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Géraldine Brunoud1, Raquel Martin-Arevalillo1, Romain Azais1, Vincent Bayle1,
Steven Moussu1‡, Christian Wenzl2, Yvon Jaillais1, Jan U Lohmann2,
Christophe Godin1*, Teva Vernoux1*
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Abstract Positional information is essential for coordinating the development of multicellular

organisms. In plants, positional information provided by the hormone auxin regulates rhythmic

organ production at the shoot apex, but the spatio-temporal dynamics of auxin gradients is

unknown. We used quantitative imaging to demonstrate that auxin carries high-definition graded

information not only in space but also in time. We show that, during organogenesis, temporal

patterns of auxin arise from rhythmic centrifugal waves of high auxin travelling through the tissue

faster than growth. We further demonstrate that temporal integration of auxin concentration is

required to trigger the auxin-dependent transcription associated with organogenesis. This provides

a mechanism to temporally differentiate sites of organ initiation and exemplifies how spatio-

temporal positional information can be used to create rhythmicity.

Introduction
Specification of differentiation patterns in multicellular organisms is regulated by gradients of bio-

chemical signals providing positional information to cells (Rogers and Schier, 2011; Wolpert, 1969).

In plants, graded distribution of the hormone auxin is not only essential for embryogenesis, but also

for post-embryonic development, where it regulates the reiterative organogenesis characteristic of

plants (Dubrovsky et al., 2008; Vanneste and Friml, 2009; Benková et al., 2003). Plant shoots

develop post-embryonically through rhythmic organ generation in the shoot apical meristem (SAM),

a specialized tissue with a stem cell niche in its central zone (CZ; Figure 1A). In Arabidopsis thaliana,

as in a majority of plants, organs are initiated sequentially in the SAM peripheral zone (PZ surround-

ing the CZ) at consecutive relative angles of close to 137˚, either in a clockwise or anti-clockwise spi-

ral (Figure 1A; Galvan-Ampudia et al., 2016). SAM organ patterning or phyllotaxis has been

extensively analyzed using mathematical models (Douady and Couder, 1996; Mitchison, 1977;

Veen and Lindenmayer, 1977). A widely accepted model proposes that the time interval between

organ initiations (the plastochron) and the spatial position of organ initiation emerge from the com-

bined action of inhibitory fields emitted by pre-existing organs and the SAM center (Douady and

Couder, 1996). Tissue growth then self-organizes organ patterning by moving organs away from the

stem cells and leaving space for new ones.

Auxin is the main signal for positional information in phyllotactic patterning (Reinhardt et al.,

2003a; Reinhardt et al., 2000). Auxin, has been proposed to be transported directionally toward

incipient primordia where it activates a transcriptional response leading to organ specification

(Benková et al., 2003; Reinhardt et al., 2003a; Heisler et al., 2005; Vernoux et al., 2000). PIN-

FORMED1 (PIN1) belongs to a family of auxin efflux carriers whose polarity determines the direction

of auxin fluxes (Benková et al., 2003; Gälweiler et al., 1998). PIN1 proteins are present throughout
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the SAM and regulate the spatio-temporal distribution of auxin cooperatively with other carriers

(Reinhardt et al., 2003a; Bainbridge et al., 2008). Convergence of PIN1 carriers toward sites of

organ initiation was proposed to control an accumulation of auxin that triggers organ initiation. This

spatial organization of PIN1 polarities was also proposed to deplete auxin around organs, locally

blocking initiation and thus establishing auxin-based inhibitory fields (Reinhardt et al., 2003a;

Heisler et al., 2005; Vernoux et al., 2011; de Reuille et al., 2006; Stoma et al., 2008;

Jonsson et al., 2006; Smith et al., 2006a). In addition, a reduced responsivity of the CZ to auxin

has been demonstrated, providing an auxin-dependent mechanism for the inhibition of organogene-

sis in the CZ (Vernoux et al., 2011; de Reuille et al., 2006). Several models converge to suggest

that together, these auxin-dependent regional cues determine new organ locations in the growing

SAM.

The genetically-encoded biosensor DII-VENUS, a synthetic protein degraded directly upon sens-

ing of auxin, recently allowed an unprecedented qualitative visualization of spatial auxin gradients in

the SAM (Vernoux et al., 2011; Brunoud et al., 2012). However, quantification of the spatio-tempo-

ral dynamics of auxin is required to fully evaluate both experimental and theoretical understanding

of the action of auxin in SAM patterning. This is all the more important given that the continuous

helicoidal reorganization of auxin distribution in the growing SAM, suggests that auxin might convey

complex positional information. Here, we used a quantitative imaging approach to question the

nature of the auxin-dependent positional information. We further investigate how efflux and biosyn-

thesis regulate the 4D dynamics of auxin, and explore how this information is processed in the SAM

to generate rhythmic patterning.

Results

Spatio-temporal auxin distribution
In the SAM, DII-VENUS fluorescence reports auxin concentration with cellular resolution

(Vernoux et al., 2011; Brunoud et al., 2012). To extract quantitative information about auxin distri-

bution, we generated a DII-VENUS ratiometric variant, hereafter named qDII (quantitative DII-

eLife digest Plants, like animals and many other multicellular organisms, control their body

architecture by creating organized patterns of cells. These patterns are generally defined by signal

molecules whose levels differ across the tissue and change over time. This tells the cells where they

are located in the tissue and therefore helps them know what tasks to perform.

A plant hormone called auxin is one such signal molecule and it controls when and where plants

produce new leaves and flowers. Over time, this process gives rise to the dashing arrangements of

spiraling organs exhibited by many plant species. The leaves and flowers form from a relatively small

group of cells at the tip of a growing stem known as the shoot apical meristem.

Auxin accumulates at precise locations within the shoot apical meristem before cells activate the

genes required to make a new leaf or flower. However, the precise role of auxin in forming these

new organs remained unclear because the tools to observe the process in enough detail were

lacking.

Galvan-Ampudia, Cerutti et al. have now developed new microscopy and computational

approaches to observe auxin in a small plant known as Arabidopsis thaliana. This showed that

dozens of shoot apical meristems exhibited very similar patterns of auxin. Images taken over a

period of several hours showed that the locations where auxin accumulated were not fixed on a

group of cells but instead shifted away from the center of the shoot apical meristems faster than the

tissue grew. This suggested the cells experience rapidly changing levels of auxin. Further

experiments revealed that the cells needed to be exposed to a high level of auxin over time to

activate genes required to form an organ. This mechanism sheds a new light on how auxin regulates

when and where plants make new leaves and flowers. The tools developed by Galvan-Ampudia,

Cerutti et al. could be used to study the role of auxin in other plant tissues, and to investigate how

plants regulate the response to other plant hormones.
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VENUS). qDII differs from previously used tools (Liao et al., 2015) in producing DII-VENUS and a

non-degradable TagBFP reference stoichiometrically from a single RPS5A promoter (Wend et al.,

2013; Goedhart et al., 2011; Figure 1—figure supplement 1A–H). By introducing a stem cell-spe-

cific pCLV3:mCherry nuclear transcriptional reporter into plants expressing qDII (Pfeiffer et al.,

Figure 1. Spatial auxin distribution in the SAM follows a precise reiterative pattern. (A) SAM radial organization.

The CZ (magenta) is surrounded by the PZ (cyan). Emerging flower primordia and flowers are colored in yellow.

(B). Representative expression patterns of DII-VENUS-N7 (yellow) and pCLV3:mCherry transcriptional reporter line

(magenta). Primordia are indicated by color and rank. (C). Auxin map (1-qDII, yellow to black) of (B). CLV3

expression (magenta) and radial extension (circle) are shown. Black arrows depict radial distance from the center

and aligned angle. (D–F). Superposition of 21 aligned SAM images at time 0 hr (D), and 10 hr (E). (F) 137.5˚

clockwise rotation of (D) results in a quasi-identical image of (E). See Figure 1—figure supplement 2A for non-

aligned image superposition. Scale bars = 20 mm. (G). Precision in auxin maxima positioning measured using

angular position deviation (azimuthal deviation, left panel) and radial direction (right panel). Red lines indicate the

average cellular distance. N = 21 meristems. Colors indicate primordium ranks (P-1 blue, P0 cyan, P1 green, P2
yellow, P3 orange) (H). Space can be used as a proxy for time, as a rotation of 1 divergence angle is equivalent to

a translation of 1 plastochron in time.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Expression pattern of qDII and CLV3.

Figure supplement 2. Precision in the positioning of auxin maxima enables time extrapolation.

Figure supplement 3. Auxin depletion dynamics.
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2016) we generated a functional and robust geometrical reference for the SAM center (Figure 1B,C

and Figure 1—figure supplement 1I–M).

All analyzed meristems (21 individual SAM) showed qDII patterns similar to those obtained with

DII-VENUS, with locations of auxin maxima following the phyllotactic pattern (Vernoux et al., 2011;

Figure 1B–E). Despite the fact that SAMs were imaged independently and not synchronized, qDII

patterns appeared highly stereotypical with easily identifiable fluorescence maxima and minima. This

was confirmed by image alignment using SAM rotations (applying prior mirror symmetry if neces-

sary; Figure 1D and Figure 1—figure supplement 2A–C). All images could be superimposed pre-

serving the spatial distribution of auxin maxima and minima (Figure 1—figure supplement 2B). Our

analysis shows that auxin distribution follows the same synchronous pattern across a population of

SAMs, with low angular and rhythmic variability (Figure 1—figure supplement 2D–E, Appendix 2),

with apparent stationarity up to a 137˚ rotation (Figure 1H).

To further quantify auxin distribution, we developed a mostly automated computational pipeline

to measure SAM fluorescence (Appendix 3) (Cerutti et al., 2020). We used the spatial distribution

of 1-DII-VENUS/TagBFP as a proxy for auxin distribution, hereafter named ‘auxin’ (Figure 1C) and

focused on the epidermal cell layer (L1) where organ initiation takes place (Jonsson et al., 2006;

Kierzkowski et al., 2013; Smith et al., 2006b; Reinhardt et al., 2003b). The location of the abso-

lute auxin maximum value was defined as Primordium 0 (P0). Other local maxima with lower auxin

values were called Pn (Appendix 1), with n corresponding to their rank in the phyllotactic spiral

(Figure 1C and Figure 1—figure supplement 2B). Note that the dynamic range of qDII allows mea-

suring an auxin value for the vast majority of cells in the PZ and only a few cells at P0 had undetect-

able values of DII-VENUS, leading to an auxin value of 1. The pipeline then permits the

quantification of nuclear signals and aligns all the SAMs onto a common clockwise reference frame

with standardized x,y,z-orientation and with the P0 maximum to the right. This automatic registration

confirmed that auxin maxima follow a phyllotactic pattern with a divergence angle close to 137.5˚

(Figure 1—figure supplement 2F). It also demonstrated that maxima are positioned with a preci-

sion close to the size of a cell both in distance from the SAM center and in azimuth (angular distance)

with a maximal standard deviation of 8.4 mm or 1.5 cell diameters (Figure 1G).

We then considered the temporal changes in auxin distribution by using time-lapse images over

one plastochron, which corresponds to the

period of this rhythmic system. P0 and successive

auxin maxima moved radially (Figure 1—figure

supplement 2D). Remarkably, while the average

radial distance from each local maximum Pn to

the SAM center progresses (Figure 1—figure

supplement 2G), the spatial deviation of this dis-

tance does not change significantly over time,

reflecting the synchronized movement of local

maxima, with limited meristem to meristem vari-

ation. After 10 hr, every Pn local maximum has

almost reached the starting position of the next

local maximum, Pn+1, but after 14 hr they have

passed this position (Figure 1—figure supple-

ment 2G). This suggests that a rotation of

137.5˚, which replaces Pn by Pn+1, corresponds

to a temporal progression of 10 to 14 hr

(Figure 1H). This was supported by dissimilarity

measurements obtained using different rotation

angles between maps (Figure 1—figure supple-

ment 2H), allowing us to confirm that plasto-

chron last 12h ± 2h. We could thus derive a

continuum of primordium development by plac-

ing Pn+1 time series one plastochron (12 hr) after

Pn time series on a common developmental time

axis (Figure 1H). Together with the observed

developmental stationarity, this permitted the

Video 1. Auxin developmental continuum over nine

plastochrons. Auxin distribution dynamics in the SAM

obtained from population averaging and temporal

extrapolation. The developmental stage indicated at

the top p=n corresponds to the area located on the

right. Color code: yellow = low auxin, to black = high

auxin.

https://elifesciences.org/articles/55832#video1
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reconstruction of auxin dynamics over several plastochrons from observations spanning only one.

The resulting quantitative temporal map of auxin distribution in the SAM reveals the dynamic gene-

sis of auxin maxima in the PZ first as finger-like protrusions (visible at P-2, P-1 and P0) from a perma-

nent high auxin zone at the center of the SAM (Figure 1—figure supplement 2I–L and Video 1), as

previously predicted (de Reuille et al., 2006). At later stages, auxin maxima become confined to

fewer cells while auxin minima are progressively established precisely in between auxin maxima and

the CZ (Figure 1—figure supplement 3).

We next wondered whether the motion of auxin maxima and minima could result purely from cel-

lular growth, an hypothesis used in several theoretical models (Douady and Couder, 1996;

Jonsson et al., 2006; Smith et al., 2006b; Heisler and Jönsson, 2006). By following a P1 maximum,

we observed that cells within the auxin maximum zone closest to the CZ at time 0 hr gradually trans-

fer to the depletion zone at time 10 hr (Figure 2A–C; nuclei circled in white). At the same time, cells

on the distal edge of the maximum zone show a progressive increase in their auxin level (Figure 2A–

C; nuclei circled in red), suggesting a spatial shift of the auxin maximum relatively to the cellular can-

vas. To explore further this phenomenon, we used nuclear motion to estimate cell motion vectors

and compare them with the motion of the center of auxin maximum zones, we further found that the

average radial speed of auxin maxima between stages P1 and P4 can surpass the average displace-

ment of individual nuclei, with a peak velocity of more than 1 mm/h at the P2 stage (Figure 2D–E).

These results show that auxin maxima are not attached to specific cells; instead they travel through

the tissue, resulting in an apparent centrifugal wave of auxin accumulation. Consequently, the SAM

cellular network provides a dynamic medium in which auxin maximum zones can move radially with

their own apparent velocity relative to the growing tissue (Figure 2D–E). Analysis on time-courses of

up to 14 hr revealed significant auxin variations in certain cells over one plastochron while auxin lev-

els remained unchanged in others (Figure 2F–G). However, neighboring cells always showed limited

differences in their temporal auxin profiles (Figure 2F–G). We concluded from these observations

that there is a high definition spatio-temporal distribution of auxin, with auxin apparent movement

occurring faster than growth within the tissue and providing cells with graded positional information

in space and time (Figure 2H).

Spatio-temporal control of auxin efflux and biosynthesis
The creation of auxin maxima first as protrusions of a high auxin zone in the CZ contrasts with the

current vision of organogenesis being triggered by local auxin accumulation at the periphery of the

CZ with concomitant auxin depletion around auxin maxima (Reinhardt et al., 2003a; de Reuille

et al., 2006; Stoma et al., 2008; Jonsson et al., 2006; Smith et al., 2006b). This, in addition to the

partial uncoupling of auxin distribution dynamics and growth, led us to reevaluate the spatio-tempo-

ral patterns of PIN1 localization, given their central role in controlling auxin distribution

(Reinhardt et al., 2003a; de Reuille et al., 2006; Jonsson et al., 2006; Smith et al., 2006b). Co-

visualization of a functional PIN1-GFP (Benková et al., 2003) and qDII/CLV3 fluorescence over time

showed that PIN1 concentration increases from P0 and reaches a maximum at P2 before decreasing

(Figure 3A,H and Figure 3—figure supplement 2), consistent with previous observations

(Heisler et al., 2005; Bhatia et al., 2016; Caggiano et al., 2017). To quantify PIN1 cell polarities,

we used confocal images after cell wall staining with the fluorescent dye propidium iodide (PI) as a

reference to position the PIN1-GFP signal relative to the L1 anticlinal cell walls at each cell-cell inter-

face (Shi et al., 2017; Figure 3B and Appendix 4). This allowed us to compute PIN1-GFP polarity for

each cell-cell interface of the SAM by extracting the 3D distribution of fluorescence for PI and GFP

and quantifying the difference of intensity on membranes on both sides of the cell wall (Figure 1C

and Appendix 4). These cell interface polarities measure in which direction each cell interface locally

contributes to orient the flow of auxin transport. Using super-resolution radial fluctuation (SRRF)

microscopy (Gustafsson et al., 2016) on the same samples, we could show that this method recov-

ers cell interface PIN1 polarities with an error below 10% (8 out of 94 interfaces analyzed). When cal-

culating cellular PIN1 polarity vectors by integrating the cell interface polarity information for each

cell, we could further show that more than 80% of the cellular polarities deviate by less than 30˚

between the two approaches. This quantitative evaluation (Figure 3D–G, Figure 3—figure supple-

ment 1 and Appendix 4) validates the robustness of our method, showing that, in spite of a coarse

image resolution, a vast majority of cellular polarity directions are consistent with super resolution

imaging techniques. Our approach is therefore particularly suitable for monitoring global trends at
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the scale of a tissue. Local averaging of the cellular vectors obtained from confocal images was then

used to calculate continuous PIN1 polarity vector maps in order to identify the dominant trends in

auxin flux directions in the SAM (Figure 3I, and Appendix 4). At the tissue scale, the vector maps

demonstrate a strong convergence of PIN1 toward the center of the SAM (Figure 3I–J and Fig-

ure 3—figure supplement 2). In addition, PIN1 polarities deviate locally toward the radial axes fol-

lowed by auxin maxima when they protrude from the CZ. We detected the previously observed

inversion of PIN1 polarities at organ boundaries (Heisler et al., 2005) and our quantifications show

that this occurs only from P7 (Figure 3—figure supplement 2C), thus isolating the flower from the

rest of the SAM from this late stage. P3 to P5 show a general flux toward the SAM that is locally

deflected around the zones of auxin minima before converging back toward the SAM center

Figure 2. Auxin information travels as centrifugal waves in the meristem. (A–C) Representative projection of P1
nuclei showing DII-VENUS-N7 (yellow) and TagBFP nuclei (grey) intensity changes in time. Time tracked nuclei are

marked by white and red circles showing rapid decrease or increase of auxin over 10 hr, respectively. The green

circle is centered on the position of the auxin maxima at each time point. The magenta line indicates the limit of

the CLV3 domain. Scale bars = 20 mm. (D) Average motion of maxima (colored lines) is faster than average cell

motion (grey lines). The magenta line indicates the CLV3 domain border. N = 21 meristems. (E) Compared

distributions of radial motion speeds of auxin maxima (color boxplots) estimated as the slope of a linear

regression per individual. Individual nucleus radial speed (gray boxplots) at the location of the maxima. N = 21

meristems. (F–G) Individual cells experience different auxin histories. Tracked cells at different locations (F; colored

circles) and corresponding auxin levels (ordinate) over time (0, 5, 10, 14 hr). Scale bar = 20 mm. (H) Cellular mean

auxin trajectories as a function of radial distance. Each line represents an extrapolated cell-size sector moving

accordingly to cellular radial motion by its Gaussian average trajectory in radial distance (abscissa) and auxin value

(ordinate). The color indicates the developmental stages at a given radial distance (P-1 = blue, P0 = cyan,

P1 = green, P2 = yellow).
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Figure 3. Spatio-temporal organization of auxin fluxes and biosynthesis. (A) Co-visualization of PIN1-GFP (green),

DII-VENUS-N7 (yellow) and pCLV3:mCherry (magenta). Scale bar = 20 mm. Square shows P-1 sector. (B) Magnified

P-1 region of (A) PIN1-GFP (green) and PI (magenta). (C) Computed PIN1 cell interface polarities of (B). Green

arrows indicate polarities with a p-value<0.1, small arrows < 0.25 and dots > 0.25. (D–G). Image of PIN1-GFP

(green) and cell wall (magenta) obtained using confocal (D) or super resolution (SRRF) microscopy (F) and

respective PIN1 cell interface polarities (E,G). (H) Quantification of PIN1-GFP expression. N = 4 meristems. (I) PIN1

vector map (green arrows) organization correlated with auxin distribution (yellow to black). N = 4 meristems. (J)

PIN1 polarity divergence index at auxin maxima (color filled boxplots) or auxin minima (white filled boxplots)

positions during organ initiation. N = 4 meristems. (K) The YUC4 auxin biosynthesis limiting enzyme is specifically

expressed in developing flowers. YUC4:GFP transcriptional reporter in yellow, cell wall (PI) staining in grey. Scale

bars = 20 mm. (L) yuc1yuc4 mutant inflorescence and meristem morphological defects (inset). Scale bars are 10 mm

and 20 mm (inset). (M) Schematic representation of the tissue-scale organization of auxin transport and

biosynthesis in relation to auxin distribution.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Validation of PIN1 polarity vectors with super resolution microscopy.

