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USING COMPUTER ALGEBRAIC
SYSTEMS TO TEACH MATHEMATICS :

A DIDACTIC PERSPECTIVE

Summary : In France, for several years, a num-
ber of groups connected with IREM have been
considering the potential for teaching secon-
dary mathematics offered by computer alge-
braic systems (C.A.S.), as well as the pro-
blems associated with integrating computer
based work into the mathematics curricu-
lum. This research is supported by the Natio-

nal Ministry of Education’s initiative DITEN?,
which has itself set up a working group. This
is by no means an easy task: there is a per-
sistent gap between the discourse and enthu-
siastic writings of innovators in the field of infor-
mation technology and the current weak
integration of the use of computers into
mathematics teaching.

What exactly are the real potentialities
for the use of C.A.S. to support mathematics
teaching, and for what level? What condi-

tions favour its use? Where do obstacles lie, -

and are they located in the hardware or the

Michele ARTIGUE, Equipe DIDIREM
Université Paris VII et IUFM de Reims

software, at the cognitive level, in didactic prac-
tice, or at the institutional level? With regard
to all these questions, our understanding is
as yet very limited. In order to make pro-
gress we need to begin by collating the work
that has already been done on using C.A.S.,
and to consider innovations that have been intro-
duced.

This is the work we have been doing since

1993 in the DIDIREM? group, working in
close cooperation with the DITEN group refer-
red to above. In this article I give a brief sur-
vey of our work. This is followed by a summary
of what the literature claims are the advan-
tages offered by using C.A.S. to teach mathema-
tics. I then present what we have learned
from our observations of the teaching ses-
sions we have run, and this leads me to iden-
tify a number of points which seem to requi-
re particular vigilance on the part of teachers
and teacher trainers.
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I- THE RESEARCH

The aim of the research was to contribute
to the study of the impact of using C.A.S,,
and more particularly on the use of DERI-
VE, on the work done by students in the secon-
dary school. The research used two metho-
dologies:

- an external methodology by which,
through the use of questionnaires (one for
the teacher and one for the students), we
attempted to determine the extent to
which DERIVE is at present in use in
our colleges and lycées, and the effects of
this use on the work done by the stu-
dents in mathematics.

- an internal methodology based on our
observation and analysis of a series of les-
sons in which DERIVE was used.

These two methodologies are complementary:
the first provides us with an overview of
the extent to which DERIVE is currently being
used in secondary education. But we are
well aware that, through using question-
naires, we shall only obtain a posterior:
rationalisations from users of this softwa-
re, and that a great deal of bias may be
associated with this type of methodology. The
second methodology provides a much more
accurate approach but it has the disadvan-
tage of remaining extremely local. By com-
bining these two methodologies, external
and internal, we hope to be able to com-
pensate, at least partially, for the limitations
inherent in each of them.

The questionnaires were sent out to about
fifty mathematics teachers throughout Fran-
ce who were willing to cooperate with the pro-
ject, as well as to their students. The class
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observations were carried out in the mathema.
tics classes of the DITEN working group
referred to above. The teachers in this group
suggested sequences of lessons which, in
their view, were able to demonstrate the
value of using DERIVE in teaching mathema-
tics. As a rule we did not interfere with the
planning of these lessons, since the teachers
were the ‘experts’in using DERIVE. On the
other hand, we did ask the teachers to pro-
vide us with a prior analysis of what they expec-
ted from the lessons, using a questionnaire
which had been negotiated with the group.
Ten lessons were observed, from the last

year of college (3rd) and the last year of

lycée (Terminale).

To conclude this brief summary of the
research procedure, we would like to under-
line what we see as the particular value in wor-
king with expert teachers:

- first, it seems to us important to present
the expertise that these experts have, and
which they are often not good at making
explicit, in order to be able to pass this on
for the benefit of training. It is also impor-
tant to show to those involved in training
the degree of expertise that is needed for
efficient management of classrooms when
using computers.

- second, the difficulties encountered by the
experts, and the difference between their expec-
tations and what actually occurs in their classes,
seem to us to be particularly important in
trying to understand what may prevent the
integration of computer learning into
mathematics teaching, and in identifying the
questions which merit particular attention
for those engaged in research in this area.

... the relationship between Knowledge, Curriculum and Practice
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II - PERCEIVED ADVANTAGES OF C.A.S

The literature concerning the use of C.A.S.
in schools attributes to it a number of advan-
tages, the majority of which are not specific
to any particular software. These advantages
relate to the nature of the mathematical tasks
that can be offered to students, as well as to
the students’ cognitive functioning.

Thus, a systematic search through the
bibliography in this area (Artigue et al., 1993)
shows that the use of C.A.S. is most fre-

quently presented as®:

- Permitting a more effective development of
an experimental approach to mathematics
with its phases of exploration, formulation and
testing of conjectures and validation, at least
pragmatically. This claim is most commonly
supported by referring to the user-friendliness
of the system (particularly for DERIVE), the
considerable reduction in effort needed to
carry out explorations compared with tradi-
tional methods, as well as certain characte-
ristics of the user/machine interface: speed,
frequency of interaction, exploiting feedback
from the machine in the case of error.

- Allowing for the exploration of problems
which are more interesting than those usual-
ly encountered, and not strictly within the
school syllabus, through using calculation
aids (numerical, algebraic and graphical) pro-
vided by the computer. Moreover, many of the
publications relating to DERIVE up to recent-
ly have been essentially concerned with illus-
trating this thesis through proposing such
activities.

