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Abstract

Many aquatic animals propel themselves efficiently through water by oscillating flexible fins. �ese

fins are, however, not homogeneously flexible, but instead their flexural stiffness varies along their

chord and span. Here, we developed a low order model of these functionally-graded materials

where the chordwise flexibility of the foil is modeled by one or two torsional springs along the

chordline. �e torsional spring structural model is then strongly coupled to a boundary element

fluid model to simulate the fluid-structure interactions. We show that the effective flexibility of

the combined fluid-structure system scales with the ratio of the added mass forces acting on the

passive portion of the foil and the elastic forces defined by the torsional spring hinge. We further

detail the dependency of the propulsive performance on the flexibility and location of the single

torsional spring for a foil that is actively pitching about its leading edge. Our results show that

increasing the flexion ratio by moving the spring away from the leading edge leads to enhanced

propulsive efficiency, but compromises the thrust production. Proper combination of two flexible

hinges, however, can result in a gain in both the thrust production and propulsive efficiency.
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NOMENCLATURE

f = pitching frequency

ρ = fluid density

c = fin chord

A = trailing edge amplitude)

λ = flexion ratio

U = swimming velocity)

k = reduced frequency

Πk = effective stiffness

I = matrix of moment of inertia

K = stiffness matrix

C = damping matrix

Ct , C ′

t = thrust coefficient

Cp , C ′

p = power coefficient

Ni = inertial moment

Nf = hydrodynamic moment

Nh = hinge moment

INTRODUCTION

Flying and swimming animals propel themselves rapidly

and efficiently through a fluid using flexible propulsors. A

substantial line of work has already confirmed that flexi-

ble propulsors are advantageous to rigid ones in aquatic

locomotion, specifically with regard to propulsive efficiency

[1, 2, 3, 4]. Some have argued that the interactions between

the fluid and the structure deforms the foil in the direction

of the fluid. �ese deformations lead to curvature-induced

thrust increases [5] as well as a favorable phase lag between

the pitching and heaving motions of the foil which in return

enhances propulsive efficiency [6, 7]. In addition, the occur-

rence of resonance is argued to play an important role in

enhancing propulsive performance of flexible foils. Previous

studies have shown that the efficiency is maximized at or

near the resonance frequency of the combined fluid-structure

system [8, 4]. �e resonance frequency of the combined sys-

tem is a function of the inertial properties of the structure

as well as the added mass arising from inertia of the fluid.

However, when the flexibility is variable along the chord,

the scaling of the resonance frequency of the fluid-structure

system is non-trivial, a topic that we will a�end to in the

present study.

�e propulsive appendages of swimming and flying an-

imals are made of functionally-graded materials where the

flexibility varies both along the chord and span. In fact,

Combes and Daniel [9] measured the flexural stiffness of

several insect wings and found that it declines sharply from

the wing base to wing tip, in the spanwise direction, and

from the leading edge to the trailing edge, in the chordwise

direction. Similarly, the flexibility of the propulsive surfaces

of swimming animals (such as fluke, fin and tail) appear to

be non-uniform and decline from the leading to trailing edge

and from the center to the edges [10, 11, 12]. Inspired by

these observations, a number of recent studies have sug-

gested that the distribution of the flexibility along the foil, in

addition to its overall flexibility, may play an important role

in enhancing the propulsive performance. Comparing differ-

ent distributions of flexibility along a two dimensional thin
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foil undergoing small amplitude heaving motions, Moore

[13] has suggested that the concentration of the flexibility

at the leading edge enhances thrust production. In another

study, Riggs et al. [14] have tested the thrust production of a

flexible fin with a standard NACA0012 cross-sectional shape

alongside fins with a stiffness profiles mimicking that of a

Pumpkinseed Sunfish. �ey showed that bio-mimetic fins

generate more thrust regardless of the overall stiffness of the

fin, showing that the performance improvement is due to the

stiffness profile itself and not the flexibility alone. Similar

conclusions were found by [12] in an experimental study

on the propulsive performance of robotic fins with variable

chordwise flexibility. �ey found that fins with variable flex-

ibility outperformed the fins with uniform flexibility with

regard to both thrust production and propulsive efficiency.

Figure 1. Schematic of the model for a single spring.