Figure supplement 2. Tissue-scale PIN polarity distribution.

Figure supplement 3. Expression patterns of YUC genes and phenotypes of yuc mutants.
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(Figure 3I and Figure 3—figure supplement 2). Over the course of one plastochron, only limited

changes in the PIN1 polarities are observed (Figure 3—figure supplement 2), suggesting that

changes in auxin distribution at this time resolution do not require major adjustments in the direction

of auxin efflux at the tissue scale.

We next asked where auxin could be produced in the SAM. YUCCAs (YUCs) have been shown to

be limiting enzymes for auxin biosynthesis (Cheng et al., 2006; Liu et al., 2016). We thus mapped

expression of the eleven YUC encoding genes in the SAM, using GFP reporter lines with a promoter

fragment size shown to be functional for YUC1,2 and 6 (Figure 3—figure supplement 3A–

N; Liu et al., 2016; Robert et al., 2013). Only YUC1,4,6 were expressed (Figure 3K, Figure 3—fig-

ure supplement 3A–F). While YUC6 showed a very weak expression in the CZ, both YUC1 and

YUC4 are expressed in the L1 layer on the lateral sides of the SAM/flower boundary from P3 for

YUC4 (Figure 3K) and P4 for YUC1 (Figure 3—figure supplement 3A and D; Cheng et al., 2006).

From P4, YUC4 expression extends over the entire epidermis of flower primordia. This is coherent

with genetic and other expression data (Supplementary file 1; Cheng et al., 2006;

Armezzani et al., 2018). In addition, yuc1yuc4 loss-of-function mutants show severe defects in SAM

organ positioning and size (Shi et al., 2018; Pinon et al., 2013; Figure 3L and Figure 3—figure

supplement 3O–U). Taken with the organization of PIN1 polarities, these results suggest that P3-P5
are auxin production centers for the SAM that regulate phyllotaxis and that PIN1 polarity organiza-

tion allows for pumping auxin away from these production centers and towards the meristem.

In conclusion, our results suggest a scenario in which auxin distribution depends on high concen-

trations of auxin at the center of the SAM, and also at P-1 and P0, acting as flux attractors and on

auxin production primarily in P3-P5 (Figure 3M).

The role of time in transcriptional responses to auxin
To assess quantitatively whether and how the spatio-temporal distribution of auxin is interpreted in

the SAM, we next introduced the synthetic auxin-induced transcriptional reporter DR5 (Friml et al.,

2003; Sabatini et al., 1999; Ulmasov, 1997) driving mTurquoise2 into the qDII/CLV3 reporter line

(Figure 4A–D). Cells expressing DR5 closest to the CZ were robustly positioned at an average dis-

tance of 32 mM ± 7 (SD) from the center. This corresponds to a distance at which the intensity of

CLV3 reporter expression is less than 5% of its maximal value (Figure 4—figure supplement 1A).

The distance from the center at which transcription can be activated by auxin is thus defined with a

near-cellular precision.

To obtain a global vision of how auxin-controlled transcription is related to auxin concentration,

we performed a Principal Component Analysis (PCA) using quantified levels of DR5, auxin and CLV3

in each nucleus of the PZ during a 10 hr time series, together with their distance from the center

(Figure 4E). With the first two axes accounting for around 75% of the observed variability, we unex-

pectedly observed orthogonality between auxin input and DR5 output, clearly marking the absence

of a general correlation in the SAM (Figure 4E, inset). This unexpected finding was confirmed by the

low Pearson correlation coefficients between DR5 and auxin values at the cell-level (Figure 4—figure

supplement 1B). We refined our analysis by focusing on the different primordia regions. We assem-

bled all the observed couples of values (auxin, DR5), averaged over each primordium region, on a

single graph (Figure 4F). This demonstrated that, spatially, a given auxin value does not in general

determine a specific DR5 value. However, values corresponding to primordia at consecutive stages

follow loop-like counter-clockwise trajectories in the auxin x DR5 space (indicated by the arrow in

Figure 4F). Such trajectories are symptomatic of hysteresis reflecting the dependence of a system

on its history. In other words, it appears that the relationship between auxin level and DR5 expres-

sion is not direct, but is affected by another factor depending on the previous developmental trajec-

tory of each cell (determined by parameters such as genetic activity, protein content, signal

exposure, chromatin state).

We then tried to identify what in this developmental history can explain the observed differences

in DR5 response to auxin. We first used our reconstructed continuum of primordium development to

study the joint temporal variations of DR5 and auxin within a group of cells during primordium initia-

tion (Appendix 5). This showed that the start of auxin-induced transcription follows the build-up of

auxin concentration with a delay of nearly one plastochron (Figure 4G–H). The duration of the

observed phenomenon suggests the existence of an additional process, over and above fluorescent

protein maturation (Vernoux et al., 2011; Balleza et al., 2018), that creates a significant auxin
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response delay in primordium cells during development. Due to this delay, DR5 is not a direct read-

out of auxin concentration, explaining the absence of correlation between DR5 expression and auxin

levels in these cells.

We next wondered what could explain a time-dependent acquisition of cell competence to

respond to auxin. A first possible scenario is that cells exiting the CZ proceed through different

stages of activation of an auxin-independent developmental program enabling them to sense auxin

Figure 4. Auxin and its transcriptional output show a complex non-linear relationship. (A–C). Time-lapse images of

representative projections of DII-VENUS-N7 (yellow), TagBFP nuclei (grey) and pDR5:mTurquoise2 (cyan). Scale

bars = 20 mm. (D). Quantified DR5 expression map (black to cyan). Colored sectors show the tissue areas where

primordia are located (P-3 to P1). N = 21 meristems. (E). Principal Component Analysis (PCA) showing absence of

correlation (orthogonality) between auxin and DR5 at the tissue scale. Colored ellipses show the consistent pattern

associated with each primordium stage (from P-2 to P1 using the same colors as in (D)). (F). Auxin and DR5 non-

linear relationship in primordia. Cells from P-3 to P1 are indicated with the color code used in (D). Lines represent

the regression of auxin and DR5 medians in time. (G–H). Auxin (G) and DR5 (H) expression in primordia. Boxplots

use the same color code for primordia as in (D). N = 21 meristems.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Precision in DR5 radial positioning and Pearson correlation analysis of DR5 expression and

auxin levels.
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only after a temporal delay. A second possibility is that auxin controls this developmental program

through a time integration process. In this scenario, cells exiting the CZ would need to be exposed

to high auxin concentrations for a given time to build up an auxin transcriptional response. To test

these scenarios, we treated SAMs with auxin for different periods using physiologically relevant con-

centrations (Reinhardt et al., 2000; Figure 5A–I). All treatments, even the shorter ones, equally

degraded DII-VENUS throughout the PZ (Figure 5—figure supplement 1A–I). This suggests that

auxin uptake was similar throughout the PZ, although we cannot totally discard that some differen-

ces exist. In the shorter auxin treatments (30’ and 120’), the auxin transcriptional response was

mainly enhanced at P-1 and P-2 and to a lesser extent at the position of the predicted P-3that is

where cells are already being exposed to auxin (Figure 5I). The longer auxin treatments (300’) lead

to an activation of signaling in most cells in the PZ and organs, with the strongest activation being

observed again at P-1 and P-2 but also at the predicted azimuth for P-3, P-4 and P-5 (Figure 5H–I). We

could further show that a 300’ treatment with a lower auxin concentration (200 nM) activated signal-

ing similarly (at P-1) or more strongly (at P-2, P-3, P-4 and P-5) than a 120’ 1 mM auxin treatment. Con-

versely, a 120’ treatment with higher auxin concentration (5 mM) lead to an activation of signaling

almost as strongly as a 300’ 1 mM treatment at P-1, although the activation was lower at P-2

(Figure 5I). In all treatments, no significant effect was detected at P0, consistent with the fact that

DR5 activation is already maximal at this stage of development (Figure 4). We next treated pinoid

(pid) mutant SAMs with exogenous auxin. pid mutants are strongly affected in polar auxin transport

and in aerial organ production (Reinhardt et al., 2003a; Friml et al., 2004; Christensen et al.,

2000). DR5 expression was low and radially uniform in pid SAMs, suggesting a uniform auxin distri-

bution (Figure 5J; Friml et al., 2004). When treated with 1 mM auxin, DR5 could be activated in all

cells of the periphery of the SAM (suggesting an uptake throughout the PZ as in the wild-type) only

with a 300’ treatment, while a 120’ treatment had only a weak effect (Figure 5J–M and Figure 5—

figure supplement 2A–C). This indicates that, even with the reduced complexity in PZ patterning of

the pid mutant (Friml et al., 2004), activation of auxin signaling is still dependent on the time of

exposure to auxin in all cells surrounding the CZ. Taken together, our observations support the sec-

ond scenario, with the activation of signaling being a function of both time of exposure to auxin and

auxin concentration. Conversely, our results are incompatible with the first scenario, where the

capacity of the cells to respond to auxin is intrinsic and is not dependent upon auxin exposure time.

Notably, the results with pid SAMs suggest that all cells at the SAM periphery show no intrinsic dif-

ferences in their capacity to respond to auxin, in agreement with published data (Reinhardt et al.,

2003a; Heisler et al., 2005; Smith et al., 2006a). Our results thus support the hypothesis that tem-

poral integration of auxin concentration is required for downstream transcriptional activation in the

SAM.

The Auxin Response Factor (ARF) ETTIN (ETT/ARF3) plays an important role in promoting organ-

ogenesis in the SAM (Wu et al., 2015; Chung et al., 2019). Despite the fact that ETT is a non-canon-

ical ARF, genetic data indicate that it acts together with ARF4 and MONOPTEROS/ARF5 to

promote organogenesis at the SAM. We found that in a loss-of function ett3 mutant the expression

of DR5 was restricted to only 2–3 cells at sites of organogenesis, an observation consistent with a

role for ETT in promoting organogenesis. In addition, a 300’ 1 mM auxin treatment did not induce

DR5 in the SAM (Figure 5N–Q and Figure 5—figure supplement 2D–E). Auxin signaling and ARF3

in particular have been shown to act by modifying acetylation of histones (Wu et al., 2015;

Chung et al., 2019; Long et al., 2006). Pharmacological inhibition of histone deacetylases (HDACs)

alone was able to trigger concomitant activation of DR5 at P0 and P-1 sites in the SAM (Figure 5—

figure supplement 1Q–S). Taken together, these results suggest that auxin signal integration likely

depends on a functional ARF-dependent auxin nuclear pathway.

Phyllotaxis is perturbed in ett mutant SAMs (Figure 5—figure supplement 1M–

P; Simonini et al., 2017). Our results thus suggest that a perturbation of the temporal reading of

auxin information can result in phyllotaxis defects. Supporting this idea, we also found that daily

exogenous auxin treatments at the SAM affected phyllotaxis and that the efficiency of the treatment

increased with both auxin concentration and treatment length. This was particularly evident for 30’

and 120’ treatments (Figure 5—figure supplement 1J–L). 300’ treatments were less efficient at

higher auxin concentrations, possibly due to compensation mechanisms. These results suggest that

temporal integration of auxin information at the SAM is essential for phyllotaxis.
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Figure 5. Temporal integration of auxin concentration regulates transcription. (A–I) Activation of the DR5 reporter

with different concentrations of auxin and durations of treatments. pDR5:mTurquoise2 expression before auxin

treatment (A–D) and 5 hr after the end of the auxin treatment: mock (E) or 1 mM IAA treatment for 30’ (F), 120’ (G)

or 300’ (H). pDR5:mTurquoise (cyan), TagBFP driven by pRPS5a (gray) and pCLV3:mCherry (magenta) labelled

Figure 5 continued on next page
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Discussion
In a recent modeling study, a stochastic induction of organ initiation based on temporal integration

of morphogenetic information was proposed (Refahi et al., 2016). Here we provide evidence that

organ initiation in the SAM is indeed dependent on temporal integration of the auxin signal. Our

quantitative analysis of the dynamics of auxin distribution and response supports a scenario in which

rhythmic organ initiation at the SAM is driven by the combination of high-precision spatio-temporal

graded distributions of auxin with the use of the duration of cell exposure to auxin, to temporally dif-

ferentiate sites of organ initiation (Figure 6). Importantly our results suggest that a time integration

mechanism is essential for rhythmic organ patterning in the SAM since auxin-based spatial informa-

tion pre-specifies several sites of organ initiation and is thus unlikely to provide sufficient information

(Video 1). Whether temporal integration of auxin information exists in other tissues remains to be

established.

We provide evidence that temporal integration of the auxin signal likely requires the effectors of

the auxin signaling pathway. Activation of transcription downstream of auxin by ARFs relies on chro-

matin remodeling, increasing the accessibility of ARF targets and possibly allowing for the recruit-

ment of histone acetyltransferases (Wu et al., 2015), together with the release of histone

deacetylases (HDACs) from target loci through degradation of Aux/IAA repressors (Long et al.,

2006). Chromatin state change is one mechanism that allows the temporal integration of signals in

eukaryotes, including plants (Angel et al., 2011; Coda et al., 2017; Nahmad and Lander, 2011;

Figure 5 continued

nuclei are shown. Inset: DII-VENUS-N7 (yellow) from the same meristem. Quantification of DR5 expression in the

PZ after auxin treatments. (I). Average DR5 response in the PZ with different auxin concentrations and treatment

durations. Confidence intervals (shade) and regression (line) shows log(DR5) expression along the circumference of

the PZ (aligned angle) of control (gray) or IAA (color) treated meristems. For simplicity only the angular position of

primordia are indicated (in grey, presumptive positions). (J–M). Transcriptional response to auxin treatment of

different durations in pid-14. pid-14 pDR5:3xVENUS SAM treated with IAA for 120’ (J,K) or 300’ (L,M) are shown.

(N–Q). Transcriptional response to a 300’ auxin treatment in ett mutants. Control Col-0 pDR5:3xVENUS-N7 (N,O)

and ett-22/arf3 pDR5:3xVENUS-N7 (P,Q) meristems treated with auxin for 300’.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Time integration in the control of transcription in response to auxin.

Figure supplement 2. The effect of auxin treatments of different durations on auxin transcriptional responses in

pid-14 and ett-22/arf3.

Figure 6. Spatio-temporal gradients of auxin translate into rhythmic organ patterning through time integration. A

maximum of auxin protrudes from a high auxin concentration zone at the CZ faster than the cell radial movement.

Cells exiting the CZ that are exposed to high auxin levels progressively acquire competence for transcriptional

response. This leads to activation of transcriptional responses with a delay close to the system period, the

plastochron.

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 12 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832


Sun et al., 2009). It is thus plausible that time integration of the auxin signal in cells leaving the CZ

is set by progressive acetylation of histones triggered by ARFs at their target loci. As chromatin

deacetylation also represses auxin signaling in the CZ (Ma et al., 2019), balancing the acetylation

status of ARF target loci could provide a mechanism to tightly link stem cell maintenance to differen-

tiation by precisely positioning organ initiation at the boundary of the stem cell niche, while at the

same time allowing sequential organ initiation. Temporal integration might as well rely on mecha-

nisms that fine-tune the intracellular distribution of auxin, such as auxin metabolism but also intracel-

lular transport (Sauer and Kleine-Vehn, 2019). Determining how different mechanisms might act in

parallel to provide a capacity to activate target genes as a function of auxin concentrations over

time will require further analyses. It will notably be important to determine whether other ARF than

ARF3 act in the temporal integration of auxin.