- Providing a more user-friendly atmosphere
for teaching and more suited to the needs of
the particular learner. This aspect is most
commonly argued with reference to the cha-
racteristics of machine/student interface com-

pared with teacher/student interaction. It is
also claimed that, in general, an error made
by the student carries less penalty when wor-
king with the computer and that the teacher,
released by the machine from routine work,
is more free to turn his attention to those
problems that really require his help and
that he can be seen as a resource to be called
on, and as a partner in solving the tasks that
have been set.

It is clear that these different potential bene-
fits are seen as leading to an increase in stu-
dent motivation for the subject and for wor-

king on tasks.* The use of software like
DERIVE is also presented, at the cognitive level,
as having the benefit of

- Compensating, up to a point, for the mathema-
tical difficulties that some students encounter
and permitting them to continue to learn
without being hindered by these obstacles.
For software such as DERIVE it is claimed that
it can compensate for the difficulties involved
in numerical calculations and elementary
algebra (Kutzler, 1994).

- Providing for more reflective, strategic and
conceptual functioning by freeing the student
from technique. Comprehension, meaning
and verification take precedence over simple
technical procedures. This point is without any
doubt the one most frequently cited and is, in
general, associated with a criticism of tradi-
tional teaching, which is presented as concer-
ned with the acquisition of purely technical
competencies. Software programs such as
DERIVE are thus seen as possible vectors
for the desired change in education.

- Providing for the development of mental
images, through the possibilities of visualisation,
and for an improved understanding of the
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links between the fields of number, algebra and
graphs through using them conjointly in
mathematical tasks. In the case of software
like DERIVE this supposed impact of visuali-
sation on comprehension is most frequently
illustrated by referring to the teaching of ana-
lysis: examples are the concept of a derivative,
polynomial approximations, Fourier series...
As regards the interaction between graphs and
algebra, the illustrations offered are essen-
tially concerned with the study of elementary

functions.5

- Promoting work on syntax in algebra, reco-
gnition of patterns and generalisation of the
status of different objects being handled,
through their existence as requirements of the
‘miliew’ and not just of the didactic contract.
Syntactical aspects are shown to be particu-
larly valuable in the use of DERIVE at the begin-
ning of learning algebra (Hirlimann, 1994).

- Contributing to a ‘mathematisation’ of alge-
braic manipulations, by favouring their expli-
cit and operational character through ins-
tructions or sequences of instructions given to
the computer. This aspect is again more com-
monly cited in connection with the begin-
nings of learning algebra, in particular when
dealing with the solution of equations and sys-
tems of equations where it is known that the
manipulations are not easy to grasp and
where they are not seen to have a real mathema-
tical status for the student.

- Providing for a change in the way the stu-
dents conceive of numbers through the possi-
bility of carrying out exact calculations. At the
cognitive level, this aspect is particularly
seen as enabling the questioning of certain erro-
neous conceptions of number, reinforced by the
widespread use of calculators.

All these claims are theoretical. In the
majority of the texts, they are illustrated by
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examples and analyses that are a priori, later
carried out in predetermined classroom expe-
rimentation, but they are in fact hardly ques-
tioned. One comes away from reading the
literature with the impression that the work
in class more or less runs itself, and that a tea-
cher sufficiently familiar with the software will
encounter no particular difficulty (above all
with DERIVE, which is judged to be particularly
accessible). However, studies which are begin-
ning to be made, in particular those which go
beyond the classical control/experimental
group methodology, tend to show that when
teaching with C.A.S., as well as with other types
of software, the results obtained are not
always as beneficial as was expected. (cf. for
example Monaghan, 1994).

In the rest of this article, we shall try to
indicate some approaches for analysis and
reflection relevant to teaching and teacher trai-
ning, taken from our own research observa-
tions. Our approach is didactic. A class ses-
sion is thus analysed as an interactive system
consisting of three parts: students, the teacher
and the mathematics material. The system is
analysed through the interactions of these
three parts with themselves and with the
‘miliew’, which here includes computers. For
an intended situation, the possible dynamics
envisaged a priori are known: what we do is
to study the dynamics of what happens, in order
to understand the relations between teaching
and learning in the real situation, and what
determines them. We also want to determi-
ne what changes in the command variables
of the situation may lead to an optimisation
of these relations, in the light of the intended
learning goals. Finally, more synthetically, a
search is made through the characteristics of
each particular analysis, in order to identify
consistent features which are transferable. It
is at this more synthetic level that we are repor-
ting here, while making reference to parti-
cular observations.

... the relationship between Knowledge, Curriculum and Practice
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I - PUTTING THEORY INTO PRACTICE

We shall deal here with what seem to be
to us the key points for putting theory into prac-
tice. For clarity, we shall deal with them
separately, but in the real situation they
inter-relate in a relatively complex way.
Within the limits of this article, we have cho-
sen to look at the following two points:

- technical, procedural and conceptual ope-
rations,

- strategies used in DERIVE, strategies
that are favoured by using DERIVE, stra-
tegies envisaged by the mathematics syllabus.

II1.1 - Technical, procedural
and conceptual operations

As we mentioned earlier, the use of soft-
ware like DERIVE is generally seen as allo-
wing the student to be able to stand back
from purely procedural and technical mathema-
tical processes in order to engage in more
reflective and conceptual activity. Since DERI-
VE can quickly and efficiently carry out cal-
culations and draw graphs, the student is
less likely, it is thought, to lose his way in wor-
king through the solution of a problem. Fur-
ther, the student’s work does not require
technical manipulations, but organisation,
testing and interpretation, in other words it
is more reflective and conceptual.