Here we aim to probe the effect of the distribution of

flexibility on the propulsive performance of a pitching foil

by separating the effect of the overall flexibility of a pitching

foil from that of its bending pa�ern. We model the chord-

wise flexibility of the foil with a series of torsional springs

with varying flexibility. �e effect of the bending pa�erns is

modeled via changing the location of the spring along the

chord. First, we investigate the propulsive performance of a

pitching foil with a single flexible joint. We detail the effect

of both the overall flexibility and the bending pa�ern of the

foil. Next, we repeat our numerical experiment on a pitching

foil with two flexible joints. �is time the location of the

flexible joints are fixed but the distribution of the flexibility

is varied. �is study is a primary step toward understanding

the role the functionally graded materials on the propulsive

performance. Results of this study can also inspire design of

innovative and non-traditional propulsors.

1. PROBLEM DEFINITION

All the numerical experiments are performed on a two di-

mensional foil where the leading edge of the foil is actively

pitching with a peak-to-peak amplitude of 2θ0 = 10
o. �ere

are either one or two flexible joints along the chord modeled

by torsional springs (figure 1). �e distance of the flexible

joint from the leading edge, normalized by the chord length,

is quantified by the flexion ratio, λ. �e flapping frequency

and swimming velocity are kept constant across these simula-

tions at 2.87 Hz and 0.1 m/s resulting in a reduced frequency

of k = 2.87 (defined as k =
f c

U
) and a Strouhal number (de-

fined as St =
f A

U
) of 0.5. �is St is defined for a rigid foil

without a flexible joint. However, the real St of the flow is

an output of the system and varies with the trailing edge

amplitude, which itself is a function of the flexibility and

flexion ratio.

For materials with similar densities as that of the sur-

rounding fluid (in the present study ρs = ρ ), the flexibility

of the combined fluid-structure system is a function of the

added mass forces of the fluid and the elastic forces of the

structure. We define Πk as the ratio of these forces which

characterizes the effective flexibility of the combined fluid-

structure system.

Πk = (1 − λ2)

√

ρbc4 f 2

k
(1)

where ρ, f , c, and k respectively are the fluid density, pitch-

ing frequency, chord length, and the spring stiffness. �e

numerator is the added mass force represented as a cylinder

of fluid with a diameter equal to length of the passive portion

of the foil multiplied by a characteristic acceleration. When

only added mass forces are modeled, Πk is directly propor-

tional to the ratio of the driving and resonance frequencies.

Both flexibility and flexion ratio are changed and their

effect on the propulsive performance is detailed. �e per-

formance is analyzed using thrust and power coefficients as

well the propulsive efficiency which are defined below.

Ct =
T

0.5ρU2bc
, Cp =

P

0.5ρU3bc
(2)

where T , and P are the thrust and input power. b is the span

length that is set to 1. Alternatively, we normalized thrust

and power with trailing edge velocity as defined in eqn. 3.

Note that the trailing edge amplitude is an output of a flexible

foil system.

Ct
′
=

T

0.5ρA2 f 2bc
, Cp

′
=

P

0.5ρU A2 f 2bc
(3)

where A is the trailing edge amplitude.

2. NUMERICAL METHODS

�e flow over the foil is modeled using a two-dimensional

potential flow method in which the flow is assumed to be

irrotational, incompressible and inviscid. We follow [15] and

[16], in that the general solution to the potential flow problem

is reduced to finding a distribution of doublets and sources on

the foil surface and in the wake that satisfies no flux boundary

condition on the body at each time step. Constant strength

source and doublet line elements are distributed over the

body and the wake. Each body boundary element is assigned

a collocation point which is shi�ed a small distance under the

body surface (here 1% of the local thickness of the body). �e

constant potential Dirichlet condition is enforced at the col-

location points to ensure a no flux boundary condition on the

body surface. Additionally, at each time step a wake bound-

ary element is shed with a strength that is set by applying an
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explicit Ku�a condition, where the vorticity at the trailing

edge is set to zero [17, 18, 19]. A wake rollup algorithm is

employed to ensure that the wake does not support any force.

�e wake elements advect by the local velocity at the wake

panel edge points. During the wake rollup the point vortices,

representing the ends of the wake doublet elements, must be

de-singularized for numerical stability of the solution [20].