The existence of high definition spatio-temporal auxin gradients suggests that as for several

morphogens in animals (Nahmad and Lander, 2011; Dessaud et al., 2007; Scherz et al., 2007;

Maden, 2002) the robustness of SAM patterning results from highly reproducible spatio-temporal

positional information. Our results indicate that auxin maxima could first emerge from the CZ at the

confluence of centripetal auxin fluxes. Confluences creating auxin maxima would at the same time

divert fluxes away from areas where auxin minima appear (Figure 3M). Our analysis raises the ques-

tion of how auxin transport could generate this high definition signal distribution and whether the

different models that have been proposed can explain this distribution (Bainbridge et al., 2008;

Stoma et al., 2008; Jonsson et al., 2006; Smith et al., 2006a; van Berkel et al., 2013). Further

analysis of the spatio-temporal control of auxin distribution needs also to consider that early devel-

oping flowers act as auxin production centers. These flowers could not only provide a memory of

the developmental pattern through lateral inhibition but also contribute positively to a self-sustained

auxin distribution pattern by providing auxin to the system (Figure 3M). Finally, our work indicates

that the stem cell niche could act as a system-wide organizer of auxin transport, consistent with pre-

vious work (de Reuille et al., 2006). This could provide another layer of regulation tightly coordinat-

ing differentiation with the presence of a largely auxin-insensitive stem cell niche (Vernoux et al.,

2011; Ma et al., 2019).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
Arabidopsis thaliana

pPIN1:PIN1-GFP (Col-0) Benková et al., 2003

Genetic reagent
Arabidopsis thaliana

pCLV3:mCherry-NLS (Col-0) Pfeiffer et al., 2016

Genetic reagent
Arabidopsis thaliana

pYUC1-11:GFP
(Col-0)

Liu et al., 2016;
Robert et al., 2013

Genetic reagent
(Arabidopsis thaliana)

yuc1 yuc4/+ pDR5
rev::GFP (Col-0)

Robert et al., 2013

Genetic reagent
(Arabidopsis thaliana)

ett-22 (Col-0) Pekker et al., 2005

Genetic reagent
(Arabidopsis thaliana)

pid-14 (Col-0) Huang et al., 2010

Genetic reagent
Arabidopsis thaliana

pRPS5a:DII-VENUS-N7-
p2A-TagBFP-SV40 (Col-0)

This study qDII Request to
teva.vernoux@ens-lyon.fr

Genetic reagent
Arabidopsis thaliana

pDR5rev:2x-mTurquoise
2-SV40 (Col-0)

This study Request to
teva.vernoux@ens-lyon.fr

Chemical
compound, drug

Trichostatin A Invivogen met-tsa-1 0.005 mM

Chemical
compound, drug

Indole-3-acetic
acid sodium salt

Sigma-Aldrich I5148 0.2, 1.0, 5.0 mM

Continued on next page

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 13 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832


Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

RStudio RStudio Team, 2015 RRID:SCR_000432

Software,
algorithm

Image J RRID:SCR_003070 https://imagej.net

Software,
algorithm

NumPy RRID:SCR_008633 http://www.numpy.org

Software,
algorithm

SciPy Virtanen et al., 2020 RRID:SCR_008058 http://www.scipy.org

Software,
algorithm

VTK Schroeder et al., 2006 RRID:SCR_015013 http://www.vtk.org

Software,
algorithm

scikit-image van der Walt et al., 2014 http://scikit-image.org

Software,
algorithm

sam_spaghetti This study
Cerutti et al., 2020

https://gitlab.inria.fr/mosaic/
publications/sam_spaghetti/

Other Propidium iodide solution Sigma-Aldrich P4864 0.1 mM

Plant material and growth conditions
Seeds were directly sown in soil, vernalized at 4 ˚C, and grown for 24 days at 21 ˚C under long day

condition (16 hrs light, LED 150mmol/m2/s). Shoot apical meristems from inflorescence stems with a

length between 0.5 and 1.5 cm were dissected and cultured in vitro as described in Prunet et al.

(2016) for 16 hrs. When required, meristems were stained with 100 mM propidium iodide (PI; Merck)

for 5 min. Auxin treatments were performed by immersing meristems in solutions containing indi-

cated concentrations of indole-acetic acid (IAA) and 10 mM MES-hydrate (buffer) for indicated peri-

ods of time. Trichostatin A (TSA – Invivogen) was added to the culture medium to a final

concentration of 5 mM. Meristems were cultured in TSA for 16 hrs prior to auxin treatment. For time

lapses, the first image acquisition (T=0) corresponds to 2 hrs after the end of the dark period. In

planta treatments were carried out on 24 day-old Col-0 plants by dropping 10 mL of IAA solution

(IAA at different concentrations, 10 mM MES-hydrate and 0.01% v/v Tween-20) onto the SAM, fol-

lowed by incubation for indicated lengths of time. Meristems were then washed with 100 mL of 10

mM MES buffer with 0.01% v/v Tween-20. Treatments were carried out on 5 consecutive days and

perturbations in organ positioning were recorded 7 days after the end of the treatments.

Previously published transgenic lines used in this study are PIN1-GFP (Benková et al., 2003),

pCLV3:mCherry-NLS (Pfeiffer et al., 2016), pYUC1-11:GFP and yuc1 yuc4/+ pDR5rev::GFP

(Liu et al., 2016; Robert et al., 2013), ett-22 (Pekker et al., 2005), pid-14 (Huang et al., 2010).

pRPS5a:DII-VENUS-N7-p2A-TagBFP-SV40 (qDII) and pDR5rev:2x-mTurquoise2-SV40 constructs were

cloned cloned using Gateway technology (Life Sciences), and transformed in Arabidopsis thaliana

(Col-0). Stable qDII homozygous lines were then crossed with pCLV3:mCherry-NLS, pDR5rev:2x-

mTurquoise2-SV40 and PIN1-GFP reporter lines.

Microscopy
All confocal laser scanning microscopy was carried out with a Zeiss LSM 710 spectral microscope or

a Zeiss LSM700 microscope. Multitrack sequential acquisitions were always performed using the

same settings (PMT voltage, laser power and detection wavelengths) as follows: VENUS, excitation

wavelength (ex): 514 nm, emission wavelength (em): 520–558 nm; mTurquoise2, ex: 458 nm, em:

470–510 nm; EGFP, ex: 488 nm, em: 510–558 nm; TagBFP, ex:405 nm, em: 430–460 nm; mCherry,

ex: 561 nm, em: 580–640 nm; propidium iodide, ex: 488, em: 605–650 nm.

Scanning electron microscopy of meristems were carried out using a HIROX SH-3000 microscope.

Time lapses for Super Resolution Radial Fluctuation (SRRF) imaging were performed on an

inverted Zeiss microscope (AxioObserver Z1, Carl Zeiss Group, http://www.zeiss.com/) equipped

with a spinning disk module (CSU-W1-T3, Yokogawa, www.yokogawa.com) and a Prime95B SCMOS

camera (https://www.photometrics.com) using a 63x Plan-Apochromat objective (numerical aperture

1.4, oil immersion), pixel size 175 nm or a 100x Plan-Apochromat objective (numerical aperture 1.46,
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oil immersion), pixel size 110 nm. GFP was excited with a 488 nm laser (150 mW) and fluorescence

emission was filtered using a 525/50 nm BrightLine single-band bandpass filter (Semrock, http://

www.semrock.com/). PI was excited with a 561 nm laser (80 mW) and fluorescence emission was fil-

tered using a 609/54 nm BrightLine single-band bandpass filter (Semrock, http://www.semrock.com/

). To obtain high resolution images, 200 frames were acquired with 50% laser power and 70 ms

exposure time using Stream Acquisition mode. The green and red channels were acquired sequen-

tially. For drift correction, 200 nm TetraSpeck beads (Life Technologies) were added to samples.

Images were processed using the NanoJ-SRRF plugin (Gustafsson et al., 2016) with the following

parameters: Ring Radius 0.5, Radiality Magnification 5, Axes in ring 6, Temporal Analysis TRPPM.

SRRF time-lapses were produced by running SRRF analysis on groups of 50 frames. If aberrant PSF

of Tetraspeck beads were observed, datasets were discarded.

Quantification and statistical analysis
All confocal images were pre-processed using the ImageJ software (http://rsbweb.nih.gov/ij/) for the

delimitation of the region of interest. Then the CZI image files were processed using a computa-

tional pipeline relying on the numpy, scipy, pandas, czi_file Python libraries, as well as other custom

libraries. Extensive details about the computational methods and algorithms are given in Appendix

3, 4 and 5.

Given the non- linear positive DR5 response, the raw values were logarithmically transformed in

order to obtain a symmetric distribution of the noise. Nadaraya-Watson estimates and confidence

intervals were then calculated with a confidence level of 95% in the R environment (RStudio Team,

2015). The boxplots displayed in the article were obtained by computing the median (central line),

first and third quartiles (lower and upper bound of the box) and first and ninth deciles (lower and

upper whiskers) using the R environment or numpy percentile function and rendered using the mat-

plotlib Python library. Linear regressions were performed using the polyfit and polyval numpy func-

tions. P-values were obtained using the scipy anova implementation in the f_oneway function.

Principal component analysis was performed using the PCA implementation from the scikit-learn

Python library. All data were generated with at least three independent sets of plants.

Data and software availability
All experimental data and quantified data that support the findings of this study are available from

the corresponding authors upon request.

Generic quantitative image and geometry analysis algorithms are provided in Python libraries

timagetk, cellcomplex, tissue_nukem_3d and tissue_paredes (https://gitlab.inria.fr/mosaic/) made

publicly available under the CECILL-C license. Specific SAM sequence alignment and visualization

algorithms are provided in a separate project providing Python scripts to perform the complete anal-

ysis pipelines (Cerutti, 2020; copy archived at https://github.com/elifesciences-publications/sam_

spaghetti).
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getk, cellcomplex, tissue_nukem_3d and tissue_paredes (https://gitlab.inria.fr/mosaic/) made pub-

licly available under the CECILL-C license. Specific SAM sequence alignment and visualization

algorithms are provided in a separate project providing Python scripts to perform the complete anal-

ysis pipelines (https://gitlab.inria.fr/mosaic/publications/sam_spaghetti.git, copy archived at https://

github.com/elifesciences-publications/sam_spaghetti).
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Appendix 1

Definition of a conceptual frame for models and analysis
The shoot apical meristem dynamically produces organ primordia, issuing from a central

dome-shaped area, into a complex spatio-temporal pattern that is referred as phyllotaxis. In

an abstract view of this structure, the meristem can be seen as dynamic collection of organ

primordia characterized by their spatial trajectory relatively to the central zone (CZ) and by the

evolution of their inner state. We propose a formal definition of such a system, which we name

a ‘phyllotactic dynamical system’.

Definition 1 (phyllotactic dynamical system)
Let a phyllotactic dynamical system S be a finite set of primordia considered over a time

interval T ¼ tmin; tmax½ � � R and such that:

. At every time t 2 T , each primordium p 2 S is characterized by its current state

t pðtÞ; xpðtÞ; ypðtÞ
� 	

where:

� t p 2 t min; t max½ � � R is called the developmental state of the primordium.

� xp ¼ rpðtÞ; �pðtÞ; zpðtÞ
� �

2 R
3 is the spatial position of the primordium in a cylindrical coordinate

system, the origin of which is called the center of the system.

� ypðtÞ 2 R
d is a vector describing the physiological state of the primordium.

. The developmental state t p is a continuous strictly increasing function of time. Note that
consequently, for every p 2 S, t p is a bijection between T and t p Tð Þ.

. In the case where 0 2 t p Tð Þ, the time t0;p¼deft �1p ð0Þ is called the initiation time of the primor-

dium p.
. The spatial position and the physiological state are conditioned by the developmental state

of the primordium in such way that:

9X : t min;t max½ � �!R
3 j 8p2 S;9Xp 2R3 j 8t 2 T ;xpðtÞ ¼ XpþX t pðtÞ

� �

9Y : t min;t max½ � �!R
d j 8p2 S;8t 2 T ;ypðtÞ ¼ Y t pðtÞ

� �
(

(1)

. S is equipped with a strict total order denoted < that verifies:

8p;q2 S;p<q¼)8t 2 T ;t pðtÞ<t qðtÞ (2)

This definition reflects the idea that for any primordium, there exists an underlying

physiological state, a hidden variable that determines all processes, both geometrical and

physiological, that characterizes primordium development. This state can be used to rank the

different organs among them, and to run through the sequence of primordia in the order of

their respective development. It is actually more common to refer to primordia by their

integer rank in this developmental order:

Property 1
There exists a morphism between S;<ð Þ and Z;<ð Þ, and we can use it to denote the

consecutiveness relationship in the strict total order of S by:

6 9r 2 S j p<r<q ()def q¼ pþ 1 (3)

In a phyllotactic system, the notion of plastochron refers to the time elapsed between two

consecutive organ initiations. However it is common to speak about the plastochron as a

characteristic of the system when this duration does not vary over time:
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Definition 2 (plastochron)
We say that a phyllotactic dynamical system S has a plastochron T 2 R if two consecutive

primordia in the strict total order of S always have their initiation times separated by a time

interval of length T :

8p;pþ 12 S; t0;pþ1 ¼ t0;p�T (4)

A stronger assumption that is generally made on a phyllotactic system is that it develops in

a steady regime, meaning that it maintains a constant rate of development. This translates into

linear functions for the developmental states of primordia with a common strictly positive

slope. If we add the existence of a plastochron, then this slope is naturally equal to the inverse

of the plastochron:

Definition 3 (steady development)
We say that a system S with a plastochron T has a steady development if all primordia in S
have their developmental states increasing at the same constant rate 1=T:

8p2 S;8t 2 T ;t pðtÞ ¼
1

T
t� t0;p
� �

(5)

In such a regularly developing system, the plastochron constitutes the natural unit on the

developmental scale of the primordia. Indeed, the corollary to the previous definition is that

the developmental state of the primordia increases by one unit every plastochron/

Property 2
In a system S with a steady development of plastochron T, all primordia increase their

developmental state by 1 after a period T:

8p2 S;8t 2 T ;t pðtþTÞ ¼ t pðtÞþ 1 (6)

Another consequence is that, at the moment where a new primordium initiates, the

developmental state of its immediate predecessor is exactly equal to 1. Given the steadiness

of the system, this gap of one developmental unit is actually maintained throughout the

evolution of primordia.

Property 3
In a system S with a steady development of plastochron T, two consecutive primordia in the

strict total order of S always have their developmental states separated by 1:

8p;pþ 12 S;8t 2 T ;t pþ1ðtÞ ¼ t pðtÞþ 1 (7)

The fact that, in such a system, the primordia are all regularly staged in terms of

developmental time allows to refer to them unambiguously by an integer rank from the lastly

initiated primordium. Due to the previous properties, considering for each primordium the

closest integer to its developmental state ensures a one-to-one mapping of primordia with a

series of consecutive integers. This rank, that will remain constant during a period of one

plastochron, can conversely be seen as a developmental stage through which all primordia will

pass, one after the other.

Property 4 (developmental stage)
In a system S with a steady development of plastochron T, at any time t 2 T , the rounding

function of the developmental state:
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Pð.; tÞ : S �! ½½PminðtÞ;PmaxðtÞ�� �Z

p7�!Pðp; tÞ ¼ t pðtÞþ 1

2

�
c (8)

is an isomorphism. We call Pðp; tÞ the developmental stage of primordium p at time t. If

Pðp; tÞ ¼ k 2Z, we say that the primordium p has the label Pk at time t.

Intuitively, consecutive primordia should find themselves in consecutive developmental

stages. The definition of developmental stage as the rounding of developmental state, and

the fact that there exists a constant gap of 1 between developmental states of consecutive

primordia ensures this natural property:

Property 5
In a system S with a steady development of plastochron T, two consecutive primordia in the

strict total order of S always have consecutive developmental stages:

8p;pþ 12 S;8t 2 T ;Pðpþ 1; tÞ ¼ Pðp; tÞþ 1 (9)

The isomorphism between a steady phyllotactic system and a subset of consecutive

integers allows to simplify the notations for the ranking of the primordia. If it was natural to

denote pþ 1 the predecessor of primordium p, it is now possible to extend the notation to

gaps of more than one unit, with an integer number that reflects the actual gap in

developmental stages between two primordia.

Definition 4
In a system S with a steady development of plastochron T, we can extend the notation of the

consecutiveness relationship in the strict total order of S using the isomorphism Pð.; tÞ to
identify the primordia by their relative developmental stages. We write this relationship as

follows:

8p;q2 S; 9k 2Z j 8t 2 T ;Pðq; tÞ ¼ Pðp; tÞþ k ()def q¼ pþ k (10)

In addition to its intrinsically regular dynamics, an ideal phyllotactic system is characterized

by a geometrical regularity, and the formation of spiral-like patterns. The spirals issue from the

successive emergence of primordia at evenly spaced angular locations combined with an

identical radial motion. In our conceptual frame, the geometrical arrangement of primordia is

represented by the vectors xp of cylindrical coordinates, for which there is a common

component that depends only of developmental state, and a constant part Xp that depends of

the considered primordium. For the system to be considered regular from a geometrical point

of view, these primordium-dependent components have to follow a rigorous angular pattern,

with a constant divergence angle a that separates two consecutive primordia.

Definition 5 (regular phyllotaxis)
We say that a system S with a steady development of plastochron T has a regular phyllotaxis

of divergence angle a if the constant parts of spatial positions of two consecutive primordia in

the strict total order of S only differ by a rotation of angle a around the vertical axis:

8p;pþ 12 S; Xpþ1 ¼ RzðaÞ �Xp ¼ Xpþ
0

a

0

0
B@

1
CA (11)

If such a regularity property is achieved, then the system becomes highly auto-similar, so

that a rotation of angle a corresponds to a translation in time of one plastochron T. In terms

of primordia characteristics, this means that the spatial position xp and the physiological state
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yp of a primordium will be strictly identical, after one plastochron, to those of its predecessor,

only up to a rotation of angle a.

Property 6 (spatio-temporal periodicity)
In a system S with a steady development of plastochron T and a regular phyllotaxis of

divergence angle a, the system verifies at all times the following spatio-temporal periodicity

equation:

8p;pþ 12 S;8t 2 T ; xpþ1ðtÞ ¼ RzðaÞ � xpðtþTÞ
ypþ1ðtÞ ¼ ypðtþTÞ

�
(12)

Phyllotaxis regularity offers a way to access the ranking of primordia simply by looking at

their spatial positions. If the divergence angle is such that two different primordia can not be

aligned on the same direction, then the angular positions alone can be enough to provide a

robust ranking of organ primordia.

Definition 6 (clear regular phyllotaxis)
In a system S with a steady development of plastochron T and a regular phyllotaxis of

divergence angle a, if a is not a simple fraction of 2p, that isif:

6 9a;b2 ½½1; jSj�� j a¼ a

b
2p (13)

we say that S has a clear regular phyllotaxis.

Property 7 (ordering on a clear regular phyllotaxis)
In a system S with a steady development of plastochron T and a clear regular phyllotaxis of

divergence angle a, then the primordia angles �p j p 2 S
� 	

are sufficient to determine the

strict total order on S:

8p;q2 S; 9t 2 T ;9k 2Z j �qðtÞ� �pðtÞ ¼ ka½2p� ¼) q¼ pþ k (14)

With this conceptual frame in mind, we can define thoroughly the general problem

addressed when labeling the primordia on a meristem observation, that is typically when one

tries to estimate where is P1 and where is P2 on a microscopy image. In that problem, only a

partial state is observed for each primordium, containing mostly its spatial position and

possibly some quantified features. Using this information only, the goal is to stage the visible

primordia, by affecting them a label that is as close as possible to their actual developmental

state, in such way that if the method is used on different observations, the primordia assigned

the same label really have close actual developmental states.

Problem 1 (assignation of developmental stages)
Given a system S, observed at Kt discrete time points ti j i 2 ½½0;Kt½½f g in which, for every p 2 S
and for every ti, only a partially observed state ~xpðtiÞ;~ypðtiÞ

� 	
is available;

Find for every ti j i 2 ½½0;Kt½½ an estimated developmental stage function bPð.; tiÞ that verifies:

8p;pþ 12 S;bPðpþ 1; tiÞ ¼ bPðp; tiÞþ 1 (15)

and that minimizes the average staging error of the primordia:
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�P
1

jSj
X

p2S
�PðpÞ

where �PðpÞ ¼
1

Kt

XKt�1

i¼0
bPðp; tiÞ� t pðtiÞ
���

���
(16)

Now, if we make the assumption that the system shows the regularity properties detailed

above (steady development and clear regular phyllotaxis of known divergence angle a), the

assignation problem can be made much simpler. Provided the system is observed over a time

frame such that there is always one primordium labelled Pk, a solution to the problem can be

found by identifying at each time point which of the primordia has its developmental stage

equal to k. Indeed, the steady development property ensures its uniqueness, and the regular

phyllotaxis allows to propagate the assignation by successive rotations of angle a.