The justification for this can also be based
on research in didactics such as that done by
A. Sfard and E. Dubinsky, although this resear-
ch is not directly concerned with learning using
computers. These authors base their work on
the duality of mathematical concepts - concepts
which can be seen at the same time as both pro-
cesses and objects (Sfard, 1991 and Dubinsky,
1991) and they show that:

- for a very large number of concepts, the

first understandings of them, which come
from doing, mean they are initially thought
of as dynamic processes,

- the ability to conceive of these processes as
entities in themselves, as static objects, which
can be used in other processes at a higher level,
is an operation of interiorisation and encap-
sulation which is cognitively complex,

- being able to do mathematics efficiently
supposes a good flexibility between these two
aspects: process and object.

In the literature referring to these theoreti-
cal considerations, the use of computers is seen
as a way of favouring conceptualisation through
aiding the transition from process to object. Ed
Dubinsky, in the article referred to above, writes:

For example, it seems that if a student
implements a process on a computer, by using
software that does not introduce pro-
gramming distractions (such as complex syn-
tax, constructs that do not relate to mathema-
tical ideas, etc.), then the student will, as
a result of the work with computers, tend
to interiorise the process. If that same pro-
cess, once implemented, can be treated on
the computer as an object on which operations
can be performed, then the student is like-

ly to encapsulate the process.®

C.A.S. have the potential for doing this, even
those like DERIVE whose programming pos-
sibilities are limited.

What do we conclude from the observations
that we have made of the subject?

That things are more complex than is sup-
posed by what has been said above. It would
seem that we are instead faced with a didac-
tic system which is subject to contradictory
forces:
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- the first tending to reflective and concep-
tual actions, as indicated,

- the second, conversely, tending to the divi-
ston of the solution of a problem into a mul-
tiplicity of actions, whose global coherence
is not evident, and a reduction of reflection
in favour of action.

We have been able to consider a number of dif-
ferent cases of observed classes, which were
run according to the hypotheses indicated above,
but there was nothing systematic about them.

To illustrate the claim made in the prece-
ding paragraph, the example that we have cho-
sen is one of the first we observed. It took place
in 1993 in a Seconde classe (first year of lycée).
The students had already used DERIVE in
an earlier session in which they had solved
a number of equations, constructed a gene-
ral formula for solving equations of the type
ax + b = 0, and tested the formula with a
number of examples. In the session we obser-
ved, their task was to use the general formula
they had found in order to generalise a method
for solving a linear system of two equations
with two unknowns. The purpose of this work,
was to get them to think about the particu-
lar numerical methods for solving equations
that they had been taught at college.

The hypotheses that were made in an a prio-
ri analysis of the value of using DERIVE here
conformed entirely with those set out ear-
lier, since they are essentially the following
(Artigue et al., 1993):

a) DERIVE, by freeing the student from
having to carry out calculations, can enable
him to concentrate on the solution processes,
and not get lost in the process, and it can
help him to develop the desired reflective
attitude.

b) On the other hand, having to make the steps
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of the solution procedure explicit through the
use of commands in DERIVE such as soLve,
Manage Substitute, etc., can help students to
make explicit certain implicit manipulationg
in the solution, and to give these manipula-
tions more the status of operators. The expli-
cit nature of the commands will also require
the students to distinguish between unknowns
(variables) and parameters (coefficients), and
to realise that an equation can be solved for seve-
ral unknowns and not just for x.

¢) We also have the hypothesis that this situa-
tion, with its relatively formal nature, is a situa-
tion which would not be easy to handle with
paper and pencil, but conversely, by using
DERIVE, producing a general solution, through
generalising already existing commands, will
seem a more natural one for the students.

d) Further, the work involves a complex situa-
tion where the students need to be able to mani-
pulate algebraic expressions comprising 8
distinct letters and we can imagine that many
students would have difficulty with the cal-
culations without the aid of DERIVE.

e) The availability of immediate feed-back in
a situation that is considered a priori as one
having difficulty, is considered to be an asset

"~ of DERIVE. Nonetheless, the verification car-

ried out by DERIVE is only partial. Unless the
students take the trouble to verify their for-
mulas by substituting them in the equations
- and this seems unlikely - DERIVE will not
‘say’ whether or not the formulas that have
been found are true.

What did we find from our observations?
The students got involved with the problem
(getting them started presented no difficulty),
and despite the difficulties encountered, none
of them gave up. Purely technical problems
to do with the computer were marginal. But
although there was undeniable student acti-

R
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vity, and using the computer did not present
any problems, the a priori hypotheses hard-
ly matched up to the most ‘optimistic’ a pos-
teriori analysis.

The problem posed was, for all of the stu-
dents, a real problem: they had no initial
strategy for solving the problem, and for some
no reliable strategy for finding the numerical
solution of a system of equations. Inevitably
the students used a number of features of
DERIVE which were easily available but
were not the ones that were needed to deal with
the intended question, and were even coun-
ter-productive: in the absence of any strate-
gy, the ease of carrying out trials with DERI-
VE led to a multiplication of trials in the
hope that something positive might emerge.
This phenomenon we called ‘fishing’, and it
is one which might well have a reasonable chan-
ce of being successful when working with
computers. The ease with which many attempts
can be made, and the large number of possible
choices initially available, meant that for
many students, and this was confirmed in
later observations, they did not feel the need
to interpret feed-back, which in any case
would require them to think hard about the
problem. They preferred instead simply to
register the fact that an attempt proved nega-
tive and then went on to make another choi-
ce. What followed for some groups was an
erratic exploration of possibilities, which
ended up being successful, following the inter-
vention of the teacher or through the diffusion
of the results obtained by neighbouring groups,
without ever giving the impression that they
had achieved the expected reflective distan-
ce from the particulars of the problem.

