
HAL Id: hal-02368304
https://hal.science/hal-02368304

Submitted on 18 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Correlations between plant climate optima across
different spatial scales

C. Johan Johan Dahlberg, Johan Ehrlén, Ditte Marie Christiansen, Eric
Meineri, Kristoffer Hylander

To cite this version:
C. Johan Johan Dahlberg, Johan Ehrlén, Ditte Marie Christiansen, Eric Meineri, Kristoffer Hylan-
der. Correlations between plant climate optima across different spatial scales. Environmental and
Experimental Botany, 2020, pp.103899. �10.1016/j.envexpbot.2019.103899�. �hal-02368304�

https://hal.science/hal-02368304
https://hal.archives-ouvertes.fr


 
 

1 
 

 1 

Correlations between plant climate optima across different 2 

spatial scales 3 

 4 

 5 

C. Johan Dahlberg
1,2

, Johan Ehrlén
1,3

, Ditte Marie Christiansen
1,3

, Eric Meineri
4
, Kristoffer 6 

Hylander
1,3,

* 7 

 8 

1 
Department of Ecology, Environment and Plant Sciences, Stockholm University,  9 

SE-106 91 Stockholm, Sweden 10 

2 
present address:  the County Administrative Board of Västra Götaland, SE-403 40 11 

Gothenburg, Sweden 12 

3 
Bolin Centre for Climate Research, Stockholm University, SE-106 91 Stockholm, Sweden 

 13 

4
 Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France 14 

* Corresponding author: Department of Ecology, Environment and Plant Sciences, Stockholm 15 

University, SE-106 91 Stockholm, Sweden  16 

Esitémail: kristoffer.hylander@su.se 17 

 18 

Short running heading: Correlations between climatic optima across scales 19 

 20 

 21 

 22 

23 



 
 

2 
 

Abstract 24 

Identifying the factors determining the abundance and distribution of species is a fundamental 25 

question in ecology. One key issue is how similar the factors determining species’ 26 

distributions across spatial scales are (here we focus especially on spatial extents). If the 27 

factors are similar across extents, then the large scale distribution pattern of a species may 28 

provide information about its local habitat requirements, and vice versa. We assessed the 29 

relationships between landscape and national optima as well as landscape and continental 30 

optima for growing degree days, maximum temperature and minimum temperature for 96 31 

bryophytes and 50 vascular plants. For this set of species, we derived landscape optima from 32 

abundance weighted temperature data using species inventories in central Sweden and a fine-33 

grained temperature model (50 m), national optima from niche centroid modelling based on 34 

GBIF data from Sweden and the same fine-grained climate model, and continental optima 35 

using the same method as for the national optima but from GBIF data from Europe and 36 

Worldclim temperatures (c. 1000 m). The landscape optima of all species were positively 37 

correlated with national as well as continental optima for maximum temperature (r=0.45 and 38 

0.46, respectively), weakly so for growing degree days (r = 0.30 and r = 0.28), but sometimes 39 

absent for minimum temperature (r=0.26 and r = 0.04). The regression slopes of national or 40 

continental optima on local optima did not differ between vascular plants and bryophytes for 41 

GDD and Tmax. However, the relationship between the optima of Tmin differed between 42 

groups, being positive in vascular plants but absent in bryophytes. Our results suggest that 43 

positive correlations between optima at different spatial scales are present for some climatic 44 

variables but not for others. Moreover, our results for vascular plants and bryophytes suggest 45 

that correlations might differ between organism groups and depend on the ecology of the 46 

focal organisms. This implies that it is not possible to routinely up- or downscale distribution 47 
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patterns based on environmental correlations, since drivers of distribution patterns might 48 

differ across spatial extents. 49 

Keywords: bryophyte; climatic optima; distribution; microclimate; spatial scale; vascular 50 

plant51 
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1. Introduction 52 

Identifying the factors determining the abundance and distribution of species, and and if those 53 

environmental factors remain important across spatial scale (grain and extent) are key 54 

objectives in global change ecology (Hurlbert et al., 2005; Hess et al., 2006; Azaele et al., 55 

2015). Given that populations in different parts of the distribution range are genetically 56 

similar and experience the same range of environmental conditions, we would expect that the 57 

relationship between environmental factors and distributions should be similar in different 58 

parts and over different spatial extents (e.g. Brown, 1984; Guisan and Zimmermann, 2000; 59 

Thuiller et al. 2005; Wiens et al., 2010; Wasof et al., 2015). Yet, there are several reasons 60 

why we should instead expect relationships to differ among different parts of the distribution 61 

range or among different spatial extents. First, populations in different part of the distribution 62 

range might be genetically differentiated and locally adapted with regard to the relationship 63 

between environmental conditions (including biotic interactions) and individual performance 64 