Definition 7 (Pk-maintaining system)
We say that a system S is Pk-maintaining (k 2 Z) if at all times, there is a primordium that has

the label Pk:

8t 2 T ;9p2 S;Pðp; tÞ ¼ k (17)

Property 8 (reduced Pk assignation problem in a clear
regular phyllotaxis)
Let S be a Pk-mantaining system with a steady development of plastochron T and a clear

regular phyllotaxis of divergence angle a. The solution to the assignation of developmental

stages problem can be reduced to:

Find for every ti j i 2 ½½0;Kt½½, the primordium p 2 S such that bPðp; tiÞ ¼ k.

The next question in order to solve this reduced problem is how to identify at each time

point the primordium to label as Pk based on the observations. A prerequisite to do this is

that some information in the physiological state of the primordia is sufficient to know that they

are currently at stage k. In other terms, there must be a subset of the physiological state space

that is characteristic of a primordium’s developmental state t being close to the value k.

Definition 8 (Pk-characteristic state function)
Let S be a system with a steady development of plastochron T . We say that the physiological

state function Y is Pk-characteristic (k 2 Z) if there exists a value set Gk � R
d such that:

8t 2 t min;t max½ �; Yðt Þ 2 Gk()jt � kj<1

2
(18)

In this case, the assignation of the label Pk to the primordium for which the phyisiological

state lies in the Pk-characteristic subset provides a solution to the assignation problem for

which the error to minimize is, if not optimal, at least bounded by 1/2.

Property 9 (Pk-characterization solution)
Let S be a Pk-mantaining system with a steady development of plastochron T and a clear

regular phyllotaxis of divergence angle a and a Pk-characteristic state function. The reduced

solution to the assignation of developmental stages problem given by:

8i 2 ½½0;Kt½½; bPðp; tiÞ ¼ k () ~ypðtiÞ 2 Gk (19)

has a staging error �PðpÞ bounded by 1/2 for every p2 S.
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When the system is observed over a relatively short time period, it might be convenient to

consider, for simplicity reasons, that the primordia do not change stage, and that the

morphism existing between S and Z at time tmin is preserved until tmax. Actually, if we make

this assumption for a system observed during less than one plastochron, we can show that the

resulting staging error is again bounded by 1/2.

Property 10 (stage stationarity condition)
Let S be a system with a steady development of plastochron T . We say that a developmental

stage assignation bP is stationary if it is the same at all times of observation, that is if:

9bP� : S �!Z j 8p2 S;8t 2 T ;bPðp; tÞ ¼ bP�ðpÞ (20)

If S is observed during a time interval T ¼ ½tmin; tmax� smaller than its plastochron T , then

there exists a stationary developmental stage assignation with a staging error bounded by 1/2

for every p2 S:

tmax� tmin<T ¼) 9bP� : S �!Z j 8p2 S; �PðpÞ ¼
1

tmax� tmin

Z tmax

tmin

bP�ðpÞ� t pðtÞ
���

���dt<1

2
(21)

This final observation leads us to consider that, when it applies to a system observed over

less than a plastochron, the stage assignation problem has a stationary solution that

guarantees an average staging error of at most 1. By labelling as Pk the primordium for which

the average physiological state is characteristic of stage k, we can obtain a staging of all

primordia with the same stage at all time points without making an error of more than one

developmental unit.

Property 11 (stationary Pk-characterization solution)
Let S be a Pk-mantaining system with a steady development of plastochron T and a clear

regular phyllotaxis of divergence angle a and a Pk-characteristic state function. If S is observed

during a time interval T ¼ ½tmin; tmax� smaller than its plastochron T, then the reduced

stationary solution to the assignation of developmental stages problem given by:

bP�ðpÞ ¼ k () 1

Kt

XKt�1

i¼0
~ypðtiÞ 2 Gk (22)

has a staging error �PðpÞ bounded by one for every p2 S:

tKt�1� t0<T ¼) 8p2 S; �PðpÞ<1 (23)

In a classical inhibitory field model of phyllotaxis, the developmental state t p ¼ 0 of an

organ primordium p corresponds to the time where an initiation is decided in the peripheral

zone (PZ) and would therefore match a local spatio-temporal minimum of the global inhibition

field. With the idea in mind that the depletion of auxin has very often been related to the

concept of ‘inhibition’ from those models of phyllotaxis, we consider that the instant where

initiation happens corresponds to a local spatio-temporal maximum of auxin in the meristem.

In other terms a characteristic of the primordium labelled P0 should be that it has the maximal

auxin level across the PZ.

Therefore if the local auxin maximality is the jth component Yj 2 0; 1f g of the systems’s

primordia state function, then we consider that the function Y is P0-characteristic with

G0 ¼ R� . . .��1=2; 1� � . . .� R. We observed the meristems over a time interval of 10 hr,

which is less that the estimated plastochron in our experimental conditions. Therefore, by

Property 9, we can define a stable assignation of developmental stages to the visible

primordia of bounded error by assigning the label bP� ¼ 0 to the primordium that has most

often the maximal value of auxin across the PZ over the times of observation. If the meristems

prove to be close enough to phyllotactic systems with a plastochron and a regular phyllotaxis,
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then this first assignation will be enough to derive the developmental stages of all the other

organ primordia based on their spatial positions. The method developed to perform this

developmental stage assignation heuristic on experimental data is detailed in Appendix 2.

Evidence for the regularity of the observed phyllotactic systems is discussed in Appendix 1.
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Appendix 2

Effects of variability on a theoretical phyllotactic system
In this section we develop a formal study on regularity in a phyllotactic system. Notably, we

wondered to which extent the apparent similarity of the observed SAMs could be informative

on the level of precision in the process of organogenesis. To answer this, we simulated a

sample of phyllotactic patterns assuming that i) they are all aligned with respect to the

position of their P0 ii) their plastochrons and divergence angles are drawn from random

distributions centered on a common average value. By varying the levels of noise on both

angular positions and plastochrons, we assess how variability impacts the overlapping of

phyllotactic patterns at the scale of a population.

Let us consider a 2D phyllotactic dynamical system S (see Appendix 1) formed by

consecutive organ primordia observed on a temporal interval T . At every time t 2 T , each
primordium labelled Pp; p 2 ½½0; pmax�� � Z is represented by its developmental stage t p and by

its coordinates in a 2D cylindrical reference frame:

SðtÞ ¼ t pðtÞ; rpðtÞ; �pðtÞð Þ j p2 ½½0;pmax��f g (24)

If we assume that the system has a plastochron T and has a steady development, all

primordia develop at the same constant rate 1=T . In that case, we can derive:

8t 2 T ;8p2��0;pmax��;t pðtÞ ¼ t p�1ðtÞþ 1 (25)

In addition, if we consider that the system has a regular phyllotaxis with a divergence angle

a, that prmordia emerge on the contour of a central zone of radius R, and then move radially

following an exponential motion law of coefficient b we can write the state equations of the

system as follows:

8t 2 T ;8p2 ½½0;pmax��;
�pðtÞ ¼ �0þ p �a
rpðtÞ ¼ R � ebt pðtÞ

(
(26)

This can be translated into incremental equations to obtain a recursive definition of the

state of the system, knowing the state of the primordium labelled P0 at each time t 2 T :

8t 2 T ;8p2��0;pmax��;
�pðtÞ ¼ �p�1ðtÞþa

rpðtÞ ¼ rp�1ðtÞeb
�

(27)

We set ourselves in a context where all the considered phyllotactic systems have previously

been aligned on P0, that is where 8t 2 T ; �0ðtÞ ¼ 0 and t 0ðtÞ 2 ½�0:5;0:5�.
We study what happens if we introduce variability into this system, by adding noise on two

of the key variables of the system:

. A Gaussian noise of standard deviation sa on the divergence angle a

. A Gaussian noise of normalized standard deviation st on the plastochron time T

To be more precise, we consider that the system still has a plastochron and a constant

development rate 1=T, but that the gap between the initiation times t0;p�1 and t0;p of two

consecutive primordia that should always be equal to T is actually a random variable:

t0;p�1� t0;p ~T �N ð1;st Þ (28)

which translates into:

8t 2 T ;t pðtÞ� t p�1ðtÞ~Nð1;st Þ (29)

Consequently, we can formulate the recursive definition of the system as the drawing of

2pmax random variables:
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8t 2 T ;8p2��0;pmax��;
�pðtÞ� �p�1ðtÞ ~Nða;saÞ
rpðtÞ� rp�1ðtÞ ~ebNð1;st Þ

(
(30)

We simulate a population of such systems by generating KS single-time instances that are

all aligned on P0. To do so, we draw for each instance a value for t 0 from a uniform

distribution in [-0.5, 0.5], then use the initial values r0; �0ð Þ ¼ ebt 0 ;0ð Þ and construct the system

recursively by drawing the corresponding random variables. This way, we obtain a population

of organ primordia positions identified by their rank p (Appendix 2—figure 1A).

In this random population, we are interested in which extent the generated phyllotactic

patterns overlap. To do so, we estimate whether the points corresponding to primordia of the

same rank can be grouped into separable clusters. Therefore, we consider the obtained

primordia as a point cloud of 2D cylindrical coordinates labelled by a primordium rank:

P ¼ ð ri; �ið Þ;piÞ j i2 ½½0; ðpmaxþ 1ÞKS ½½
� 	

(31)

To answer the separability question, we measure to which extent the identically labeled

points Pp ¼ ri; �ið Þ; j pi ¼ pf g are separable by applying an unsupervised clustering algorithm.

For this, we clustered the points using a k-means algorithm. The resulting clusters can be

separated by linear boundaries in the Voronoi diagram associated with their centroids

ðb�p; brpÞ j p2 ½½0;pmax��
n o

. We measure the linear separability of primordia by looking if points

with the same label gather inte the same Voronoi cell.

We use prior knowledge by setting the number of components of the k-means algorithm to

pmax þ 1 and by setting the initial centroids ðb�0p; br0pÞ j p 2 ½½0; pmax��
n o

on the positions of the

primordia in a model without any noise:

8p2 ½½0;pmax��;
b�0p ¼ p �a
br0p ¼ R � ebp

8
<
: (32)

After convergence, the algorithm returns pmaxþ 1 centroid points that we use to construct

the Voronoi diagram. This actually defines a predictor for the estimated primordium rank bpi by
looking inside which cell of the diagram lies a given point (Appendix 2—figure 1B).

8i2 ½½0; ðpmaxþ 1ÞKS ½½; bpi ¼
p2½½0;pmax ��
argmin

ri

�i

8
>>:

9
>>;�

bri
b�i

8
>>:

9
>>;












8
>>:

9
>>; (33)

Finally, we estimate the Voronoi separability v of our cloud of primordia points by

computing the accuracy of the primordium rank prediction (noting dij the Kronecker delta on

integers):

v¼ 1

ðpmaxþ 1ÞKS
Xðpmaxþ1ÞKS�1

i¼0
dbpipi (34)

If v equals to 1, it means that the primordium points group into perfectly identifiable

clusters. This can be interpreted as the fact that KS randomly sampled individuals can be

superimposed perfectly, once they have been centered and aligned on their primordium which

is the closest to the P0 stage.

This will obviously be the case (as long as the motion coefficient b remains realistic,

typically <1) if no noise is introduced into the system. If sa ¼ st ¼ 0, then all individuals

proceed from the same regular exact pattern, and the only variability will be the one of the

instant of sampling t 0. We wondered up to which level of noise this separability property

could be maintained, in order to understand what a high observed separability could tell us on

the intrinsic regularity of a phyllotactic system.

To do so, we scanned the parameter space by varying sa between 0˚ and 20˚ and st

between and 2 plastochrons, first with the values R ¼ 30�m, a ¼ 137:51� and b ¼ 0:23

corresponding to actual measured data (Figure 1—figure supplement 2D–E). As expected,
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increasing the angular variability creates more elongated clusters (Appendix 2—figure 1C)

that still appear separated. Yet, the Voronoi separation introduces confusion between

neighboring primordia, more specifically making Pp and Ppþ3 overlap (Appendix 2—figure

1F). Interestingly, when we increase the plastochron variability (Appendix 2—figure 1D), the

confusion concerns rather Pp and Ppþ5 (Appendix 2—figure 1G). In both illustrated cases, the

separability score drops markedly below 95%, while the separability of the actual observed

data has been evaluated in the same way at 100% (Appendix 2—figure 1E).

The landscape of separability in the sa � st parameter space gives an insight on the effects

of variability on a population of individuals (Figure 1—figure supplement 2F–G). With no

surprise, primordia points appear to be less and less identifiable as azimuthal or plastochron

variability increase, and even worse when both do. But it shows that there exists a maximal

level in variability up to which the clusters are still perfectly separable (Figure 1—figure

supplement 2E, red contour).

The standard deviation in primordia angles measured on our observed SAMs is equal to

6.7˚. We measured the resulting angular deviation in the simulated primordia points, and we

could show that it depends only on the divergence angle variability sa. Moreover, we

determined the value of sa that matches best angular deviation of observed data for

primordia ranks ranging from 1 to 5 (where the model tends to show more angular variability

than the observations). This value is equal to 3.6˚ (Appendix 2—figure 1I).

If we fix the angular variability sa to this value (Figure 1—figure supplement 2E, white

vertical line), then the maximal plastochron variability that is allowed for the separability to

remain at 100% is close to 0.4. This means that it would be impossible to see the near-perfect

superposition observed in our data if the phyllotactic system that produced it had a

plastochron variability greater than 0.4, which would translate into an uncertainty on organ

initiation times of nearly 5 hr. From this, we conclude that a plastochron variability of 5 hr is an

upper bound of the rhythmic variability achieved by real SAMs.

Yet such a value of sT produces primordia distributions that show much more radial

variability than the observed one (Appendix 2—figure 1A vs. Appendix 2—figure 1E). To get

a more precise approximation of this parameter value, we measured the resulting radial

deviation in the simulated primordia points. This deviation only depends on the plastochron

variability sT , and determined the value that matches best the observed radial deviations for

primordia ranks ranging from 0 to 3 (where the model tends to show more radal variability

than the observations). This value equals 0.22 (Appendix 2—figure 1J), which corresponds to

a plausible rhythmic variability of nearly 2 hr for real SAMs. The obtained pattern is more

representative of the observed deviations (Appendix 2—figure 1H) even if a more accurate

model of 3D primordia distribution would be required to estimate exactly the variability

parameters of the system. The approximation of 2 hr for the plastochron variability

consequently validates our first order assumption that all considered SAMs are in a steady

regime of development with the same plastochron duration, and that the whole set of

individual primordia of a given rank forms a homogeneous population in terms of

developmental state.

Another interesting feature evidenced by this analysis is the influence of the motion speed

of primordia separability. We explored the b� st parameter space by fixing the value of sa

to the observed one, and varying the motion coefficient b between 0 and 0.4 (Appendix 2—

figure 1K). It appears that lowering the speed reduces the maximal possible value of sa to

achieve 100% separability, as the points tend to overlap more in the radial dimension, leading

to a decreasing separability at fixed angular variability.

On the other hand, increasing the speed seems to greatly affect the tolerance to

plastochron variability. For instance a value of st ¼ 1 that translates into a separability of 95%

when b ¼ 0:1 suddenly drops to a separability of only 50% if b is increased up to 0.4. However

increasing motion speed does not affect this much the maximal value of st required to

achieve 100% separability, which always remains close to 0.3. This consolidates our previous

conclusions, even in the case of an underestimation of the radial speed.
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Appendix 2—figure 1. A geometrical model of primordia distribution enables estimating the

plastochron variability of the SAM. (A) Primordium points are generated from a computational

phyllotactic model with a control over the variability in angular positioning and plastochron

duration. (B) Linearly separable clusters in the resulting point cloud are identified using an

unsupervised algorithm with prior information. The obtained labeling in primordia ranks is

compared with the theoretical one to compute a separability measure. (C–D) Increasing the

azimuthal variability creates clusters that are more difficult to separate and generates
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confusion between Pp and Ppþ3. (E) The primordia points from the observed experimental data

form perfectly separable clusters (F–G) Increasing the plastochron variability creates clusters

that are more difficult to separate and generates confusion between Pp and Ppþ5. (H–J)

Measured anglular and radial deviations of both observed and simulated primordia allow to

determine plausible values for the angular varibility sa ¼ 3:6� (I) and plastochron variability

sT ¼ 0:22 (J). The prmordia sdistriibution generated with this parameters (H) is the one that

metches best the observed deviation of primordia clusters. (K) Separability evaluated by

varying speed coefficient and plastochron variability. Modifying the radial speed of primordia

changes the tolerance of the system to azimuthal and plastochron variability. High rhythmic

precision is always required to achieve seamless superposition. Red contour indicates 100%

separability, white contours every lower 5%. Black line indicates experimental value of speed

coefficient.
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Appendix 3

Quantitative analysis of nuclei image signals
Going from microscopy images to aligned quantitative data requires a complex computational

pipeline that involves several steps of image analysis, computational geometry and data

manipulation. The main goal of this pipeline is to provide a representation of the signals

contained in the images that allows for quantitative individual comparison and identification of

invariant trends in the spatial patterns of the signals across a population. To achieve this, we

need to perform three basic tasks:

. Extraction of cellular objects and signal quantification from the raw voxel intensities of the
images:

Images are essentially structured grids with an information of signal covering a discretized
space, without any explicit notion of what is an object of interest or not. It is then necessary to
identify those objects within the image grid, to associate them with a spatial position and extent
and to use the signal intensity information to assign quantitative values to each extracted cellu-
lar object.
. Geometrical transformation of all individual data into a common spatial reference frame:

In order to be able to compare individual meristems and compute statistics at the scale of a
population, we need to align the spatialized data extracted from the images so that it becomes
possible for instance to match organs in a comparable developmental state. To do so, we chose
to use a common coordinate system into which we transform all the meristem geometries.
. Computation of a continuous representation of the signal that allows point-wise comparison:

The information we extract from the images is defined at the scale of cells, which provides a dis-
crete representation of signals. If we want to compute statistics, we would need to estimate a
one-to-one pairing between cells of different individuals, without being sure it exists. Instead,
we decided to use a continuous representation of the signals that allows the aggregation of
spatialized data. At any location in space, it would be possible to obtain a value of signal for
each individual, and to compute statistics without the need for cell matching.
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Appendix 3—figure 1. Automatic quantification pipeline for the time-lapse microscopy images

of nuclei-targeted fluorescence signals. To obtain quantitative data from the images produced

under the microscope, various sequential processing steps need to be performed, from the

extraction of the relevant objects (nuclei positions with their different channel intensity values)

to the geometrical characterization and the spatio-temporal registration of the tissues, to

finally get a complete, aligned and consistent dataset gathering all the imaged meristems.