To do so, at a small cutoff radius of ǫ = 0.05c, the irrotational

induced velocities from the point vortices are replaced by a

rotational Rankine core model. �e tangential perturbation

velocity component is calculated by local differentiation of

the perturbation potential. Finally, the pressure acting on the

body is found via applying the unsteady Bernoulli equation.

More details can be found in [15, 21, 22].

�e structural flexibility is modeled via torsional springs

which connect the structural mesh elements together. �e

kinematics of the leading structural element is always pre-

scribed. Equation 4 governs the dynamics of the passive

structural elements.

I �Θ + C �Θ + KΘ = Nf + Ni + Nh (4)

where Nf is the hydrodynamic moment exerted about the

joint location. Ni is the inertial moment due to the transla-

tional velocity of the center of mass of the corresponding

element. Nh is the moment exerted by the forces at the joint

which keep the elements together. I is the matrix of moments

of inertia about the joint points. K and C are the matrices

of the structural stiffness and damping, respectively. Θ is

a vector containing the orientation of the passive elements.

For a foil with two flexible joints we have:

I ≡

[

I1 0

0 I2

]

K ≡

[

k1 + k2 −k2
−k1 k2

]

C ≡

[

c1 + c2 −c2
−c1 c2

]

(5)

where Ii is the moment of inertia of the ith element. ci and

ki are the structural damping and the stiffness of the spring

a�ached to the leading edge of the ith element.

To solve the fluid-structure interaction problem, equation

4 is discritized in time, using the trapezoidal rule (equations

6 and 7), and solved within each small time step via a strong

coupling between the fluid and structural solvers which is

accelerated by the Aitken method. To improve the conver-

gence properties of the solver, while keeping its efficiency,

we use two different time step sizes ∆t and ∆ts for the fluid

and structure solvers, respectively, where ∆ts =
∆t
Ns

. Ns is

set to 100 in the present simulations.

Θ̂
m+1
= Θ̂

m
+

1

2
(
�̂
Θ

m
+

�̂
Θ

m+1)∆ts (6)

�̂
Θ

m+1
=

�̂
Θ

m
+

1

2
(
�̂
Θ

m
+

�̂
Θ

m+1)∆ts (7)

where superscripts m and m+ 1 represent the values at times

tms and tm+1
S

, respectively. x̂ represents any variable x within

the structure solver. Substituting equation 7 into equation 6

and solving for �Θm+1 we get:

�̂
Θ

m+1

= (
2

∆ts
)2(Θ̂m+1 − Θ̂m) − (

4

∆ts
)
�̂
Θ

m

−
�̂
Θ

m

(8)

(a)

(b)

Figure 2. Propulsive efficiency as a function of (a) number

of time steps and (b) number of body panels.

Similarly, equation 6 can be rearranged to get an expression

for
�̂
Θ

m+1 as a function of Θ̂:

�̂
Θ

m+1

=

2

∆ts
(Θ̂m+1 − Θ̂m) −

�̂
Θ

m (9)

Where the right hand sides of both equations 8 and 9 are

known from the previous iteration.

Substituting equations 9 and 8 into 4, we can rewrite

the governing equations as a linear, but coupled, system of

equations as follows:
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Figure 3. Analytical solutions for thrust and power

coefficient as a function of reduced frequency, for two

different non-dimensional spring stiffnesses, are shown with

solid lines. �ese solutions are taken from [23]. Closed

circles are the solutions calculated by the present numerical

method.

AΘ̂m+1
= b̂m

A = K + (
2

∆ts
)2I + (

2

∆ts
)C

b̂m = (
2

∆ts
)2IΘ̂m

+ (
4

∆ts
)I
�̂
Θ

m
+ I

�̂
Θ

m
+ (

2

∆ts
)CΘ̂m

+C
�̂
Θ

m
+ N̂m

i + N̂m
f + N̂m

h (10)

Equation 10 together with 6 and 7 form a complete set of

equations for the structure. �e set of structure equations

are first initialized by the known solution from the previous

time step (of the fluid’s solver) and then iterated Ns times to

advance the solution as much as ∆t.

To improve convergence, equation 10 is uncoupled by

employing a Gauss-Seidel formulation where the newly ob-

tained solution for the orientation of the first element is used

to obtain the solution for the second element at each time

step ts .

