of Chemical Thermodynamic Properties -Selected Values for Inorganic and C-1 and C-2 Organic-Substances in Si Units, J Phys Chem Ref Data, vol.11, p.2, 1982.

J. S. Liu, I. W. Marison, V. Stockar, and U. , Microbial growth by a net heat up-take: A calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri, Biotechnol Bioeng, vol.75, pp.170-80, 2001.

I. Prigogine and R. Defay, Traité de thermodynamique, conformément aux méthodes de Gibbs et De Donder, Éditions Desoer, 1950.

S. G. Pavlostathis, T. L. Miller, and M. J. Wolin, Cellulose Fermentation by Continuous Cultures of Ruminococcus-Albus and Methanobrevibacter-Smithii, Appl Microbiol Biotechnol, vol.33, issue.1, pp.109-125, 1990.

N. L. Schauer and J. G. Ferry, Metabolism of formate in Methanobacterium formicicum, J Bacteriol, vol.142, pp.800-807, 1980.