The succession of computational steps that were necessary to perform these tasks is

depicted in Appendix 3—figure 2. Together, they allow to reconstruct dynamic continuous

representations of biological signals averaged over a population of meristems, as the maps

displayed in Figure 1B, Figure 3G and I, Figure 4D and Video 1. Some tools, such as the

estimation of 2D maps of epidermal signal, were used extensively throughout the analysis,

even though they do not figure as boxes in the pipeline. The methods used for each of these

steps are addressed in detail in the following of this Appendix.
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Automatic nuclei detection
We consider that a 3D image consists of an array I of size Kx � Ky � Kz filled with values taken

in an integer intensity interval I � N. The elements of this 3D array are called voxels. In the

case of a 16-bit-encoded unsigned integer image, the intensity interval I ¼ ½½0; 216 � 1½½. We

denote:

I ¼ fIijk 2 I j i; j;kð Þ 2 ½½0;Kx½½�½½0;Ky½½�½½0;Kz½½g: (35)

The voxels in the array grid can be projected into a physical space W�R
3 through a

mapping function x : ½½0;Kx½½�½½0;Ky½½�½½0;Kz½½!W that associates the array indices with a

discrete, evenly spaced, 3D lattice WI �W. The voxel size v¼ ðvx;vy;vzÞ 2R3 defines a spacing

of the lattice that is potentially different on each dimension:

WI ¼ xði; j;kÞ ¼ i � vx; j � vy;k � vz
� �

j i; j;kð Þ 2 ½½0;Kx½½�½½0;Ky½½�½½0;Kz½½
� 	

: (36)

This mapping allow to define the image as a function I :WI!I that associates a 3D point

x¼ ðx;y; zÞ in the image definition space WI with a fluorescence intensity value IðxÞ 2 I , such
that 8 i; j;kð Þ 2 ½½0;Kx½½�½½0;Ky½½�½½0;Kz½½,

I xði; j;kÞð Þ ¼ Iijk : (37)

In the case of a multichannel image, we denote IS the image channel corresponding to the

signal S. Nuclei are detected for each meristem acquisition independently using the pRPS5a:

TagBFP (Tag) channel, which we denote ITag.

As a first approximation, cell nuclei can be considered to appear as a roughly spherical

blob of fluorescence intensity in the image ITag, with a limitedly variable radius. To detect

them we convolve the image with a sequence of Ks 3D isotropic Gaussian kernels of

increasing standard deviations Ws ¼ sl j l 2 ½½0;Ks½½f g, with s0< . . .<sKs�1. The response to this

filtering is expected to be maximal for homogeneous spheres of intensity with a radius close

to the standard deviation of the Gaussian kernel.

The sequence of filtered images can be seen as a 4D Gaussian scale-space

(Lindeberg, 1994) resulting in a 4D image, which by extension we denote

ITag : WI �Ws � R
4 ! I . In this image, the fourth dimension s corresponds to scale. If we note

GðsÞ the discrete Gaussian kernel of standard deviation s, the scale-space transform we use is

defined by, 8 x;sð Þ 2 WI �Ws,

ITagðx;sÞ ¼
ffiffiffiffi
s
p

ITag �GðsÞ
� �

ðxÞ: (38)

We detect nuclei as a set of local 4D response maxima in this scale-space representation.

To conform with the scale-space theory, we define the scale interval Ws as a geometric

sequence varying from smin to smax. These two bounds are to be chosen in the typical range

of variation of nuclei radius.

A 4D point ðx;sÞ is then considered a local maximum if its response ITagðx;sÞ is higher than
a threshold Imin, and higher that all the neighbouring responses at all scales. More formally, if

we note Bðx;sÞ ¼ x
0 2 WI j x

0 � xk k<sf g the discrete ball of radius s in the image lattice WI ,

the 4D point ðx;sÞ is a local maximum if it realizes the maximal value of response over

Bðx;sÞ �Ws, in other terms:

ðx;sÞ is a local maximum of ITag()ðx;sÞ 2
ðx0 ;s0Þ2B x;sð Þ�Ws

argmax ðITagðx0;s0ÞÞ: (39)

Let us denote P the set of points x2WI corresponding to a local maximum of ITag whose

response is strictly greater than Imin. Each point in P corresponds to a detected nucleus,

identified by an integer index n and associated with a single spatial position Pn in physical

coordinates, so that we can write
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P ¼ Pn j n2N ¼ ½½1; jPj½½f g: (40)

This detection method has been evaluated on a set of 4 manually expertized SAM images

acquired at different voxel sizes with a 16 bit encoding, representing more than 5000 cells.

Since the acquisition parameters for those images matched the one use in the rest of our

analysis, we adjusted the method parameters to perform best on this expertized dataset. The

parameter testing led to the determination of the optimal values Ks ¼ 3, smin ¼ 0:8�m,

smax ¼ 1:4�m, Imin ¼ 3000, corresponding to an evaluated performance of 95.6% recall

(percentage of the manually labelled cells that were indeed detected) and 98.5% precision

(percentage of the detected cells that were actually labelled by experts).

Nuclei signal quantification
Each image channel is quantified at the level of every detected nucleus. The signal intensity

value is obtained by computing a weighted average of the channel intensity IS around the

position of the nucleus. The signal images showing some local subcellular noise, the raw voxel

value ISðPnÞ might not be fully representative of the whole nucleus. We chose to use a

distance-based Gaussian weight, of constant radius sN for all channels, to account for as much

as possible of the signal information inside the nuclei, for which the typical measured diameter

is ~ 5�m. Practically for the signal S, we first filter the image channel IS by a Gaussian kernel of

radius sN and retrieve the values at the voxel positions of all detected nuclei, so that 8n 2 N ,

Sn ¼ IS �GðsN Þð ÞðPnÞ: (41)

For example, the local level of expression of the CLV3 gene, imaged using pCLV3:

mCHERRY in the channel ICLV3 would we quantified as CLV3n ¼ ICLV3 �GðsN Þð ÞðPnÞ. In the

case of the ratiometric auxin sensor qDII, we combine the information of two fluorescence

channels ITag and IDII to compute the ratio of estimated signals for each nuclei point, so that

8n2N ,

qDIIn ¼
DIIn

Tagn
: (42)

Extraction of L1 cells
For the purpose of the analysis, we want to discriminate between the first layer of cells (L1)

and the rest of the tissue. We use an automatic method to do so, which in our case cannot rely

on adjacency to the background as one would do on a segmented membrane-marker image.

Instead we will use the distance of the nuclei to the estimated surface of the tissue.

This surface is computed based on the pRPSa:TagBFP channel as a 3D triangle mesh

M¼ V; Tf g, where:
. V is a set of vertices
. Each vertex v 2 V is associated with a 3D position Mv 2 R

3

. T a set of triangles defined by triplets of indices ðv1; v2; v3Þ 2 V3

. T is such that the resulting simplicial complex forms a 2-manifold (Agoston, 2005) (Chapter
5.3: Topological Spaces, Chapter 6.3: Simplicial Complexes).

Computation of the surface mesh
To obtain this triangle mesh, the image ITag is filtered by a large Gaussian kernel to diffuse

nuclei intensity between cells, and is thresholded to obtain a binary region, which is meshed

by applying a Marching Cubes algorithm (Lorensen and Cline, 1987) on a resampled version

of the image. This mesh undergoes a phase of triangle decimation (Garland and Heckbert,

1997a) and isotropic remeshing (Botsch and Kobbelt, 2004a) to obtain a surface composed

of roughly 50000 regular faces.
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At this stage, we generally obtain a surface that goes both above and below the tissue

(notably due to weaker intensity in the inner tissue). The remove the lower part that does not

correspond to the epidermal surface, we estimate the face normal vectors to keep only the

triangles for which the normal points towards the upper side of the meristem. The largest

edge-connected component of this set of triangles is kept and used as the estimated

meristem surface meshM.

Detection of L1 nuclei
With each vertex v of the surface meshM, we associate the index nðvÞ of the closest point in

the set P of nuclei points: 8v 2 V;

nðvÞ ¼
n2N

argmin kPn�Mvkð Þ: (43)

We define L1 as the subset of N formed by indices n of nuclei points Pn that are the closest

point to at least one vertex ofM.

Rigid time registration
The previous steps were performed individually on each frame of the time-lapse acquisitions.

In our study, we focused on sequences of observation of the same individual over its

development, consisting of Kt multichannel images fIðtiÞ j i 2 ½½0;Kt½½g, indexed by their

temporal position ti 2 N in hours relatively to the first time of acquisition t0 ¼ 0h. In the

remaining, we will consistently index data computed from the i-th acquisition IðtiÞ by the

temporal index. For instance PðtiÞ ¼ Pn j n 2 NðtiÞf g denotes the set of nuclei points detected

in IðtiÞTag.
To study consistently the dynamics at the scale of the sequence of images, we need to

place the quantitative nuclei information in the same spatial reference frame. To do this, we

estimate 3D rigid transformations between consecutive time frames of the sequence. This

estimation is performed using a block matching algorithm (Ourselin et al., 2000) applied on

the pRPS5a:TagBFP channel fIðtiÞTag j i 2 ½½0;Kt ½½g of the consecutive images. This produces

Kt � 1 isometry matrices in homogeneous coordinates Rti tiþ1 that can be inverted and/or

multiplied to transform any frame of the sequence into the spatial reference frame of any

other.

Registered nuclei points
We use the registration output to transform all the detected nuclei points into the coordinate

system of the first frame of the sequence. By applying the resulting rigid transforms to the the

nuclei points detected at time ti, we obtain a new point cloud PðtiÞ0, indexed by the same set

of integers NðtiÞ, such that 8n 2 N ðtiÞ,

P0

n ¼
Y0

j¼i�1
Rtj tjþ1

 !
Pn: (44)

Non-linear time registration
In a second time, we want to estimate the local deformation of the tissue, notably to get a

quantitative measure of individual cell motion and to approximate local cellular growth.

We compute this new transformation as a dense vector field that maps two consecutive

pRPS5a:TagBFP images, that have previously been rigidly registered into the coordinate

system of Iðt0Þ. We denote fIðtiÞ0Tag j i 2 ½½0;Kt½½g the sequence of such registered images.

The vector field transforming IðtiÞ0Tag into Iðtiþ1Þ0Tag is estimated using the block matching

framework for non-linear registration (Ourselin et al., 2000). This approach has proven to be
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efficient on plant tissues in the case of deformations of moderate amplitude (Fernandez et al.,

2010; Michelin et al., 2016) which is the case for the meristematic tissue we are considering

with a 4h to 5h time interval between two frames.

The resulting vector field is actually a vectorial image U
0

ti!tiþ1 : WIðt0Þ ! R
3 defined over the

same grid as Iðt0Þ. It contains at each voxel position a 3D vector measuring the local total

deformation of the tissue to go from the current frame to the next one.

We also perform the backwards non-linear registration by computing another set of non-

linear transformations between Iðtiþ1Þ0Tag and IðtiÞ0Tag in the exact same manner and obtain the

vector fields U0

ti tiþ1 mapping the next frame to the current one.

Nuclei cellular motion
The cellular motion between two consecutive sequence frames taken at times ti and tiþ1 in the

forward direction can be estimated using the registered nuclei points PðtiÞ0 ¼ P0

n j n 2 N ðtiÞ
� 	

and the transformation U
0

ti!tiþ1 that maps the current frame into the next one by a vector field.

Each nucleus n can then be assigned a local displacement vector by looking at U0

ti!tiþ1ðP0

nÞ.
We deduce speed vectors v0n measuring the local speed of cellular motion by dividing the

displacement vector by the time interval: 8n 2 L1ðtiÞ,

v
0

n ¼
1

tiþ1� ti
U

0

ti!tiþ1ðP
0

nÞ (45)

2D maps of epidermal signal
To infer a signal value on any 3D point in space from the values quantified at discrete nuclei

points, we used an approximation strategy. Our method makes the signal continuous in space

by computing a local weighted average of signal values. The weighting function h we use is a

parametric sigmoid density function of the distance r to a given point, h : Rþ ! ½0; 1�, which
relies on two parameters: an extent parameter R, and a sharpness parameter k such that

hð0Þ ~ 1, hðRÞ ¼ 1

2
, and _hðRÞ ¼ � k

2
(Appendix 3—figure 3A). This sigmoid function takes the

form:

hðrÞ ¼ 1

2
� 1

2
tanhðk � r�Rð ÞÞ (46)

The continuous signal map bS is then defined based on a point cloud P ¼ Pn 2R3 j n2N
� 	

and the associated signal values Sn j n2Nf g as : 8x2R3,

bSðxÞ ¼ 1

X

n2N
h kx�Pnkð Þ

X

n2N
h kx�Pnkð ÞSn (47)

Note that, for any point x where the total density HðxÞ ¼Pn2N h x�Pnk kð Þ equals , the
signal map is not defined. To make the map outlines closer to their actual support, we

consider that bSðxÞ is defined only if HðxÞ � 1

2
. This constraint is equivalent to consider that the

implicit surface obtained with the point cloud P as generator and h as potential forms the

boundary of the definition domain of the function bS.
The first layer of cells forms a continuous surface and in the case of the shoot apical

meristem, the curvature of this surface is such that it generally does not create overlaps in a

2D projection made along the meristem axis. Therefore, to study processes taking place at the

L1, we compute maps using only the subset L1 of first-layer nuclei and their 3D point cloud

projected on the plane z ¼ 0 (Appendix 3—figure 2C-E), which we call 2D projected maps of

epidermal signal. In this case, by extension we denote bSðx; yÞ ¼ bSðx; y; 0Þ.
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Appendix 3—figure 2. 2D continuous maps of epidermal signals. (A) To build a continuous 2D

map, we diffuse the signal in space by computing a local average of discrete signal values

using a kernel function whose extent and sharpness are set by two parameters R and k. (B).

Optimal values of these parameters were determined on the signal of main interest qDII and

are the ones used throughout the analyses. (C–E). Using the L1 nuclei detected in the confocal

image (C) and their quantified signal values projected in 2D (D) we compute a 2D map of

epidermal signal (E) in this case qDII.

To determine the best parameter values R and k for the function h we ran an extensive

parameter exploration and measured the error made by mapping the epidermal signal to

retain the values that yield the minimal error. This is measured by the average relative error

between the actual signal value Sn of a nucleus and the value of the 2D map bS computed with

all nuclei but the considered one at the projected position of the nucleus.

We searched for optimal values on the qDII signal, as it is our main focus in this work, using

the whole set of 21 available SAM image sequences. The values we obtain, shown in

Appendix 3—figure 2B, are R� ¼ 7:5�m and k� ¼ 0:55�m�1. From now on, we will consider

that, if not explicitly mentioned otherwise, the maps we use are 2D projected maps of

epidermal signal computed with the optimal parameters R ¼ R� and k ¼ k� for the density

function h.

Sequence SAM reference frame determination
In order to aggregate the data quantified on several individuals and expressed in their own

image reference frame, we need to perform a geometrical alignment that superimposes

organs with a similar developmental state.

To do so, we chose to map a common coordinate system onto the point clouds extracted

from the images by landmarking a set of key geometrical features for each meristem

(Appendix 3—figure 3A-B):

. the position c ¼ ðxc; yc; zcÞ 2 R
3 of the apex center in the central zone (CZ) of the meristematic

dome
. the unitary vector a 2 R

3 of the main radial symmetry axis of the meristematic dome
. the unitary radial vector r 2 R

3 ( a ? r) of the direction of the last initiated organ primordium
(labelled P0) relatively to c
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. the binary orientation o 2 f�1; 1g of the phyllotactic spiral (clockwise or counter-clockwise)

Together, these landmarks define a new reference frame R� (Appendix 3—figure 3C) into

which we will rigidly transform all the nuclei points and images.

Detection of the CZ center c
The CLV3 peptide, imaged in the pCLV3:mCHERRY channel, is a marker of the central zone

(CZ) of the meristem that is expressed notably on the first layer of cells. We use the quantified

signal values CLV3n j n 2 L1f g considering nuclei points from the whole sequence (registered

on the reference frame R0 of the first image of the sequence) to estimate the center position.

In the resulting 2D map dCLV3, the CZ appears as a wide isotropic peak of signal intensity

(Appendix 3—figure 3D). We assume that the CZ is the largest area of high CLV3 intensity in

the tissue we consider. We extract a central zone domain by thresholding the 2D map dCLV3
and keeping the largest connected component, from which we compute the 2D center ðxc; ycÞ
and the area Ac.

To make the estimation more robust, we perform this CZ extraction using a range of Kc

threshold values that depend on the average signal intensity of the sequence

fck � CLV3 j k 2 ½½0;Kc½½g. In the end, we estimate ðxc; ycÞ as the average 2D center and Ac and

the average area of all these central zone domains obtained with Kc ¼ 7 and ck ¼ 1:2þ 0:1k.

The resulting distribution of estimated CZ radii rc ¼
ffiffiffiffi
Ac

p

q
among the considered individuals

showed a very peaked distribution around an average value of 28 mm (Appendix 3—figure

3E).

Finally, the third coordinate zc of the 3D center of the CZ is computed as the estimated

value bz0 of the z coordinate of L1 nuclei points in R0, taken at the center point ðxc; ycÞ detected
above.
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Appendix 3—figure 3. Landmark-based alignment of SAMs using 2D continuous maps. (A)

Seen in 3D, the SAM shows a dome-like structure surrounded by a spiral of primordia. (B). The

center and the main axis of the dome, the direction of the last intiated primordium and the

orientation of the phyllotactic spiral are key landmarks of the SAM geometry. (C). Knowing

their position allows to define a reference frame R� in which all individuals can be

superimposed. (D). The 2D projected map of epidermal CLV3 signal allows locating precisely

the center c and main axis a of the meristem and estimating the extent of the CZ. (E). The

extents of CZ estimated using the CLV3 maps show a very limited variability around the 28m m

value among the observed individuals (N = 21 SAMs). (F). The 2D projected map of epidermal

qDII signal allows detecting the direction r of the P0 primordium as the maximal concentration

of auxin in the PZ. The phyllotactic orientation o is set manually. (G) The rigid transformation is

applied to the detected nuclei to align the individuals in the reference frame R�. (H) The same

is done with images and a curved L1 slice is used to display only epidermal cells.

Estimation of the vertical axis of the apex a

In the reference frame of the image, the surface of the meristematic dome around the central

zone might be slightly tilted. To correct this, we estimate the vector a that corresponds to the

direction around which the surface of the meristem is radially symmetrical.

This vector is characterized by a rotation matrix Ra to allows to transform the reference

frame R0 of the image to a new reference frame Ra where the origin is c and the z axis

corresponds to a.
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We estimate the rotation matrix by minimizing the tilting of the surface of the CZ in this

new reference frame. To do so, we look at the dispersion of z coordinates of the nuclei

expressed in this reference frame as a function of their radial distance. We minimize the error

between the z coordinate of the L1 nuclei points and their local average z. To take into

account the extent of the meristematic dome, this error is weighted by a Gaussian function of

the distance of points to c of standard deviation sr ¼ 20�m.

Note that in principle, at this stage we should re-estimate the position c of the center using

the nuclei points expressed in the reference frame Ra. In our case, we considered that we

could avoid this iterative estimation since the meristems are imaged from above and we can

make the approximation that the vector a forms a small angle with the z axis of the images.

Consequently, the initial estimation of c in the xy plane of the image does not induce a

significant error.