Being able to focus on the processes invol-
ved in solving the problem was also affected

by a number of other factors:

- insufficient confidence in using DERIVE
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functions, which led to some of them beco-
ming lost in the verification procedures,

- simple unnoticed key-board errors which
led to bizarre results, which was even more
of a problem for those students whose grasp
of the solution procedure was too weak to
enable them to distinguish between diffe-
rent types of wrong results ,

- more mathematical errors linked to DERI-
VE syntax, in particular in situations requi-
ring the use of multiple brackets, or errors
made through misunderstanding the beha-
viour of the solve command when using variables
(entering coefficients as variables, for
example!). It is clear that a better knowledge
of the software, notably at the level of the
commands Build and Manage Substitute could
reduce the number of such errors and so redu-
ce the number of re-writes.

Further, although by the end of the session
the students had obtained a schema for sol-
ving a pair of simultaneous equations along
the lines of:

- solve the two equations for x

- equate these two expressions

- solve for y

- start again reversing the roles of x and y

it is difficult to know what conceptual ancho-

rage this schema has.” The difficulties encoun-
tered by many groups, in particular those
who could not extricate themselves from the
vicious circle of a double solution for x and y,
or those who, having obtained y this way did
not know what to do to find x, leave one thin-
king that, for these students, solving an equa-
tion is simply means a process by which one
arrives at x = ... after carrying out a certain
number of codified manipulations. We are
left with the impression that the work carried
out with DERIVE in this session, while pro-
ducing a new schema, has done nothing to chal-

lenge that view.®
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In contrast, an analysis of our observa-
tions of other groups shows the use of DERI-
VE in an entirely positive light. This was the
case, for example, for a group who used a
strategy of linear combinations of the num-
bers for the numerical examples but who,
when it came to generalise, reverted to inef-
fective simple differences of equations. The tea-
cher then advised the two members of the group
to translate their numerical procedure using
DERIVE. This translation, which was not self-
evident but which the group was able to do on
their own, produced the reflective attitude.
Following this, a generalisation was seen to be
an easy adaptation of work that had already been
done. Moreover we were to see these same two
students working first with paper and pencil and
not moving on to use DERIVE until they beca-
me stuck by the formal complexity of the equa-
tion: y(eb — fa) = ce —ga which they had found
by eliminating x using linear combinations.
They used the same mixed approach to find
x. We should point out that the phenomenon
observed here: a qualitative change allowed
by DERIVE simulating a process ‘known by
its action’, is entirely in agreement with the
quotation by Dubinsky given above.

This example, briefly reported, seems to us
to show the need for vigilance in regard to two
particular points which are present throu-
ghout this work: -

- When the claim is made that DERIVE
frees the mind to be able to operate at the
conceptual level, it is implicit that functio-
ning at the conceptual can exist, independently
of beginning an technical work. This is doubt-
less true for someone working with pre-
viously well mastered objects, but at the
conceptualisation phase, the technical level
and the conceptual level are not independent.
On the contrary, situations which completely
take over the technical operations, or make
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the procedural operations invisible, may pro-
vide an obstacle to conceptualisation, and may
even lead to the construction of what we
may call ‘pseudo-objects’, which are named
and labelled but lack all the necessary flexi-
bility for use at the procedural level to which
they apply. From this point of view, it can easi-
ly be seen that working with DERIVE, if it
is not carefully thought out and adapted for
the students, can maintain the illusion that
the students are operating at a conceptual
level that is higher than their actual level,
simply because they are using commands
which globalise complex processes.

- We can also see in this situation that, although
the students may feel that reflective and stra-
tegic functioning makes too heavy demands
on them, the ease of using DERIVE provides
escape routes which may well be successful
(judged only by outcome). In other words,
results can be successfully achieved without
engaging in the conceptual functioning that
the teacher intended. We should point out
that if they achieve reasonable results, the stu-

dents will be even more convinced of their methods!?

It seems therefore necessary, when deve-
loping situations for using DERIVE, to take
account of these characteristics, so as to achie-
ve an adequate equilibrium between these oppo-
sing forces which are necessarily present,
and which will be different for individual stu-
dents.

To close this section, we should mention that
in 1993-94 the research group designed a
new approach to solving linear equation sys-
tems, this time for college students, which incor-
porated the relationships between technique
and concept, using the specific features of
DERIVE. This allowed the hypotheses made
about the potential of DERIVE to be realised
by the great majority of students.

... the relationship between Knowledge, Curriculum and Practice

II1.2 - Strategies used in DERIVE

We wish to mention here two points of
which we became progressively more aware
as we conducted our research. The first relates
specifically to the way DERIVE carries out its
operations, and the problems that may come
from them being hidden from the user. The
second concerns the techniques and solution
strategies favoured by the use of DERIVE
and the possible difference between these
and those which the teacher intends the stu-
dents to learn.

As before, we shall introduce our thoughts
about this by referring to two examples of
classroom observation. The first was in a
class of Premiére Scientifique (2nd year of
lycée) at the end of their work on polyno-
mials. The problem posed was an open one,
and it was hoped that the students would be
able to reinforce what they had learnt in this
area of work. It would also, according to the
teacher’s view beforehand, have an heuristic
objective and would help the students to deve-
lop research attitudes. The activity was based
on one which has been already written up (Hir-
limann et al., 1993).