�e Aitken acceleration method is commonly used in the

numerical simulation of fluid-structure interactions and is

proven to be sufficiently simple and efficient [24, 25, 26]. �is

method uses the values from the two previous iterations to

correct the new solution. We employ Aitken’s method to

advance the solution in the fluid’s solver based on the residual

calculated in the previous two iterations. �e residual is

calculated as the difference in the solution obtained in the

structure and the fluid solvers, �ri = Θ̂i − Θi , where Θi is a

vector representing the orientation of the neutral axis of the

foil in the fluid solver.

�e solution to the coupled fluid-structure system at each

time step tn = n∆t is obtained by following the algorithm

below:

1. i = 0, r0 = 1, Θ̃0 = Θn−1,
�̃
Θ0 =

�Θn−1,
�̃
Θ0 =

�Θn−1, and

ω0 = 1e − 2

2. While ‖ri ‖ > δ

(a) i = i + 1

(b) if i > 1modify the solution; Θ̃i = Θ̃i−1 +ωi−1ri−1

(c) Calculate the location of the neutral axis of the

foil in the fluid solver via known values of the

leading element and passive elements.

(d) Calculate the position and velocity of the fluid

panels on the foil surface.

(e) Calculate fluid forces and moments.

(f) Solve the solid deformations; Θ̂i ,
�̂
Θi , and

�̂
Θi using

equations 10, 8, and 7

(g) Calculate the residual, ri = Θ̂i − Θ̃i

(h) Calculate Aitken Acceleration factor;

if i < 3, ωi = ω0
else, ωi = ωi−1

�ri−1(�ri−1−�ri )
‖ri−1−ri ‖2

3. Update the solution for time tn; Θn = Θ̃i , �Θn =
�̃
Θi ,

and �Θn =
�̃
Θi

where δ is set to 10
−8. When the solution converges within

the nth time step, we set n = n+ 1 and repeat the steps above

to solve for the next time step.

2.1 Discretization independence
Figure 2 shows propulsive efficiency as a function of number

time steps within an oscillation period, Nt , and number of

body panels, Np . �e leading edge kinematics and the St are

set to the same values as the main case studies. λ and Πk are

set to 0.8 and 0.3 respectively. Πk = 0.3 marks the resonance

frequency of the flow-structure system. It is evident that

η converges to the discretization independent solutions as

the number of body panels and time steps increases. �is

performance matrices change less than 4% when Npanel =

700 and Ntime = 800.

2.2 Validation
We tested the accuracy of our numerical model by comparing

our results against the analytical results presented in [23]

for a two dimensional thin foil with a torsional spring at the

leading edge. A small amplitude (harmonic) heaving motion

is enforced at the leading edge. �e foil passively pitches

about the leading edge due to the action of fluid, inertial, and

elastic forces. We compared both the cycle-averaged thrust

and the cycle-averaged power with the analytical solution.

Results are shown in Figure 3.
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Figure 4. (a) Trailing edge amplitude, (b) thrust coefficient, (c) power coefficient, and (d) efficiency as a function of Πk .

3. RESULTS AND DISCUSSION

3.1 Single flexible joint

Figure 4a shows the non-dimensional trailing edge amplitude,

A∗
=

A
Ar igid

, as function of effective flexibility for five differ-

ent flexion ratios. �e trailing edge amplitude is maximum at

the resonance which occurs at Π = 0.3 for all flexion ratios.

�e coincidence of the resonance frequency for all λ’s shows

that the proposed scaling for the effective flexibility appro-

priately accounts for the effect of the flexion ratio. However,

inspecting the trend of variations in A∗ with Πk reveals that

the effective damping of the combined fluid-structure system

increases for larger λ values. It is also worth noting that

before and a�er resonance, higher flexion ratio foils gener-

ally experience larger trailing edge amplitude. Around the

resonance the relationship is more nonlinear. For flexion

ratios smaller than 0.5 the trailing edge amplitude increases

with λ. �is relationship is reversed for λ > 0.5.

Figure 4b shows variations in thrust and power coeffi-

cients as a function of Πk . Unlike the trailing edge amplitude,

the thrust coefficient is generally larger for smaller λ’s, ex-

cept for very rigid foils where increasing λ up to 0.5 results

in gain in thrust. Inspecting figure 4c shows that this gain

in thrust comes with no additional cost with regard to the

power consumption. Ct rises up to its peak value at the reso-

nance, for small λ values, and then drops quickly with further

increase in flexibility. �is is unlike the behavior of Ct for

large λ values where the thrust plateaus before resonance

and then drops with a mild slope when flexibility increases. It

is worth noting that for all flexion ratios, Ct increases faster

than Cp until slightly a�er resonance. �is is reflected in Fig-

ure 4d where we show changes in the propulsive efficiency,

defined as η = Ct

Cp
, as a function of Πk . �ick drop in thrust

production a�er the resonance for small λ values results in

a decline in the propulsive efficiency. In contrast, for large

flexion ratios, η keeps increasing with flexibility for a wide

range of flexibilities.