Detection of the P0 direction r

Within the previous reference frame Ra equipped with a cylindrical coordinate system ðr; �; zÞ,
we now look for the azimuthal direction �0 of the primordium labelled P0. For this, we need to

locate the local spatio-temporal maximum of average auxin concentration in the peripheral

zone (PZ), as explained in Appendix id1. Therefore, we look for the minimal value of the 2D

map dqDII (computed using the nuclei points of the whole sequence), which corresponds to a

signal projected orthogonally to a.

We limit the search to the PZ by constraining that r 2 ½�minrc; �maxrc� to avoid artifactual

detections inside the CZ or in older organs (we used �min ¼ 0:9 and �max ¼ 1:6 in the analysis).

In the end we get the coordinates of an auxin maximum out of which the azimuthal coordinate

�0 defines the unitary vector r ¼ ð cosð�0Þ; sinð�0Þ; 0Þ in the reference frame Ra (Appendix 3—

figure 3F). We denote the Rr the rotation matrix that allows to transform the x axis of Ra into

r.

Determination of the phyllotactic orientation
Finally, rather than estimating the orientation of the meristem from the data, we chose to rely

on manual expertise to determine visually wheter the arrangement of organs arond the

meristem showed a clockwise (o ¼ �1) or counterclockwise (o ¼ 1) phyllotactic spiral. This

produces a simple identity or reflection matrix Ro, depending on the case:

Ro ¼
1 0 0

0 o 0

0 0 1

0
B@

1
CA: (48)

Aligned L1 nuclei points
In the end, the determination of the SAM landmarks c, a, r and o allows to transform the

sequence registered points P0 into the common 3D reference frame R� in which we will be

able to compare different individuals locally (Appendix 3—figure 3G). We denote R� t0 the

corresponding rigid transform, that can be written in homogeneous coordinates as

R� t0 ¼
Ro �Rr �Ra �c
o 1

8
>>:

9
>>; (49)

We note P� ¼ P�n j n2L1
� 	

the positions of first-layer nuclei points in this common

reference frame, defined by, 8n2L1;P
�
n ¼ R� t0 �P0

n. From now on, we will always consider that

the nuclei points have been aligned in the common SAM reference frame R�, and that the

signal maps are computed using the aligned positions P�.
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Aligned L1 image slices
We also use the resulting alignment transformation to register the original images into the

common reference frame by applying the same transform R� t0 to the registered image IðtiÞ0S.
This creates a registered image IðtiÞ�S expressed over a new voxel grid W�I that is centered on 0

in x and y and slightly shifted in z so that:

W�I ¼WI �

Kx

2
� vx

Ky

2
� vy

Kz

8
� vz

0
BB@

1
CCA: (50)

We used the aligned 2D epidermal maps in order to create the 2D projected views of these

registered images displaying only a single layer of cells that can be seen in Appendix 3—

figure 3H, Figure 2A–C, Figure 3A–B, Figure 4A–C and Figure 5A–H. More specifically, we

compute the values of the 2D map bz� over the ðx;yÞ coordinates of the centered grid W�I , and

produce a 2D image IðtiÞ�S defined over the same ðx;yÞ grid as the original one but keeping the

voxel value of one z slice per pixel, so that 8ðx;y; zÞ 2W�I ,

IðtiÞ�Sðx;yÞ ¼ IðtiÞ�S x;y;
bz�ðx;yÞ
vz

�
c � vz

� �
: (51)

The produced 2D image displays the intensity levels of a single curved image slice that

goes through the nuclei of first cell layer, making information appear more clearly than a

simple maximal intensity projection that would also include intensity from the inner layers.

Organ primordia 2D detection
In the aligned SAM reference frame R�, we expect to find organs in comparable

developmental stages at very close spatial locations for all individuals, under the global

hypothesis of a stationary and regular development. Therefore we use some a priori

knowledge on regular phyllotaxis to detect the positions of the ranked organ primordia in the

meristem, namely P0, P1, P2 and so on.

Previous works on auxin dynamics in the meristem suggest that primordia correspond to

local accumulation of auxin, which would be detectable as local minima in the dqDII map, but

also that soon after organ initiation, an auxin depletion area is formed, creating a local

maximum in dqDII. In that respect, our primordia detection procedure consists first in detecting

extremal points (both maxima and minima) in this 2D map and in labeling them in a second

time by organ primordium rank.

Detection of extremal regions in the auxin map
To locate extremal regions in 2D, we are not only interested in absolute local extremality

(namely peaks and troughs of the map) but also in points that are extremal in a given

direction, and we therefore look for ridges and valleys of the dqDII map (Appendix 3—figure

4A). Peaks, which are maximal in any direction, will appear as convergence points of ridges,

troughs as convergence points of valleys, and saddle points as convergence points of a ridge

and a valley.

If we consider a direction defined by a unitary vector u 2 R
2, the local minimality of the 2D

field dqDII along u can be defined as a scalar field L�
u
: R2 ! 0; 1f g that takes the value 1 only if

the sign of the derivative of dqDII along u (noted ~ru) changes from negative to positive. The

same goes for the local maximality of the signal along u, noted Lþ
u
: R2 ! 0; 1f g, except that

the sign of the derivative should go from positive to negative. We define the functions L�
u
and

Lþ
u
by:
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L�
u
¼ 1 if

~ru
dqDII¼ 0

~ru
~ru
dqDII>0

(

0 otherwise

8
><
>:

Lþ
u
¼ 1 if

~ru
dqDII¼ 0

~ru
~ru
dqDII<0

(

0 otherwise

8
><
>:

(52)

If we consider all possible directions, defined by their angle !2 �p;p½ �, a valley point

(respectively a ridge point) is a point that achieves local minimality (respectively local

maximality) along a large proportion of unitary vectors uð!Þ ¼ cosð!Þ; sinð!Þð Þ. Consequently,
we define the scalar fields L� :R2! 0;1½ � and Lþ :R2! 0;1½ � measuring respectively the global

valleyness and ridgeness of a point in the field dqDII as:

L� ¼ 1

2p

Z p

�p
L�
uð!Þd! Lþ ¼ 1

2p

Z p

�p
Lþ
uð!Þd!: (53)

We first look for saddle points in order to eliminate them and disconnect the otherwise

continuous networks of ridges and valleys. Saddle regions L0 are formed by points that

belong to both a valley and a ridge and are detected using the geometric mean of valleyness

and ridgeness fields, then valley regions L� and ridge regions Lþ can be found outside the

saddle regions, using different thresholds l0, lþ and l� in each case:

L0 ¼ x2R2 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LþðxÞL�ðxÞ

q
� l0

� �

L� ¼ x2R2 nL0 j L�ðxÞ � l�
� 	

Lþ ¼ x2R2 nL0 j LþðxÞ � lþ
� 	

(54)

We perform this region extraction with the values l0 ¼ 0:01 and lþ ¼ l� ¼ 0:03. Then we

consider the union of the connected components of each set L0, L� and Lþ, which results in a

set of connected regions C ¼ cl j l 2 ½½0;KC½½f g as the ones delineated in Appendix 3—figure

4B. These regions are guaranteed to have no overlap as long as l0<lþ and l0<l�.

Description of extremal regions
Each of these connected extremal regions can potentially match the auxin accumulation or

depletion zone characterisitic of a given primordium. In order to determine this matching we

characterize the information contained in each of the extremal regions by defining a set of

descriptor functions:

. type : C ! �1; 0; 1f g: whether the region is a connected component of L�, L0 or Lþ
respectively.

. pos : C ! R
2: a single spatial position corresponding to the point of extremal value of the

dqDII field.
. area : C ! R: the area of the connected region.
. extr : C ! 0; 1½ �: the maximal value of extremality (valleyness, geometric mean or ridgeness).

. qDII : C ! R: the extremal value of the dqDII field in the connected region.

For each region, we define two significance scores g� : C ! 0; 1½ � and gþ : C ! 0; 1½ �
measuring how good a candidate the region would be respectively for a minimal or a maximal

area of the dqDII map. Each of these two scores is computed using the following elementary

score functions, which only use the region descriptors:

. A central zone exclusion score gCZ impeding the regions from lying within the central zone of
the meristem, defined as:

gCZðclÞ ¼
1 if kposðclÞk> rc

2

0 otherwise:

�
(55)

. An area score garea that is closer to one when the considered region is large, defined as:
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gareaðclÞ ¼ 1� 1

areaðclÞ
: (56)

. An extremality score gext that is closer to one when the considered region has a large value
of extremality, defined as:

gextrðclÞ ¼min
1

2
þ extrðclÞ;1

� �
: (57)

. A signal value score, gqDII that is closer to one when the value of dqDII is low for minimal

regions and high for maximal regions (saddles being considered as maximal regions of lower
signal), defined as:

gqDIIðclÞ ¼ ð1� qDIIðclÞÞdtypeðclÞ;�1þð0:2þ qDIIðclÞÞdtypeðclÞ;0þðqDIIðclÞÞdtypeðclÞ;1 (58)

where d is the Kronecker symbol.

We compute the significance scores g� and gþ as a multiplicative combination of these

elementary scores to obtain maximal values respectively for large, marked valleys of low dqDII

value and large, marked ridges or marked saddles of high dqDII value outside the middle of the

CZ (Appendix 3—figure 4C). Therefore we define the significance scores of extremal regions

as:

g�ðclÞ ¼ gextrðclÞ �gCZðclÞ �gqDIIðclÞ � ðdtypeðclÞ;0þgareaðclÞ � dtypeðclÞ;1Þ:
gþðclÞ ¼ gextrðclÞ �gCZðclÞ �gqDIIðclÞ �gareaðclÞ � dtypeðclÞ;�1

(59)
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Appendix 3—figure 4. Detection of primordia as extremal regions of auxin. (A) The auxin

distribution forms a landscape where accumulation froms troughs or valleys in the qDII map,

whereas depletion forms peaks or ridges. (B). Extremal regions (valleys in purple, ridges in

orange and saddles in green) are identified from the qDII map. (C). Each region is associated

with a unique spatial position and characterized by a significance score. (D). A geometrical

model of primordia distribution is used to compute a confidence score for each extremal

region, relatively to each considered primordium rank, depending on its spatial postion. (E).

The primordium rank k is assigned to the extremal regions with the highest combination of

significance and spatial confidence score relatively to Pk (F). This allows to identify the auxin

accumulation zoned and the potential auxin depletion zones associated with each primordium

in the considered SAM. (G). Comparison of automatically detected auxin extremal points with

expertized ones demonstrate a very accurate detection between ranks P0 and P3, with a

decreased performance when the features are less well defined (no absolute minimum before

P0, several maxima after P4). Color indicates the rank of primordia. Filled color indicates

accurate detection, light color indicates correct detection but inaccurate location, dark grey

indicates false negatives, light grey indicates false positives.

Geometrical model of primordia organization
To help predict the position of primordia, we used a simple a priori geometrical model of

primordia spatial organization in a 2D projected space. This model associates each point

ðr; �Þ 2 R
2 expressed in polar coordinates with a score gkðr; �Þ reflecting the confidence of

finding the kth primordium at the position ðr; �Þ.

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 46 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832


This score is decomposed into an angular score g0kð�Þ and a radial score g00k ðrÞ and such that

gkðr; �Þ ¼ g0kð�Þ � g00k ðrÞ. The angular score makes the assumption that pimordia are organized in

a regular spiral of divergence angle a� ¼ 2p
f2 ~ 137:5

�, and is therefore close to one when the

angular coordinate of a 2D point is close to the theoretical angle k � a� of the kth primordium,

with an angular tolerance D�ðkÞ (Appendix 3—figure 4D), so that:

g0kð�Þ ¼ cos min p � j�� k �a�j
D�ðkÞ ;

p

2

� �� �
: (60)

The radial score makes the assumption that primordia move radially so that they are more

likely to be found in a range of radial distances rminðkÞ; rmaxðkÞ½ � �R
þ that gradually increases

with primordium rank k (Appendix 3—figure 4D). We define the radial score g00k , so that it is

equal to one within the range and decreasing outside, by:

g00k ðrÞ ¼min
rmaxðkÞ

r

� �2

;1

 !
�min

r

rminðkÞ

� �2

;1

 !
: (61)

We define the radial distance range as a relative measure on the CZ radius rc, so that

rminðkÞ ¼ �minðkÞ � rc and rmaxðkÞ ¼ �maxðkÞ � rc. The relative distances �min and �max are affine

functions of the primordium rank i, such that:

�minðkÞ ¼ �0minþ �1min � k
�maxðkÞ ¼ �0maxþ �1max � k:

(62)

The product of these two scores results in the delineation of smooth windows in the 2D

space corresponding to the areas of high likelihood of encountering the primordium Pk

(Appendix 3—figure 4D).

Assignment of primordia to extremal regions
We consider that primordia are characterized by the following specifications:

. A primordium p is necessarily associated with the existence of a valley in C and possibly with
the additional existence of a ridge or a saddle in C.

. A primordium p must respect several conditions:

The valley associated with p must locally be the most significant minimal region, that is have a
locally maximal value of g�.
If p is labelled Pk, the valley point associated with p must have a high spatial confidence score
gk.
The ridge or saddle point associated with p must lie between the center of the meristem and
the radial position of the valley point.
The ridge or saddle associated with p must locally be the most significant maximal region,
that is have a locally maximal value of gþ.
If p is labelled Pk, the ridge or saddle point associated with p must have a high spatial confi-
dence score gk.

For each primordium rank k 2 ½½kmin; kmax�� � Z, we make the decision of assigning the label

Pk to a valley region cl 2 C, if the region achieves the highest combined score g�k ðclÞ ¼
gkðposðclÞÞ � g�ðclÞ among the extremal regions, and that this score is greater than a threshold

gmin:

l�ðkÞ ¼ l2½½0;KC ½½
argmax g�k ðclÞ

� �
if

l2½½0;KC ½½
max g�k ðclÞ

� �
>gmin

; otherwise:

(
(63)

When the valley point exists (l�ðkÞ 6¼ ;) we use its position to restrict the search of a ridge or

saddle point to the area located between the center the center and the valley region cl�ðkÞ by

defining an additional score function g�k : C! 0;1f g as:
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g�k ðclÞ ¼
1 if kposðclÞk< kposðcl�ðkÞÞk
0 otherwise:

�
(64)

In a second time, we make the decision of assigning the label Pk to a ridge or saddle

region, if it achieves the highest combined score gþk ðclÞ ¼ gkðposðclÞÞ �g�ðclÞ �g�k ðclÞ among the

extremal regions, and that this score is greater than Gmin:

lþðkÞ ¼ l2½½0;KC ½½
argmax gþk ðclÞ

� �
if

l2½½0;KC ½½
max gþk ðclÞ

� �
>gmin

; otherwise:

(
(65)

Each identified primordium extremal point is then associated with a spatial position r�i ; �
�
i

� �

or rþi ; �
þ
ið Þ (Appendix 3—figure 4F) which can be used to compute estimates of all the spatial

signals (starting with dqDII) and to track signals at the level of organ primordia.

Evaluation of primordia detection
On all the meristems presented in the article, we preformed a manual correction of the

primordium assignment of auxin extremal points, to make sure that we recover information

from biologically meaningful locations. The assignment of primordium ranks was made on the

detected extremal regions C so that manual and automatic assignment could be compared

quantitatively.

This manual labeling allowed us to perform an evaluation of the detection method at the

scale of the whole population of meristems (N = 63). We evaluated the performance by

counting:

The number VP of correctly assigned primordia extremal points (corresponding to the case

where the primordium rank k has been assigned to an extremal region in the automatic

method whereas it has been assigned to the same one in the manual labelling)

. The number MP of falsely assigned primordia extremal points (corresponding to the case
where the primordium rank k has been assigned to an extremal region in the automatic
method whereas it has been assigned to a different one in the manual labelling)

. The number FP of falsely detected primordia extremal points (corresponding to the case
where the primordium rank k has been assigned to an extremal region in the automatic
method whereas it has not been assigned to any region in the manual labelling)

. The number FN of falsely undetected primordia extremal points (corresponding to the case
where the primordium rank k has not been assigned to any region in the automatic method
whereas it has been assigned to an extremal region in the manual labelling)

The measure we used is the Jaccard index j ¼ VP
VPþMPþFPþFN and our evaluation lead to an

overall average of 75.4% correct detection, rising to 87.3% when considering only primordia

ranks between P�2 and P3 (Appendix 3—figure 4G). More precisely, both the auxin

accumulation and depletion zones of primordia P0, P2 and P3 are remarkably well detected

(nearly 95% correct detection).

The loss of performance at P1 comes from the common missed detection of the depletion

zone that only starts forming at this stage, and is only visible as a saddle point in the dqDII

map. For the rest, most of the errors are at early stages where auxin accumulation is not very

marked or at later stages where the organs get larger, the auxin landscape more complicated

(leading to a large number of false assignments) and curvature more important (making the 2D

projection less relevant, especially at the tip of the organ where auxin accumulation takes

place).

Data presented in Figure 1G, Figure 2D–E, Figure 3J, Figure 1—figure supplement 2D

and Figure 1—figure supplement 3 were obtained using the manually corrected positions of

organ primordia.
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L1 dynamic signal maps

Developmental state estimation
We assume that all the observed meristems develop at a comparable rate of 2 new organs per

day, corresponding to a plastochron of 12 hr, and that they can, at the first order, be

considered synchronous (similarly labeled organ primordia being at comparable

developmental stages. Consequently we defined a developmental state indexation as:

t i ¼
ti

12
; (66)

where i2 ½½0;Kt½½ and t0 ¼ 0h.

Dynamic signal maps
At the scale of one time-lapse sequence, for which we have computed the 2D aligned signal

maps bSi j i 2 ½½0;Kt ½½
n o

we approximate the continuous 2D+t signal using a density function of

developmental state h defined by:

hðdt Þ ¼ 1

2
� 1

2
tanhðkt � dt �Rtð ÞÞ: (67)

At any developmental state position t , the estimated map is a weighted average of single

time maps, where the weights are time-distance-based density coefficients computed using

the ht density function computed with a time radius Rt and a time slope kt :

bS r; �;tð Þ ¼ 1PKt�1
i¼0 ht jt i� t jð Þ

XKt�1

i¼0
ht jt i� t jð Þ �bSi r; �ð Þ (68)

Temporal extrapolation of dynamic maps
We evidenced that looking p plastochrons further in time is equivalent to rotating the system

of the angle �p corresponding to the direction of the primordium Pp (see Figure 1—figure

supplement 2G-H). We use this the spatio-temporal periodicity of the system to extrapolate

the evolution of signals beyond the duration of acquisitions.

Considering a range of primordia stages ½½pmin; pmax�� � Z, we use the angles ��p estimated

with 2D primordium detection to apply rotations on the computed maps and derive a dynamic

map that covers a larger temporal range as:

bS r; �;tð Þ ¼
PKt�1

i¼0
Ppmax

p¼pmin
ht jðt iþ pÞ� t jð Þ �bSi r; �þ ��p

� �

PKt�1
i¼0

Ppmax

p¼pmin
ht jðt iþ pÞ� t jð Þ

: (69)

Ultimately, if instead of using all time points of a given sequence, we use the maps of all

time points from all the sequences in the previous formula, we reconstruct the average map bS
over a population of meristems. Such a map combines all the quantitative spatio-temporal

information into one dynamic map reflecting the canonical behavior of the system. The result

is presented for the Auxin signal in Video 1, where it was obtained with the parameter values

Rt ¼ 0:1, kt ¼ 2, pmin ¼�3 and pmax ¼ 5.