The problem presented to the students

was the following: find the factors of X" -1.
The problem can be tackled without the use
of DERIVE but one would not expect a great
deal to come from such an approach. Facto-
risation is connected with the roots 1, and if
nis even, — 1, found by inspection or from divi-

sionby (X—1)and (X”-1) and generalising
the identity (X?-1)=X-1)(X+1) to

(x?"-1)= (X"~1)(X"+1) DERIVE is,
without doubt, an indispensable tool here for

opening up the field of possibilities, creating
possible conjectures, testing them easily, as

" well as in helping the student when carrying
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out paper and pencil calculations alongside the
computer based investigation. Five factorisa-
tion possibilities are offered by DERIVE: Tri-
vial, Squarefree, Rational, raDical and Com-
plex. The students were quick to limit themselves
to rational factorisation which is the most
productive, as well as the most meaningful, at
their level.

Mathematically speaking, rational factorisation
is governed by the theorems about cyclotonic
polynomials. The DERIVE algorithm goes
through intermediary factorisations in Z/pZ.
These two levels of analysis are not acces-
sible to the students for whom DERIVE ope-
rates as a black box. But even so, it would appear
a priori that the students could carry out an
interesting investigation, which may lead to
calculations and arguments about polyno-
mials that could usefully extend what is usual-
ly done.

During the course of the observation, two
distinct ways of seeing the task emerged: one
consisted in producing general conjectures
with the help of DERIVE, the other consisted
in producing conjectures about the factorisa-
tions that were offered by DERIVE. These
two tasks are profoundly different.

The students who made the first interpre-
tation of the task went on to produce about ten
conjectures during the session, correct and
incorrect (errors involved in using the index
notation being the most common, like:

X' -1=(X-DX+1D) X" 2+X" 4K +X+1)

for n even). The production of these conjectures
was not automatic, since they do not corres-
pond precisely to the factorisations given by
DERIVE. The standard factorisation of
(X" -1 =(X - DEX""+X"? +X +Dfor example
is only given for prime n and the correct ver-
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sion of the erroneous one given above is only
given for n = 4. In order to test their conjectures,
the students need to combine terms in order
to perform partial products, either mentally,
on paper or using DERIVE (which to be done
efficiently requires a good level of competen-
ce with this software). They could also perform
the corresponding divisions using DERIVE
and ask for the result to be simplified. This leads
to thinking about polynomials and manipula-
ting them which involves handling polyno-
mials in a way that is more flexible and more
complex than is usual at this level.

Those (rather fewer) students who chose
the second interpretation of the task had
considerable difficulty in formulating conjec-
tures, the conjectures collapsing as they were
tested on increasing values of n. At this level,
one could not hope for other than partial
conjectures, and may reasonably assume that
even if the students limit themselves in this
way, they are still going to encounter certain
difficulties. In fact the easiest to find are the

factorisations of (X" —1) in the cases where
n is prime, or double a prime, or where n is
a power of 2 (see appendix 1). Recognising and
formulating the properties of divisibility play
little part in the mathematics syllabuses fol-
lowed today and they do not correspond to the
categorisations of numbers familiar to the
students. Our observations confirm these dif-
ficulties, as well as attesting to the richness
of the work on polynomials carried out by
these students.

On reflection, it may be that it was not a
good idea for the students to engage in this
second interpretation of the task, although it
resulted in real endeavour, since they were not
able to get very far with it. On the other
hand, an investigation of the problem of fore-
casting what DERIVE might produce for fac-
torisations would make an interesting exten-
sion, and could be done after work using the
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first interpretation of the task. This would not
only involve making conjectures, for the rea-
sons advanced above, but also finding facto-
risation methods to produce certain of the
DERIVE factorisations, and justifying them.
For reasonable values of n (up to 30, say)
this would be an activity that would only

employ a small number of distinct methods.10

The investigation posed here seems to us
an interesting one since, through the use of
DERIVE, the students are able to work on it
productively at their own level. The outcome
should not be judged solely by number of
conjectures the students are able to formulate.
The work also requires them to develop a
research attitude, with all that entails, towards
the mathematics, and it provides an opportunity
for revision of what they have learned in the
officially prescribed syllabus. We also consi-
der that it is not sufficient to be content to remain
at the discovery phase, but to extend the ses-
sion, as was done in the mathematics class example
here, by going back over the discovery phase,
with the help of DERIVE, in order to justify
the results without using DERIVE. The obser-
vations we made seem to show that this is cer-
tainly possible at their level (the equivalen-
ce of algebraic expressions of quite different
forms is not yet self evident for these stu-
dents) and that tackling the work is facilita-
ted by contrasting different conjectures, some
correct and some incorrect.

In the example we have been looking at,
DERIVE functions as a black box whose ope-
rational strategies are inaccessible, but this
inaccessibility does not pose any specific pro-
blems. In fact, the results obtained are reliable,
means for validating them without using
DERIVE are accessible to the students and,
finally, it is possible in a not insignificant
number of cases to rework the DERIVE results
by use of elementary factorisation procedures
(albeit different from those employed by DERI-
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VE). These characteristics are sufficient for
us to be able to set up and run an investigation
which is an altogether consistent research
activity. We should point out however, that
the methods that arise naturally from this acti-
vity are not those that are particularly inten-
ded for this level of education, for example the
use of the theorem that P(X) has a factor (X
—a) when a is a root of the polynomial P(X).
Our observation shows that formal identifi-
cation procedures that were the ones most used.