In figure 5a-b, we plo�ed C ′
t and C ′

p as the function of Πk .

When we normalized the thrust by the trailing edge velocity,

the peak in the force production and power consumption

disappeared implying that the peak is an artifact of the ampli-

fied trailing edge amplitude. Variations in the trailing edge

amplitude are responsible for the major changes in the thrust

production for λ = 0. �is, however, is not the case for other

λ values. �e fact that the curves for different λ values do

not collapse on top of one another implies that the bending
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Figure 5. Variation of thrust (a) and power (b) coefficients, C ′
t and C ′

p , defined by equation 3 with Πk . Contours of C ′
t and

C ′
p in λ − Πk plane. Do�ed lines are the contours of propulsive efficiency.

pa�ern itself, and not only the trailing edge amplitude, play

a role in the force production.

�e behavior of the C ′
p curves is somewhat different from

that of C ′
t . Before resonance, the power coefficient appear to

drop quickly by increasing flexibility. A�er the resonance, for

small λ values, the power coefficient starts to rise again. �is

results in a drop in efficiency which is due to a simultaneous

rise in power consumption and drop in thrust production. For

larger λ values, however, as flexibility increases, C ′
p keeps

declining where the rate of this decline decreases for large

flexibilities. �us, the rate of increase in efficiency with Πk

(figure 4d) decreases.

To summarize our findings with regard to the propulsive

performance of these flexible foils, we plo�ed contours of C ′
t

and C ′
p as a function of λ and Πk in figure 5c-d. Contours

of propulsive efficiency are overlayed on both figures with

do�ed lines. It is worth noting that the contours of efficiency

line up with those of power consumption indicating that

the propulsive efficiency is mostly governed by the (input)

power requirement and not the thrust production. We identi-

fied three regions on these contour plots. In region 1, which

contains low Πk and low λ value foils, the thrust coefficient

remains relatively constant. �e propulsive efficiency can

be enhanced by increasing flexibility (contours of propulsive

efficiency are almost parallel to the λ-axis). In region 2, in-

creasing either flexibility or flexion ratio benefits efficiency

but compromises thrust production. In region 3, contours

of power consumption, and thus propulsive efficiency, are

more or less aligned with the Πk axis, meaning that the effi-

ciency is more sensitive to changing the flexion ratio. �us,

implying that for largely flexible foils increasing the flexion

ratio can result in improved propulsive performance.

3.2 Two flexible joints
In the previous section we showed that changing the bending

pa�erns of a pitching foil via increasing its flexion ratio is the
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Figure 6. (a) Trailing edge amplitude, (b) thrust coefficient, (c) power coefficient, and (d) efficiency as a function of Πk for

two flexible hinge configuration.

key to improving the propulsive efficiency. However, there is

a trade off to this gain since smaller flexion ratios are required

for larger force production. We hypothesize that combining

multiple flexible joints may be the key to gaining both in

efficiency and thrust magnitude. To test our hypothesis, we

repeated our numerical experiment on a pitching foil with

two torsional springs located half a chord away from each

other at λ1 = 0.2 and λ2 = 0.7. �e kinematics of the leading

edge was kept identical to the cases studied in the previous

section.

When multiple flexible joints are allowed not only the

flexiblity of the individual joint, but also the profile of flex-

ibility distribution along the chord will affect the foil’s de-

formations and, thus, its propulsive performance. Here, we

chose a profile which maintains the effective flexibility of the

foil unchanged along the chord. �e spring stiffness, thus,

declines quadratically with the normalized distance from the

leading edge, k ∝ (λ − 1)4. To do so, the stiffness of each one

of the springs is determined solely based on its distance from

the leading edge using equation 1.