Implementation details
. Microscopy image preparation
The confocal images saved as CZI files through the ZEN software (ZEISS International, 2012) of
the LSM-710 microscope are opened using a Python script (Gohlke, 2012) and split into inde-
pendent channels that are saved separately as INR image files. This operation preserves all the
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information contained in the raw image format. In the specific case of acquisitions for which
both pPIN1:PIN1-GFP (PIN1) and pRPS5a:DII-VENUS (DII) are imaged, the close emission wave-
lengths causes the PIN1-stained cell membranes to appear in the DII nuclei images. In that only
case, the PIN1 signal intensity is subtracted from the DII image channel before saving the file.
We use the polygonal selection tool of the ImageJ software to manually define a region of inter-
est in all the slices of every image, and doing so, digitally dissect the outermost organs to get
meristem images with at most six visible organs. This binary mask is then applied on all the
channels, and masked channels are saved in separate INR files.
. Nuclei detection and quantification
The nuclei detection algorithm has been implemented in the tissue_nukem_3d Python library
using the Gaussian filtering functions provided by the SciPy library (Virtanen et al., 2020) for
the construction of the scale space.
The surface mesh used for the extraction of L1 nuclei was computed using the implementations
provided in the VTK (Visualization ToolKit) library (Schroeder et al., 2006) for the Marching
Cubes algorithm, the mesh smoothing and the quadric decimation (vtkImageMarchingCubes,
vtkWindowedSincPolyDataFilter, vtkQuadricDecimation). A version of the isotropic remeshing
algorithm has been implemented in the cellcomplex library.
. Image registration
The image registration operations are performed using the blockmatching computing library
that comes embedded in the timagetk (Tissue Image ToolKit) image processing library dedi-
cated to 3D microscopy images of multicellular tissues. Registered images are generally saved
channel by channel in separate INR files, as well as the vector fields computed in the case of
non-linear registration.
. Continuous map generation
The methods for generating continuous maps of epidermal signal, and to detect extremal
regions on such maps were implemented in the tissue_nukem_3d Python library using the
Gaussian derivative functions provided by the SciPy library (Virtanen et al., 2020) for the com-
putation of gradients.
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Appendix 4

Quantitative analysis of PIN1 polarity
To study the cellular polarities of the auxin efflux carrier PIN1, we quantify information at the

interface between cells, and the resulting data is best expressed as vectors. Therefore, it

requires a whole different set of computational steps to analyze PIN1 polarities, and integrate

polarity information at increasing levels:

. Cell interface level: quantification of interface polarity from image intensities:

To quantify PIN1 polarity, we need to consider pairs of neighboring cells, and it is therefore nec-
essary to reconstruct cell adjacency information from the images. The use of images with a cell
wall staining allows partitioning the image grid into contiguous regions of voxels representing
cells, which will give us neighborhood information as well as a way to reconstruct the geometry
of cell interfaces. Based on these geometries, we need to compute a local PIN1 polarity at the
scale of cell interfaces using the local signal intensity of the image.
. Cell level: integration of cell interface polarities into cell polarity vectors:

To match the rest of the data that is defined at cell level, we need to convert the scalar informa-
tion of polarization for each cell interface into a cellular information. The directional contribu-
tions from the different interfaces surrounding a cell necessarily result into a vectorial data at
the level of the cell. Then, by applying the geometrical transform estimated as in Appendix B,
we have to align not only the spatial positions of cellular objects but also the directions of cell
polarity vectors.
. Tissue level: computation of a continuous vector map of polarities that allows population

averaging:

Finally, in order to identify global trends in the PIN1 polarity patterns across individuals, we
need to use local averaging to build a continuous representation of signal that allows point-wise
comparison, using the 2D map formalism. The only difference is that, in the case of polarities,
the data we average consists of vectors. The result is therefore a continuous vector map on
which we can compute other scalar properties, such as norm or divergence.

This alternative pipeline is illustrated in Appendix 4—figure 1, and it results in the

continuous polarity maps shown in Figure 3I and Figure 3—figure supplement 2. Its

development led to the introduction of an original method for the quantification of cell

interface transporter polarity from images in 3D, which has been evaluated using super-

resolution (using radial fluctuation [Gustafsson et al., 2016]) acquisitions of the same tissues

(see Evaluation of cell interface polarity estimation). The different computational steps

involved in the pipeline are detailed in the following sections:
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Appendix 4—figure 1. Automatic quantification pipeline for the time-lapse microscopy images

of PIN1 auxin efflux carrier. The quantitative estimation of PIN polarity relies on the analysis of

cell wall and membrane-marker images that need to be processed in a different way than

nuclei marker images. An alternative automatic pipeline performs the necessary steps, from

the segmentation of the cells and the extraction of L1 cell anticlinal interfaces to the

quantification of signal distribution at each cell interface and the reconstruction of the

polarized cell network.

Automatic segmentation of membrane images
In order to be able to quantify membrane-localized signal, we need a segmentation of the

tissue at the cellular level. Such automatic cell segmentation procedures are often limited by

their capacity to detect the right number of ‘seeds’ prior to the segmentation of the image

according to membrane localized signal.

In our case, the presence of a constitutive nuclei targeted signal (pRPS5a:TagBFP), allows

to compute the nuclei coordinates in the image. It is thus possible to use these coordinates as
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seeds to initialize a watershed segmentation algorithm. The quality of the obtained

segmentation, in terms of ‘correct number of cells detected’, is then directly linked to the

nuclei detection quality. Compared to parametric seed detection by methods such as local

minima detection (by h-transform algorithm) followed by connected component labeling, the

use of detected nuclei signal coordinates allows to reduce the over and under segmentation

problems (data not shown). To summarize the pipeline used for this automatic cell wall

segmentation step, we performed:

. An adaptative histogram equalization for all z-slices of the membrane stacks to improve and
normalize the contrast (Pizer et al., 1987);

. Isometric resampling to a voxelsize of (0.2, 0.2, 0.2m m), when original images are (0.2, 0.2,
0.5m m), to perform Gaussian smoothing and obtain smoother segmentation along the z axis
(Fernandez et al., 2010);

. Gaussian smoothing of the cell wall intensity image, with s ¼ 0:2�m to reduce noise in the
image when performing watershed segmentation (Fernandez et al., 2010);

. Create a seed image from the nuclei coordinates to initialize the watershed algorithm
(Fernandez et al., 2010);

. Run the seeded-watershed algorithm with isometric smoothed intensity image and seed
image (Fernandez et al., 2010).

No post-segmentation corrections where performed, no cell-fusion (in case of over-

segmentation) or morphological corrections (median filters to smooth the walls). In the end we

obtain a segmented image Iseg that assigns an integer label to every voxel of the image grid

WI on which the image IPI to segment is defined (see Appendix B). The cells of the tissue are

represented by independent connected regions of voxels (so that the same label can not be

assigned to voxels that are not part of the same connected component of Iseg). The

background corresponds to a specific label, that is systematically set to one to ensure

consistency between images. Each cell labeled c 2 ½½1;Kc�� is the then represented by a

connected region Gc so that:

Gc ¼ x2WI j Iseg xð Þ ¼ c
� 	

(70)

Cell barycenter extraction
To obtain the cells barycenter, we estimate the position Pc of the center of the cell labeled c in

the segmented image Iseg as the average of the voxel coordinates of the cell region Gc, by

8c 2 ½½1;Kc�� n 1f g;

Pc ¼
1

jGcj
X

x2Gc

x: (71)

Extraction of L1 segmented cells

Definition of cell adjacency
Adjacency relationship is defined through the notion of surface of contact between two

regions in the segmented image. In a first time, we consider the 6-connectivity to define

neighborhoods at voxel-scale. However, to be robust to potential segmentation errors, we

estimate the area of all surfaces of contact representing walls between two cells c and c0, and
consider as neighbors only those for which the area is greater than a given threshold Amin.

We compute the area of contact AðGc;Gc0Þ as the sum of areas of the contact rectangles

between pairs of 6-adjacent voxels so that one belongs to Gc and the other to Gc0 . An analysis

of the distribution of wall areas (data not shown) led us to consider that a value of Amin ¼ 5�m2

would be suitable. We note Ac the cells that are adjacent to the cell c, namely the labels that

verify the surface of contact condition:
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Ac ¼ c0 2 ½½1;Kc�� n cf g j AðGc;Gc0Þ>Aminf g (72)

Estimation of L1 layer
To be able to automatically determine to which layer a given cell belongs to, we use the

topology of the tissue, notably the background region G1. It is the definition of the epidermis

to be in contact with the outside world, and all the regions of cells belonging to the L1 set

should therefore be adjacent to G1. In some problematic cases, the segmentation algorithm

can produce a background region that reaches the inside of the tissue, but we assumed that it

was not the case in our images and that we could consider that L1 ¼ A1.

Meshing L1 anticlinal cell interfaces
In order to quantify the PIN signal intensity at the level of each individual cell-cell surface of

contact, we need to have a precise identification of the cell interfaces and a faithful 3D

representation to describe their position and orientation. If the boundary between two cells

can be extracted as a set of voxels in the segmented image Iseg, it will generally be too

sensitive to noise and to image resolution to be used as such. We chose therefore to use a

triangular mesh representation with a high resolution to represent accurately the cell

interfaces.

To obtain such meshes, we apply the Marching Cubes algorithm (Lorensen and Cline,

1987) to each cell labelled c and represented by its connected region Gc of identically labeled

voxels in the segmented membrane image Iseg. This produces a triangular meshMc ¼ Vc; T cð Þ
where:

. Vc is a set of vertices

. Every vertex v 2 Vc is associated with a 3D coordinate Mv 2 R
3

. T c is a set of triangular faces t ¼ v1; v2; v3ð Þ 2 V3c linking those vertices.

The cell meshes are generally closed (except on image borders) and have a voxel-like

resolution.

Using Marching Cubes ensures us that, in an 8-voxel cube with only two labels c and c0

(which typically occurs at the interface between two cells) the algorithm will create the same

vertices whichever label is considered as 1 or 0. In other words, we know that two cells that

are neighbors in the image (with a large enough surface of contact) will have common vertices

in their mesh reconstructionsMc andMc0 . We use this property to construct the cell interface

meshMc;c0 ¼ Vc;c0 ; T c;c0
� �

of the interface between Gc and Gc0 as the restriction of one of the

two meshes to the set of common vertex points:

Vc;c0 ¼ v2 Vc j 9v0 2 Vc0 ;kMv�Mv0k<�f gT c;c0 ¼ t 2 T c j 8v2 t;v2 Vc;c0
� 	

(73)
�

Each interface mesh undergoes then a phase of triangle decimation (Garland and

Heckbert, 1997b) and isotropic remeshing (Botsch and Kobbelt, 2004b) to obtain a regular

surface so that the typical length of a triangle edge is close to 0.5mm, which is about the voxel

characteristic dimension. On the triangular mesh, we estimate the normal vectors nc!c0ðvÞ at
each vertex v ofMc;c0 , ensuring they all point from c to c0, and the area of each triangle that

allows us to estimate the total area Ac;c0 ¼ Ac0;c of the interface between cells c and c0. Note

that the Marching Cubes intersection, along with the decimation and smoothing, will produce

a mesh that is smaller that the actual cell interface (the intersecting part does not extend to

cell edges) and the interface area will be underestimated. On the other hand, the voxel-based

area estimation AðGc;Gc0Þ is known to be largely overestimating, which ultimately provides a

way to have both lower and upper bound estimates of the interface areas.
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Quantification of PIN polarity at cell interfaces
PIN proteins are polarly distributed in cells. This potentially induces that on both sides of a

given interface between two cells c and c0, different concentrations on PIN can be observed.

This suggests that a flow of auxin could be oriented from c to c0 if more PIN transporters are

located at this interface in the cell membrane of c than in c0.
This cell interface polarity orientation is denoted pc!c0 ¼ �pc0!c 2 �1; 1½ � and is equal to 1

(respectively �1) when there exists a marked positive (respectively negative) difference

between the PIN membrane concentrations of c and c0 at their interface. If the case where

there is no difference, pc!c0 ¼ 0, and a value between 0 and 1 reflects intermediate difference

levels.

Appendix 4—figure 2. Estimation of PIN polarity at cell interface level. (A) The triangular mesh

representing the cell interface is used to generate a set of 3D cylinders locally orthogonal to

the interface and placed at each vertex of the inside of the interface. (B) The radius of the

cylinders is close to the typical resolution of the mesh. (C) For each cylinder, all the

neighboring image voxels are projected onto its main axis, and kept if within the distance

defined by the cylinder radius. Distance of the projected voxel to the interface mesh vertex is

used as abscissa for the evaluation of 1d polarity (D) The set of all interface cylinders allow

sampling the PIN image signal on either side of the cell-wall at different locations. (E) The 1-

dimensional distributions of both PI and PIN image signals along each cylinder are used to

locate precisely the cell-wall position and quantify signal levels on either side. (F) PIN levels are

estimated left and right of the detected cell-wall abscissa up to a fixed distance of 0.6m m. (G).

Significant difference between left and right distributions of PIN levels across the interface

allows deciding for local PIN polarity at the scale of the cell interface.
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To estimate this polarity, we aim to sample the PIN signal on each side of the cell-wall

separating c and c0. For this, we proceed in several steps:

. On each vertex v ofMc;c0 , we position a cylinder of radius rC and height 2dC, centered on Mv

and whose main axis is defined by the local normal vector n ¼ nc!c0ðvÞ (Appenix 4—figure
2B-D). We excluded vertices located on the contour of the mesh where the estimation of n is
less robust.

. With each voxel x 2 WI in the cylinder, we associate a signed abscissa zv xð Þ ¼ hx�Mv; ni
(Appenix 4—figure 2C) that allows positioning it on the 1D axis of the cylinder.

. Due to processing errors, the actual cell-wall (marked by PI) may be shifted from the position
zv ¼ 0 where the cylinder intersects the interface mesh. We then consider the spatial distribu-
tion of PI intensities along the cylinder axis and model it using a parametric Gaussian
function:

PIðzvÞ ¼PI0þPI1e
� zv�zPIð Þ2

s2
PI : (74)

We estimate the parameters of this function by a least-squares optimization algorithm and use
the value of zPI as a reference defining the actual position of the cell-wall (Appenix 4—figure
2E).
. Finally, we compute the average of PIN intensities of voxels x such that zPI � zmax<zv xð Þ<zPI

(respectively zPI<zv xð Þ<zPI þ zmax) to estimate the value PINc!c0ðvÞ (respectively PINc0!cðvÞ) of
PIN signal in cell c (respectively c0) at the level of vertex v. Note that the definition is symmet-
rical, meaning that the result would be exactly the same if c and c0 were permuted.

By performing this two-sided estimation on every cylinder over the triangular mesh

representing the cell interface, we end up with two paired signal distributions PINc!c0ðvÞf g
and PINc0!cðvÞf g. We test statistically if one side of the interface bears significantly more

signal that the other by performing two one-sided Wilcoxon tests, a non-parametric version of

the T-test for paired samples. They assess respectively if the means of the distributions (noted

PINc!c0 and PINc0!c) can be ranked, that is if PINc!c0>PINc0!c and if PINc0!c>PINc!c0

respectively. The tests provide two p-values pvalc!c0 and pvalc0!c based on which we make a

decision on the existence of a polarity. We do not use a binary polarity value but define a

polarity value pc!c0 whose sign corresponds to the direction of polarity and absolute value lies

among 1, 0.5, 0.25 and to account for situations where some uncertainty remains from the

statistical tests:

pc!c
0 ¼

1 if pvalc!c
0<0:1

0:5 if � pvalc!c
0<0:15 if ðpvalc!c

0<0:25Þ and ðpvalc0!c>0:25Þ
0:25 if 0:15� pvalc!c

0<0:25

8
><
>:

�1 if pvalc0!c<0:1

�0:5 if 0:1� pvalc0!c<0:15 if ðpvalc0!c<0:25Þ and ðpvalc!c
0>0:25Þ

�0:25 if 0:15� pvalc0!c<0:25

8
><
>:

0 otherwise

:

8
>>>>>>>>>>><
>>>>>>>>>>>:

(75)

Note that the definition is symmetrical ensuring that pc!c0 ¼�pc0!c. We also define the

intensity of PIN signal at the level of the cell interface PINc;c0 ¼PINc0;c as the average of the

signal medians of either side, the barycenter Pc;c0 of the interface mesh, and interface normal

vector nc!c0 ¼�nc0!c computed as the average of the non-contour interface vertex normals.

Evaluation of cell interface polarity estimation
We assessed whether this automatic polarity estimation, performed on confocal microscopy

images with a typical resolution of 0.2mm (far beyond cell-wall thickness), manages to retrieve

a difference of carrier concentration at the level of plasma membranes. To do so, we used

super-resolution imaging to provide a set of ground truth polarities that we use to evaluate

the result of our automatic method.
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Super-resolution images were obtained using the Super-Resolution Radial Fluctuations

(SRRF) technique (Gustafsson et al., 2016), which produces a 2D image with a resolution of

0.035mm (Appendix 4—figure 3A). The same tissue was immediately (0.5 to 2 hr) imaged

under the confocal microscope to make sure that the local polarities will be comparable. The

confocal image stack was then processed through the automatic pipeline described above.

This provides notably unique identifiers to cells and allows to identify the visible cell interfaces

by pairs of cell labels that can be matched to the outcome of the pipeline.

Individual cell interfaces were manually annotated by two independent experts in the

ImageJ software using the same protocol. We designed a procedure to determine carrier

polarities on 2D slices co-imaging membrane-located fluorescent carrier proteins and cell-wall

staining inspired from Shi et al. (2017). The following steps are repeated for each cell

interface, identified by a pair of cell labels coming from the automatically segmented PI

image:

. Draw a minimal amount of 3 lines using the ‘Straight line’ tool:

Going always from the same cell (left) towards the other (right)
Keeping them orthogonal to the apparent interface plane (Appendix 4—figure 3B)
. For each line, sample the PI signal and the PIN1 signal along the line using the ‘Plot profile’

tool
With a line width set to 5 to 20 pixels for local averaging
. Determine if the peak of PIN1 signal lies clearly and consistently on one side of the peak of

PI signal.

If PIN1 if clearly and consistently to the left of PI, assign the polarity 1.
If PIN1 if consistently to the left of PI, but not clearly, assign the polarity 0.5.
If PIN1 if clearly and consistently to the right of PI, assign the polarity �1.
If PIN1 if consistently to the right of PI, but not clearly, assign the polarity �0.5.
If PIN1 is not consistently on one side of PI, or not clearly, assign the polarity .