The fact that the operational strategies of
DERIVE are hidden, and that there is a dif-
ference between the strategies that arise
naturally from DERIVE and those that stu-
dents can be expected to know at any parti-
cular stage of their secondary education, can
sometimes be a problem. We should like to illus-
trate this by reporting on another class, this
time from the final year of lycée (Terminale
C). The session involved a study of the expres-
sion cosx + cos3x + cosbx, determining equi-
valent ways of writing this, solving the equa-
tion cosx + cos3x + cosbx = 0 and, for the
more advanced students, studying the func-
tion associated with this expression. The stu-
dents could choose whether or not to use
DERIVE, but they had to produce a written
answer to the question in a ‘standard’ way. The
session was presented as a revision session in
trigonometry. The purpose was to revise the
fact that a trigonometric expression can be dres-
sed up in many forms, and altered according
to meet the solution needs of a particular
problem, as well as to revise the specific way
of expressing the multiple roots of a trigono-
metric equation. A prior analysis suggests
that using DERIVE here will have a number
of benefits: easily obtaining different forms of
the given expression, noticing that solving
an equation with DERIVE requires a choice
of the form of the adapted equation, help with
the calculations for students working essen-
tially with paper and pencil methods using stan-
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dard formulas, promoting reflection about
multiple roots given that DERIVE gives seve-
ral solutions but not all of them (see appen-
dix 2), and the opportunity of drawing a graph
of the associated function to allow conjec-
tures about the solutions of the equation!! which
will be useful for later study of the function.

The observation of the session showed
that the students were more hindered than
helped by using DERIVE, and this for a num-
ber of reasons. First of all, the Manage Tri-
gonometry command in DERIVE allows a
number of different options. We can choose:
Direction: Auto, Collect, Expand and combi-
ne this with Toward: Auto, Sines, Cosines. This
gives nine possibilities for which the commands
Simplify, Expand, Factor and soLive can act
differently. The differences are not syste-
matic, the terms describing these options do
not allow us easily to predict the best choices.
Finally, a not insignificant number of the
choices only produce a change in the order of
the terms in the expression. In these condi-
tions, the student is thrown into an envi-
ronment without any accessible reference
system, and only has recourse to random
‘fishing’. To this we should add that there is
an entirely satisfactory, and much more eco-
nomical, paper and pencil strategy for solving
the equation, which will appear therefore to
be the ‘natural’ one to the student. This is done
by changing cosx + cosbx into 2cos3xcos2x, or
changing cos3x + cos5x into 2cosxcos4x, either
of which can be used to factorise the initial
expression, giving two equations of the type
cosnx = a to solve. The students can do this
provided they avoid the natural temptation
of grouping the two first terms. Now it hap-
pens that this factorisation is particularly
difficult to achieve using DERIVE (see appen-
dix 2) and the students, who would expect the
computer to change the given expression
directly into one that can be used, will find
this particularly difficult.
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Those who do not abandon using DERIVE
will nonetheless finally end up with quintic
polynomial expressions in cosx which DERI-
VE can easily factorise and solve. A problem
now arises with respect to the last part of the
question: how can the hidden procedures used
by DERIVE be identified so as to show that
the initial expression is indeed equivalent to
the quintic polynomial that has been found?
The students would not be able to use DERI-
VE in the sophisticated way that is needed to
identify all the intermediate steps, and so
would need to go back to their standard for-
mulas and paper and pencil work. Many in fact
did not do this part, or abandoned an attempt
to produce a final answer containing an expres-
sion and factorisation which DERIVE allowed.

On the other hand, our observations sho-
wed that for those students who worked with
DERIVE to find a solution, the problem of inter-
preting the results provided a real mathema-
tical task. However, the contents of the pages
handed in at the end of the session showed that
most often this work had not been successful
in the sense that it was intended. The students
were often content to identify just two solu-
tions of opposite sign for the elementary
subordinate equation of the type cosx = a.
Finally, as for the use of graphs, very few
used this facility to help with solving the
equation (and no student went so far as to study
the behaviour of the function). It was noticed
that, once again, the tendency was for the great
majority of the students to abandon the use
of DERIVE in favour of using their graphic
calculators.

From these two examples of classroom
observation it seems to us that the teacher needs
to be careful about, at least, two points:

- The operational methods used by DERI-

VE may well be different from those which the
student could use, at any particular level of
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mathematical development, or may not be
the ones that the teacher wishes to be wor-
ked on. Also the hidden nature of DERIVE’s
operational system makes it difficult for the
student to recreate the intermediary steps
in any solution. The hidden nature of DERI-
VE’s methods and the difference between
these methods and those available to the stu-
dent, or intended by the teacher, are not of them-
selves to the detriment of using DERIVE. As
we have tried to show these are variables
which can be used to stimulate questioning
and mathematical activity on the part of the
student. But it needs to be said firstly, that
this is not always possible and secondly, that
our observations show that this is too complex
to be able to be correctly improvised in the real
classroom context during the running of a
session. It needs to be taken account of befo-
rehand at the planning stage.

- The students cannot be expected, in the
way it is used at present, to become experts
with DERIVE, even where they use DERIVE
almost continuously over a number of months,
as was the case in the two classes we have repor-
ted on. Further they do not have the sort of
mathematical background knowledge that
helps us to interpret what DERIVE produces.
Nor can they use DERIVE as an aid in the way
we want, nor can they find ways to make the
hidden steps become apparent. This was very
clear in the session on trigonometry.

In preparing a session using DERIVE, and
thinking about what the students may do, we
are liable to forget the extent to which this double
expertise, in mathematics and in using DERI-
VE, differs between us and the student, both
in operating DERIVE and in validating and
interpreting its results. Indeed, the user-
friendliness of DERIVE can lead us to under-
estimate the role that DERIVE expertise
plays in the solution of any particular problem.
All this, without doubt, leads to a not incon-
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siderable degree of unwarranted optimism
about what may be expected of a session.