Figure 6a shows the trailing edge amplitude as a function

of Πk . A foil with two flexible joints has two resonances,

which only one is captured in this figure. �e resonance oc-

curs at Πk of 0.35 which is slightly larger than the resonance

Πk for each individual flexible joint. �is could be due to

increased circulatory effects or existence of nonlinear added

mass effects when combining the two joints. In comparison

to one flexible joint configurations, the trailing edge ampli-

tude of the present configuration reaches a higher maximum

at the resonance, and drops slower a�erward. �e deforma-

tion of the middle element appear to be maximum at the

resonance (figure 7). However, the amplitude of the motion

of the last element continue to increase a�er the resonance

a�enuating the drop in trailing edge amplitude.

In figure 6b, in black is shown the cycle-averaged thrust

coefficients, Ct . Similar to the results in the previous section,

the peak thrust generation occurs at the resonance but the

magnitude of the peak is substantially higher. �is is partially

due to the increased trailing edge amplitude which leads to

enhanced added mass forces and a favorable reorientation of

the hydrodynamic force relative to the propulsive direction.

For Πk ≤ 0.3, the magnitude of Ct is similar to that of a foil

with a single flexible joint at λ = 0.2 indicating that the effect

of the combination of the two joints was not destructive to

the thrust production capacity. All the more so,for larger

flexibilities, Ct is larger than what was achieved by any of

the single jointed foil configurations due to the constructive

combination effect. In the same figure, in blue is shown

C ′
t where thrust is normalized by the trailing edge velocity

rather than the swimming velocity. Similar to the case of a
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single spring, C ′
t drops with increasing flexibility.

Figure 7. Change in the relative orientation of the solid

elements versus time, within one cycle. Black line shows the

prescribed pitching motion of the leading edge. Blue and red

lines, respectively, show the deflection angles of the second

and the third element. �e deflection angles are measured

relative to the preceding element. �e angles are shown for

three different Πk values of 0.2, 0.35, and 0.5.

Unlike thrust, the power coefficient,Cp , remains small for

small Πk values (figure 6c). �is results in a quick rise in the

propulsive efficiency of the double jointed foil, as reflected in

figure 6d. In the same figure, we show C ′
p in blue. �is curve

shows a fast drop in the power consumption with flexibility

before the resonance (which is typical of high flexion ratio

foils in single spring configurations), where at Πk ≥ 0.25

power coefficient is already belowwhatwas achieved bymost

of the single spring configurations (figure 5). C ′
p continues

to drop even more so a�er resonance. In such a way, the two

spring configuration maintains high propulsive efficiency

across a wide range of flexibilities spanning on the both sides

of resonance. Overall, the results of this section supports our

earlier hypothesis.

4. CONCLUSIONS

It has been shown that the unsteady propulsive performance

of flexible foils with a single torsional spring hinge is not only

a function of their effective flexibility but also their bending

pa�erns. Across all flexibilities tested here, increasing flexion

ratio was beneficial to the efficiency while diminishing the

thrust production. We showed that the combined effect of

the flexibility and the flexion ratio can result in propulsive

efficiencies as large as 50% or more for a purely pitching foil.

�is is more than 250% larger than the propulsive efficiency

of a rigid foil with the same leading edge kinematics.

Additionally, flexible foils with two flexible joints were

examined to probe whether multiple flexible hinges could be

used to a�enuate the trade-off between thrust and efficiency

to achieve fast and efficient swimming simultaneously. �e

flexibility of the joints was determined such that the effective

flexibility was constant along the chord. We found that this

combination of flexible joints have a constructive effect on

the propulsive performance of a pitching foil with regard to

both thrust and efficiency across a wide range of flexibilities.

Finally, it is important to note that the fluid-structure

model used in this study is subject to several assumptions.

�e fluid model, for instance, does not account for viscous

effects such as the separation that may occur at the leading

edge or along the deforming body, especially when the solid

deformation is large. �ese effects can potentially influence

the propulsive performance especially with regard to the

power consumption.
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[25] Ulrich Kü�ler and Wolfgang A Wall. Fixed-point fluid–

structure interaction solvers with dynamic relaxation.

Computational Mechanics, 43(1):61–72, 2008.

[26] Iman Borazjani, Liang Ge, and Fotis Sotiropoulos. Curvi-

linear immersed boundary method for simulating fluid

structure interaction with complex 3d rigid bodies. Jour-

nal of Computational physics, 227(16):7587–7620, 2008.