Repeating this manual assessment for every pair of neighbor L1 cells visible in the SRRF

image plane, each expert filled a data sheet using the same cell labels as in the segmented PI

image and the manually determined polarity values. Among the expertized interfaces, we

retained only those that were assessed by both experts and that were found in consensus,

that is where either:

. Both experts assigned the same polarity value

. One expert assigned the value 1 (resp. �1) and the other 0.5 (resp. �0.5).

In the latter case, the ground truth polarity value was corrected to 1 (resp. �1),
acknowledging the certainty given by one expert when both agree on the direction of polarity.

This resulted in a set of consensus interface polarities as displayed in Appendix 4—figure 3C.

In total, these consensus interfaces made up for more than 85% of the interfaces analyzed by

both experts as shown in Appendix 4—figure 3D, and less than 4% of the interfaces found

the experts in disagreement.

We compared these ground truth polarities with the polarity values pc!c0 predicted by the

automatic method for the same pairs of cells. For the sake of evaluation, we considered the

two lower levels of certainty in the statistical test (corresponding to values 0.5 and 0.25) as the

same uncertain value 0.5 in the ground truth assessment. We considered the cell pairs of the

expertized interface to be in the order of their assigned polarity, that is such that all the

ground truth polarity values p� are either , 0.5 or 1, which is possible due to the symmetric

nature of the polarity values. The comparison translates into a table

Cðp�; pÞ j p� 2 0; 0:5; 1f g; p 2 �1;�0:5; 0; 0:5; 1f gf g which counts the proportion of cell interfaces

manually labelled as p� and detected as p in the whole population of interfaces. This table is

presented in Appendix 4—figure 3E.

To obtain the results presented in Figure 3—figure supplement 1G, we chose to consider

as ‘Correct’ predictions not only the cases where p� ¼ p, but also when expert and algorithm

agree on direction, that is when p� and p have the same sign, independently of confidence. If

we sum up those categories, we end up with more than 72% of cell interfaces being predicted

correctly (green squares in Appendix 4—figure 3E). Conversely, we considered predictions to
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be ‘Opposite’ to the ground truth when p� and p have opposite signs (red squares in

Appendix 4—figure 3E) which only accounts for less than 10% of the interfaces. These 10% of

incorrectly predicted interfaces are a problem that may come from an increased sensitivity to

image noise with a coarser resolution, but their effect might be mitigated by the integration of

interface polarities at cell level (see below), especially since they tend to concern interfaces of

smaller area (Appendix 4—figure 3F).

The rest of the interfaces was considered as ‘Uncertain’ as they either consist of interfaces

for which the experts determined a polarity when the automatic method did not lead to

statistical significance (almost 13% of the interfaces) or the opposite case of detecting a

polarity when the experts were consistently uncertain (the remaining 5%). In the first case, the

interfaces will have a mild effect on the resulting cell level vectors as they will contribute as a

null vector.

This mitigated effect of interface-level polarity errors when we integrate polarity at cell

level was evaluated by computing a less quantitative version of the cell polarity vectors than

the one presented in the next section. The polarity vector of the cell labelled c is noted PINc

and is computed as an area-weighted average of interface normals multiplied by their polarity

value:

PINc ¼
P

c02Ac\L1 Ac;c0pc!c0nc!c0P
c02Ac\L1 Ac;c0

(76)

This allows to compare the directions of the resulting cell vectors. In Appendix 4—figure

3G–J, we can see how cell interface polarities that were not correctly predicted (orange circles

in Appendix 4—figure 3H) lead to cell polarity vectors that have very close directions to those

resulting from the ground truth polarities. This preservation of cell polarity vector was studied

more extensively on the 83 cells that shared consensus interfaces (Figure 3—figure

supplement 1H). Appendix 4—figure 3K shows that more than 50% of the considered cells

have their polarity vector oriented in the exact same direction than the ground truth while

than more than 90% were found in qualitatively the same direction (angle error less than 90
�

difference).
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Appendix 4—figure 3. Evaluation of cell interface PIN1 polarities using manually annotated

SRRF images. (A) The super-resolution radial fluctuations method produces a 2D image slice

with a greatly improved pixel resolution and a less spread-out signal. (B) Using the ImageJ line

tool, polarities were manually estimated for each pair of neighbor cells by looking at the

relative position of the peaks of PIN1 and PI signals along lines locally orthogonal to the cell

interface. In the displayed case, the ground truth polarity value would be -1 as PIN1 lies clearly

and consistently to the right of PI. (C) The interfaces on which both experts were in consensus

form a set of polarity values that we use as a ground truth to evaluate the results of the

automatic method. (D) Comparison of cell interface polarities assigned by the first expert

taken as reference (y-axis) with the ones assigned by the second expert (x-axis). Each cell

corresponds to the percentage of annotated interfaces (N = 110) for which expert one

assigned the polarity y and expert two the polarity x. Agreement between experts is

represented in green cells (85%), disagreement in dark red cells (4%) and uncertain cases in

orange cells (11%). Empty cells correspond to a percentage 0%. (E). Similarly displayed

comparison of ground truth polarities taken as reference (y-axis) and detected polarities. More

than 72% of interfaces have ‘Correct’ predicted polarities (green cells) and less than 10% have

‘Opposite’ polarities (dark red cells). 18% of cells have an ‘Uncertain’ polarity decision (orange

cells). (F). The interfaces where errors were made appear to be generally smaller ones. (G–J).
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Local errors between the ground truth interface polarities (G) and automatically detected ones

(H) as those highlighted in orange circles do not necessarily translate into errors between the

corresponding polarity vectors integrated at the level of the cells (I and J). (K). Cumulative

histogram of cell-level angle errors, showing a very high angular consistency at cell level

despite the proportion of interfaces with opposite polarities.

Computation of cell polarity vectors
The local cell interface polarity needs to be integrated to the cell level if we want to describe

the local directionality of PIN carriers inside the tissue. To do this, we define the polarity of a

cell c as a 3D vector PINc that takes into account all the anticlinal cell interfaces surrounding

the considered cell. Each interface contributes to the resulting vector proportionally to its

area, and if polarized, adds up a directional flux parallel to its normal vector with an intensity

equal to the difference of PIN intensities on its sides:

PINc ¼
1P

c02Ac\L1 Ac;c0

X

c02Ac\L1
Ac;c0ð PINc!c0 �PINc0!cj jpc!c0nc!c0Þ (77)

Polarity vector alignment
To make it possible for the data computed on membrane images to be mapped onto the data

from the nuclei channels of the same acquisition, we need to transform the quantified

information into the same reference frame. The processes of Rigid time registration and

Sequence SAM reference frame determination allow to transform rigidly the images from their

original frame to the common reference SAM frame R�. Therefore, to transform the PIN

polarity data into the same referential, we apply this transform to the cell barycenters Pc and

to the cell interface centers Pc;c0 and apply the rotation component of the transformation to

the PIN cell polarity vectors PINc;c0 .

Polarity vector maps
Using the epidermal map formalism, introduced in 2D maps of epidermal signal, and from

these transformed coordinates, we can then compute an aligned continuous map of PIN

intensity based of the quantification of PIN1 signal at the level of cell interfaces and the

estimation of interface areas:

dPIN xð Þ ¼ 1

c02Ac\L1

X

c2L1 h kx�P�c;c0k
� �

Ac;c0

c02Ac\L1

X

c2L1 h kx�P�c;c0k
� �

Ac;c0PINc;c0 (78)

We also use the same method to compute an aligned vectorial map of PIN polarities, this

time based on the estimation of cell polarity vectors:

dPIN xð Þ ¼ 1P
c2L1 h kx�P�ck

� �
X

c2L1
h kx�P�ck
� �

PIN
�
c (79)

In particular, this is the data we use to quantify the convergence of PIN directions at tissue

scale by applying the divergence operator to the vector field resulting from the map

computation dPINðx;yÞ ¼ dPINx;dPINy

� �
ðx;yÞ. This operation gives us a scalar map (as those

displayed in Figure 3—figure supplement 2, third column) where negative values correspond

to areas of local convergence of the PIN directions:

div dPINðx;yÞ ¼ qdPINx

qx
ðx;yÞþ qdPINy

qy
ðx;yÞ (80)

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 60 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832


We use this computed map to approximate the values of div dPIN at punctual locations such

as nuclei points Pn or primordia extremal points r�
Pi
; ��

Pi

� �
or rþ

Pi
; �þ

Pi

� �
by averaging the values

at the four closest grid coordinates (Figure 3J). Indeed, it would be very complex to estimate

this quantity on a discrete set of points from the PIN
�
c vectors, on which the divergence

operator would be non-trivial.

Implementation details

Image processing
Histogram normalization was performed using the implementation provideed in the Scikit-

Image library (van der Walt et al., 2014), and cell barycenters in the segmented images were

computed using the SciPy library (Virtanen et al., 2020), made available through the timagetk

(Tissue Image ToolKit) image processing library.

Meshing algorithms
We used the implementations provided in the VTK (Visualization ToolKit) library

(Schroeder et al., 2006) for the Marching Cubes algorithm, the mesh smoothing and the

quadric decimation (vtkImageMarchingCubes, vtkWindowedSincPolyDataFilter,

vtkQuadricDecimation). A version of the isotropic remeshing algorithm has been implemented

in the cellcomplex library.

PIN polarity quantification
We have developed specific tools for the quantification of PIN1 polarities, and they are made

avaliable in the tissue_paredes library. We used the implementation of Wilcoxon test from the

SciPy library (Virtanen et al., 2020).

PIN polarity maps
Continuous maps and vector maps were generated using the functionns implemented in the

tissue_nukem_3d Python library. The divergence maps were estimated by applying a 1-D

Gaussian derivative filter (s ¼ 3:75�m) to each component of a vector map in the

corresponding dimension, using functions implemented in the SciPy library (Virtanen et al.,

2020).
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Appendix 5

Extrapolated cell motion in the developmental continuum
Throughout this work, we strongly relied on the spatio-temporal periodicity of phyllotactic

systems, that we demonstrated to be a valid assumption for our considered SAMs. Indeed, the

high angular precision and limited plastochron variability make the observed systems close to

a steady developing regular phyllotactic system with a divergence angle a ¼ 137:5� � 6:7� and
a plastochron T ¼ 12h� 2h (Figure 1—figure supplement 2D–G, Appendix 1).

Notably, we considered that, in the 2D cylindrical reference frame centered on the CZ of

the shoot apical meristem, the dynamics of any quantifiable signal S must follow the properties

of a spatio-temporally periodic function of spatial period 0;a; 0ð Þ and temporal period T:

8
r

�

z

0
B@

1
CA2Rþ�½�p;p� �R;8t 2 T ; S

r

�

z

0
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1
CA; tþT

0
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CA¼ S

r

�

z

0
B@
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0

a

0

0
B@

1
CA; t

0
B@

1
CA (81)

This helped us consider signal dynamics on durations that largely overpass the observation

range of 10 to 14 hr, by applying successive rotations of the meristems to simulate the passing

of time. Notably, an aligned SAM observed at t¼ 0h rotated of 137.5˚ clockwise has been

shown to be the best next frame to the same aligned SAM observed at T ¼ 10h (Figure 1G,

Figure 1—figure supplement 2H). More generally, any primordium of stage Pp visible at time

t can be used to infer information at time tþ pT. This means that we were able to reconstruct

trajectories of signals at a given 2D projected position ðr; �Þ over a duration of up to nine

plastochrons (~ 100 hours) from observations spanning only one, but with nine visible

primordia P�3 to P5. This was achieved only by interpolating rotated aligned information

(Video 1).

Unfortunately, this global reconstruction heuristic could work only while we were looking at

the same location in space, where the spatio-temporal property holds. To some extent, it can

be generalized to robust primordia landmarks, such as auxin maxima, that we assume to be

unique while moving in the course of primordium development. If they can be identified, and

associated with a primordium of stage Pp, then they can be positioned on the same

developmental axis at a time t þ pT to reconstruct a developmental history at the level of this

time-tracked landmark.

However, the moment we are interested in cellular processes, such as the dynamics of

transcriptional response to auxin for instance, the reconstructed long-term trajectories cannot

be used to draw relevant conclusions, as they reflect the dynamics either at fixed coordinates

or at non-cell-specific landmark points. It is therefore necessary to find a way to access

temporal cell-level information. Individual cells can be tracked in time-lapse sequences, either

manually or automatically, which could be use to obtain signal trajectories over 10 to 14 hr

(Figure 2G). But to achieve the mentioned 100 hr reconstruction, spatio-temporal periodicity

has to be used at some point.

Extrapolated tissue area tracking
We assume the cells in the central and peripheral zones (CZ and PZ respectively) of the SAM

to have essentially an outward radial motion that accelerates as cells exit the central zone. This

has been confirmed by the cellular motion vectors estimated from vector fields of image

deformation (Appendix 2) in which the azimuthal component is in average close to 0, with a

limited amplitude compared to the radial component (Appendix 5—figure 1A). We note vn

the speed of the nucleus labelled n in the 2D polar SAM reference frame R�:

8n2L1;vn ¼ vr;nrðPnÞþ v�;n�ðPnÞ (82)

where rðPnÞ and �ðPnÞ are the local normal and tangential unitary vectors at Pn . In the

following, we will then assume a pure radial motion of cells in the L1 of the SAM, that is that:

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 62 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832


8n2L1;v�;n ~0 (83)

We compute the local radial cellular speed as a 2D continuous map on the L1

(Appendix 5—figure 1B-C), using the same parameters as for the other cellular signals:

8ðr; �Þ 2R2,

bvrðr; �Þ ¼ 1

X

n2L1
h kðr; �Þ�Pnkð Þ

X

n2L1
h kðr; �Þ�Pnkð Þvr;n: (84)

Defined this way, local radial cellular speed is a tissue-level information, that is not attached

to a cell but to a spatial position ðr; �Þ. Therefore it has a spatio-temporal periodicity property

and we can write:

bvrðr; �; tþTÞ ¼ bvrðr; �þa; tÞ (85)

We use this spatio-temporal periodicity property of local cellular speed to extrapolate cell

motion over time from a series of acquisitions of SAMs at discrete times t0< . . .<tn<Tf g. Let us
consider a cell with an initial position Pðt0Þ ¼ ðrðt0Þ; �0Þ, setting rðt0Þ ¼ r0. Using acquisitions at

t0, it is possible to estimate bvrðr0; �0; t0Þ, which we use to estimate Pðt1Þ ¼ ðrðt1Þ; �0Þ assuming a

linear motion between t0 and t1:

rðt1Þ ¼ r0þðt1� t0Þ � bvrðr0; �0; t0Þ (86)

More generally, with observations at ti�1, we derive PðtiÞ with:

rðtiÞ ¼ rðti�1Þþ ðti� ti�1Þ � bvrðrðti�1Þ; �0; ti�1Þ (87)

We perform this progression until we compute the last position PðtnÞ for which motion can

not be estimated (as there is no next image it compute image deformation) However, we can

still extrapolate the lastly computed motion to reach one plastochron, and estimate Pðt0þTÞ
with:

rðt0þTÞ ¼ rðtn�1Þþ T �ðtn�1� t0Þð Þ � bvrðrðtn�1Þ; �0; tn�1Þ (88)

To proceed further, we would like to progress in time and estimate the cell position at

t1þT. This is where we use the spatio-temporal periodicity property to derive that:

rðt1þTÞ ¼ rðt0þTÞþ t1� t0Þð Þ � bvrðrðt0þTÞ; �0; t0þTÞ
¼ rðt0þTÞþ t1� t0Þð Þ � bvrðrðt0þTÞ; �0þa; t0Þ

(89)

We are therefore able to estimate this next position from observations at t0 simply by

rotating the radial speed map (Appendix 5—figure 1D). Then iteratively it is possible to go

further in time to tnþT , extrapolate motion to t0þ 2T, apply again spatio-temporal periodicity

to reach t1þ 2T, and so on. Finally we obtain the two following general equations:

8i 2 ½½1;n��; rðtiþ pTÞ ¼ rðti�1þ pTÞþ ti� ti�1Þð Þ � bvrðrðti�1þ pTÞ; �0þ pa; ti�1Þ (90)

rðt0þðpþ 1ÞTÞ ¼ rðtn�1þ pTÞþ T �ðtn�1� t0Þð Þ � bvrðrðtn�1þ pTÞ; �0þ pa; tn�1Þ (91)

These are valid for positive integer values of p until reaching the maximal extent P in the

considered data (i.e. when the map used to estimate local radial speed becomes ill-defined),

which determines a value pmax. This defines a radial trajectory in the 2D space that reflects the

local motion of cells along several plastochrons (Appendix 5—figure 1E). Note that a

rigorously identical approach can be used to go backwards in time with negative values of p

until t0þ pminT , using motion vectors computed using inverse image deformation (Appendix 2).

In the end, from a single initial position ðr0; �0Þ we obtain a discrete radial trajectory:

ðrðtiþ pTÞ; �0Þ j i 2 ½½0;n��;p2 ½½pmin;pmax��
� 	

(92)
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To monitor a cellular process over long time courses, the objective would be to estimate

the value of the signal S along this spatio-temporal trajectory, that is:

bSðrðtiþ pTÞ; �0; tiþ pTÞ j i 2 ½½0;n��;p2 ½½pmin;pmax��
n o

(93)

Using the spatio-temporal periodicity property of S, this translates into:

bSðrðtiþ pTÞ; �0þ pa; tiÞ j i2 ½½0;n��;p2 ½½pmin;pmax��
n o

(94)

In other terms, we have defined a series of spatial locations in a time-series of acquisitions

such that the sequence of signal values at these locations on the same meristem estimates the

cell-level trajectory of the considered signal. If we represent them on a time-series of

meristems, we define tissue areas that can be tracked, first in time then in space, to

reconstruct the average behavior of a group of cells over time (Appendix 5—figure 1F-H).

This is the approach we use to reconstruct cell-level auxin trajectories (Figure 2H) and to study

the relationship between auxin input and transcriptional response in a consistent group of cells

(Figure 4D, Figure 4F–H).

Appendix 5—figure 1. Using spatio-temporal periodicity to extrapolate long-term cellular
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motions. (A). Cellular motion on the L1 is essentially a radial motion towards the periphery of

the SAM that accelerates as cells exit the CZ. (B–C). Average 2D maps of L1 local radial

cellular speed, computed from image deformations between observations at t = 0 hr and t = 5

hr (B) and t = 5 hr and t = 10 hr (C) (N ¼ 21 SAMs). (D). Spatio-temporal periodicity allows

estimating cellular motion on several plastochrons by successive rotations: motion at t0 can be

used to estimate position at t1, which can be extrapolated to t0 þ T . By periodicity, radial

motion a t0 þ T is equal to radial motion at t0 rotated by one divergence angle a, which gives

the position at t1 þ T , and so on. (E). The iteration of this process in time allows the

reconstruction of long-term radial cellular trajectories that correspond to the average motion

of cells over the population over nearly 100 hr. (F–H). These trajectories are used to define

spatial domains that reflect cellular motion over time and allow the study of cell-level

processes over long durations.

Galvan-Ampudia et al. eLife 2020;9:e55832. DOI: https://doi.org/10.7554/eLife.55832 65 of 65

Research article Developmental Biology Plant Biology

https://doi.org/10.7554/eLife.55832