A situation like the trigonometry session
shows us what may happen. It also shows us
that, to enable coherent and reflective work
on the part of the student, some restrictions
need to be placed on DERIVE’s considerable
freedom of operation. It can be seen that,
contrary to expectation, instead of DERIVE
encouraging systematic research behaviour,
the student, confronted by an uncontrollable
environment, simply resorts to random ope-
rating.

We also wish to point out that what we have
said shows that learning to operate with
DERIVE necessarily requires some part of mathema-
tical learning and training. We have too often
under-estimated it because we have been
unable to notice it, the processes that it
involves not being like those that appear in
the usual context of learning mathematics
due to the specific role played, for example,
by perception and by formal analogies. Inte-
grating DERIVE into the teaching of mathema-
tics, requires accepting the need for this trai-
ning and finding ways of doing this and
exploiting it to the full. We must also be ready
to parry the simplistic view that DERIVE
will simply do the mathematics instead of
the student doing it, since we teachers know
how to get DERIVE to do it.

I11.4 - In conclusion

In this article we have drawn attention to
two aspects of using DERIVE in the mathema-
tics classroom. These are not the only possible

/ones: other observers in the same situations
might well have noticed other important fea-
tures. The choice we made, more or less
consciously, was connected with our own
experience and understanding of DERIVE. This
is not that of the specialist in C.A.S. but that
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of a mathematics educator. To this extent, in
our observations of teaching sessions using DERI-
VE, we are influenced by categories of ana-
lysis which belong to didactics rather than to
mathematics. Here, DERIVE is an essential
element in the teaching and learning environment,
an element of the ‘didactic miliew’, and we are
trying to understand what effect this element
has on the mathematics being taught, the
ways the students relate to the mathema-
tics, and the ways of managing the teaching
environment. We are attempting to assess
to what extent the anticipated consequences
of using DERIVE actually happen, and to
identify which are the properties of DERIVE
that are effective in this, and which hinder the

desired outcome, as well as trying to identi- -

fy suitable tasks. We are trying to demonstrate
consistent features which may transcend a par-
ticular situation and have global application,
and then see if they apply to the observa-
tions we have already made. Considering the
student’s learning, as a process of adapta-
tion to situations which are ‘problematic’ for
him, we have tried to find out what it is in the
sessions we observed that may make them pro-
blematic for the student, and the means of adap-
tation which he has available, whether these
are ‘mathematical’ or ‘didactic’ (that is in him
using his knowledge of the didactic system),
without making the hypothesis that the for-
mer should necessarily take priority over the
latter. This analysis allows us to make hypo-
theses about what one might expect to hap-
pen in a given situation, or to conceive of
changes that are likely to make a given situa-
tion more profitable. This is certainly a very
partial look at the use of DERIVE in educa-
tion which needs to be put alongside other resear-
ch.

I would like to restate what our work has
to tell us: first it reinforces the conviction
that DERIVE can be an effective aid for tea-
ching and learning mathematics, that its
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and graphs), as well as its accessibility, consti-
tutes a real asset at the secondary education
level; but also that these capabilities in them-
selves are not able to be an effective tool for
education at this level; that at the same time
we teachers need to carry out an analysis of
what the teaching session is meant to achie-
ve. Using DERIVE in a well thought out
context can, without doubt, support learners
of mathematics, and help to provide interesting
mathematics activities in schools. But the use
of DERIVE could also lead to a lowering of
the level of the students’ mathematical acti-
vity (by taking over the usual technical work
the student does without moving him on to

Thanks

other levels of activity) or it may reinforce g
view of mathematics as a purely formal actj-
vity of symbol manipulation, a game of ruleg
with no meaning. Only a careful conception
of situations for using DERIVE can tilt the
balance in the right direction. We hope that
our research will provide a number of ana-
lytical approaches that can be used for gui-
dance.

It is essential, if we really wish to see an
effective integration of computers into education,
to be convinced of the potential benefit of this
integration. But conviction without insight will
be no help in overcoming obstacles.

T'would like to express my thanks to the members of the DITEN C.A.S. group
for all they have taught me about DERIVE and C.A.S. programs, for the
valuable help they have given to this research, and most of all for the kindness
with which they have received my intrusions into their teaching and the dis-
turbance this has caused, without the least guarantee that it may one day pro-

duce something useful.

236

APPENDIX 1

Some rational factorisations of x™ -1
for n less than 20, and an example
of an elementary derivation
of a given factorisation

2#2-1=@-Dx+1)
B-1 =x-Dx2+x+1)
24-1 = (x—Dx+ D2+ 1)

x6-1

-Dx+DE2—x+ D2 +x+1)

-1 = (x— D+ D2+ D+ 1)

2 —1 = @-Do2+x+ D8 +22+1)

20 1= (k- + Dot -+ 22—+ Dt + 2 + 22 +x + 1)

22 -1=(— D+ DE2—x+ DO +x + D2+ Dxt—22+ 1)

2ol -Dea+ Db -+t -+ 22 —x + DS + a8 +axt + 2% + a2+ x +1)
2B 1=@-D 02 +x+ Dot + a3 +x2+x + D8 — a7 + a8 —at + 23 —x +1)
26— 1= (x— Dx+ D2 + D + DB+ 1)

28 -1= (x— D+ De2—x+ D@2 +x + DEE -8 + DO + 2%+ 1)

220 1= -+ D2+ Dot -3 + 22—+ Dt + a8+ 22+ + DB -8 + x4 —x2+ 1)

example of the derivation of x18-1:
2B 1= - D2 +x8+1)

by changing the variable x — x° in the factorisation of x® — 1 (procedure: ‘multiple’)
1= -3 +1)

by procedure: known identity

W-1=@-DZ+x+1)

by procedure: standard factorisation
B+rl=@+D2-x+1)
by change of variable x — —x in the standard factorisation of x3 — 1

224284+ 1=(f -3+ DB +23+ 1)

by using the factorisation: 2% + 2 + 1 = (x2 —x + 1)(x2 + x + 1) with a change of variable x — x3.
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APPENDIX 2

DERIVE and the treatment of the expression cosx + c0os3x + cosbx

1. In the Direction field Auto or Collect, whichever Toward field is chosen, the commands
Simplify, Expand and Factor have no effect on the expression, which is simply rearran-
ged as cosbx + cos3x + cosx.
2. In the Direction field: Expand and the Toward field: Auto we get the following:

- Simplfy: 16cos®x — 16cos3x + 3cosx

- Expand: the same

- Factor Rational: cosx(1 — 4sin%c)(2cosx — 1)(2cosx + 1)

- Factor raDical: cosx(cosx - 1/2)(cosx + 1/2)(cosx — V3/2)(cosx + V3/2)

3. In the Direction field: Expand and the Toward field: Cosine we get the same results.

4. In the Direction field: Expand and the Toward field: Sine we get:
- Simplify: cosx(16sin%x — 16sinx + 3)
- Expand: 16sinxcosx — 16sinxcosx + Scosx

- Factor Rational: cosx(2sinx — 1)(2sinx + 1)(4sin®x — 3)

- Factor raDical: 16cosx(sinx — 1/2)(sinx + 1/2)(sinx — V3/2)(sinx + V3/2)

5. Starting with cosx(16cosx — 16cos%c + 3), using Direction: Collect, Toward: Auto, and
selecting the seconf factor, the command Simplfy gives cosx(1 + 2cos4x) !

6. In the Direction field: Expand, the command soLve applied to the original expression
lets you find directly 15 different solutions:

-in Toward fields: Auto and Cosine, the solutions between —57/6 and 117/6,

- in Toward field: Sine, the solutions between —47/3 and 37/2.
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NOTES

T DITEN: Direction de F'Information et des Technologies Nouvelles

2 M. Abboud, J. P. Drouhard and J. B. Lagrange have been working with me on this project.

3 The order in which these advantages are presented does not have any hierarchical significance. We have
tried to group them first according to the advantages claimed for the activities and their management, and second
for the potential they may have in aiding the student’s thinking (cognitive functioning).

4 The literature often contrasts, somewhat simplistically, traditional teaching where the student is passive, all

activity being reserved to the teacher who transmits information, with a computer (or calculator) environment
where it is the student who is active and the teacher is all but passive.

5 A DEA memoir by J. F. Canet specifically deals with this aspect (Canet, 1994), through an analysis of cogni-
tive interaction, using semiotic interaction grids developed by R. Duval and his students (Duval, 1993).

6 page 123.

7 We note that this schema, using particularly few DERIVE commands, and not requiring the need to look for
and to know how to use the hidden command Substitute, does not exactly correspond to the two methods clas-
sically taught: substitution and elimination (through linear combination).

8 We should point out that a complementary approach representing the solution algebraically and graphical-
ly, or by developing a functional approach to the solution of the equations so as to go beyond these purely
formal aspects, is entirely possible with DERIVE.

9 In fact, it would be doubtless futile to wish to eliminate this type of functioning at all costs: we ourselves do
not avoid it when we work in a computer environment. This would be to deny the characteristics of such envi-
ronments and the specifics of the processes of adaptation that can be developed there.

10 Such a classroom experiment was carried in 1994 with interesting results.

1 In fact, since this expression is equivalent to sin(6x)/2sinx, the graph shows the regularity of the solutions
and, by using the cursor, these can be found using the approximate numerical values given by the computer.
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DIDACTIC ENGINEERING
AND THE ACQUISITION OF
MATHEMATICAL KNOWLEDGE
IN THE SECONDARY SCHOOL

Régine DOUADY
Irem de Paris VII

INTRODUCTION

In this chapter, I am concerned with the rela-
tionship between what the teacher intends to
teach to a mathematics class and what the stu-
dents are capable of learning effectively. The
words, teach, learn and know can carry diffe-
rent meanings. I shall clarify the meaning I shall
give them here.

The working out of a problem is a step in
didactic engineering. In this context, the term
didactic engineering designates a set of class ses-
sions conceived, organised and articulated, in a
coherent way, in a time frame, by a master-
engineer with the purpose of achieving the lear-
ning of a certain mathematical content for a
certain student population. Thus, didactic engi-
neering is, at the same time, a product: the
result of an a priori analysis, and a process: the
result of adapting the product of the dynamic condi-
tions of the class to carrying out the work.

In what follows, I am principally concer-
ned with the relations between the construc-
tion of meaning and the acquisition of know-
ledge in mathematics. In directing the
didactic experiences of the class, and with
the inevitable institutional constraints and
various pressures he is under, is it possible
for a teacher to take these relations into
account? And what margin of manoeuvre does
he have?

However, beyond these concerns, there
exists a crucial question, of a sociological natu-
re, but which conditions the choice and the conduct
of the envisaged didactic actions:

In the school setting, what is the place of know-
ledge for the teacher, and for the students? Is
it something that is at stake in the didactic rela-
tion?
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