(Lavergne et al., 2010; Pellissier et al., 2013). For example, Alberto et al. (2013) found 65 

genetic differentiation of many adaptive traits when comparing populations of many tree 66 

species across geographically separated common gardens. Second, the frequency distribution 67 

and range of environmental parameters influencing organism performance as well as the 68 

correlation between parameters will often vary among different parts of the distribution range 69 

and between extents of different sizes (Hylander et al. 2015). Third, distributions might not be 70 

in equilibrium with current environmental conditions. For example, environmental conditions 71 

might have changed but changes in distribution are time-lagged due to dispersal limitation or 72 

delayed extinctions (Svenning et al. 2015) and such processes are likely to vary among spatial 73 

scales. Moreover, changing the grain size of environmental predictors often results in changes 74 

in which environmental variables that best predict distributions. For example, structural 75 

habitat variables were more important predictors than climate variables in predicting the 76 
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distribution of an ant species at finer scales (grain), while the reversed was true at larger 77 

spatial grain sizes (Menke et al. 2009). Since organisms always interacts with their local 78 

environment, it is important to use fine grained data, and this is not least true for climate 79 

variables (Keppel et al 2012; Lenoir et al. 2013; Lenoir et al. 2017; Hannah et al., 2014; 80 

Meineri et al., 2015; Lembrechts et al 2018). However, also when we have access to such 81 

fine-grained environmental data, it is not trivial to downscale organisms distributions since 82 

high resolution occurrence data are still uncommon (Menke et al. 2009, Keil et al. 2013).  83 

Given that the relationship between environmental factors and distributions might 84 

differ over different spatial scales, a key task is to empirically assess if the factors governing 85 

distributions (and optima) are similar over different spatial grains and extents, as well as how 86 

such relationships differ among species and environmental variables. One important question 87 

regards how the strength of the relationships between distributions and environmental factors 88 

(e.g. species optima) differ among spatial grains and extents. If the relationship is strong, then 89 

the large scale distribution pattern of a species may provide information about its local habitat 90 

requirements, and vice versa. Another important question is if relationships, and thus the 91 

predictive capacity, are stronger for some environmental variables than for others. Lastly, 92 

relationships with a given environmental factor can vary between groups of species with 93 

different physiology. For example, moisture conditions are probably more important for 94 

bryophytes than for vascular plants, since bryophytes cannot regulate water uptake and loss 95 

(cf. Woodward and Williams, 1987; Hylander, 2005; Proctor, 2011), or winter conditions 96 

might be more important for trees than for herbs in areas with snow cover (Walter and 97 

Breckle, 1989).  98 

In this study, we investigated how strongly temperature optima of 50 vascular plant 99 

species and 96 bryophyte species were correlated between spatial scales. We compared 100 

optimqfrom a landscape consisting of 3000 km
2
 forested area in central Sweden, with the 101 
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optima calculated at the national extent using a fine-grain climate data, and with optima at a 102 

continental extent including most of Europe with a more coarse-grain climate data. Three 103 

temperature variables were examined: growing degree days, minimum temperature and 104 

maximum temperature. We retrieved the species’ landscape optima, defined as the most 105 

favorable climate in the focal landscape, by calculating abundance-weighted temperature 106 

averages for georeferenced species occurrences from 49 inventoried field sites. The national 107 

and continental optima were retrieved from niche centroid modelling (Blonder et al. 2017), 108 

and reported occurrences in Europe of the same species’ in a database. Using these three 109 

optima from different geographic extents, we examined the strength of correlations for the 110 

three climate variables, for all species pooled as well as for vascular plants and bryophytes 111 

separately.  112 

 113 

2. Materials and Methods 114 

2.1 Study areas 115 

The study area used for the landscape scale data is located in the county of Ångermanland in 116 

central Sweden (Fig. 1a; between the latitudes 62°50’ and 63°12’ N). This area ranges 73 km 117 

westward from the Baltic Sea and 42 km from north to south. The area is hilly with a 118 

moderate altitudinal variation (0 – 470 m). The bedrock consists mostly of gneiss covered by 119 

podzolic soils of sandy loamy or silty materials. It is a mainly forested landscape situated in 120 

the middle boreal subzone, and, along the coast, in the southern boreal subzone. In July, the 121 

mean temperature is 15.6 °C, and the annual mean precipitation reaches 671 mm (Swedish 122 

Meteorological and Hydrological Institute, 2016). The heterogeneous topography and the fact 123 

that this area hosts the range margins of both southern and northern species (Mascher, 1990) 124 

make this a particularly suitable landscape to study the influence of microclimate on species 125 

distributions. 126 
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The whole of Sweden (450 000 km
2
) was used to examine the national scale. Sweden 127 

is extending over a substantial latitudinal and altitudinal gradient (latitudes 55.3 - 69.1°N and 128 

0-2100 m.a.s.l). The continental scale study area comprises a large part of Europe, is more 129 

than 5100 km from west to east and 2800 km from south to north, and cover a land area of 130 

4.40 × 10
6
 km

2
 (Fig. 1b, between the latitudes 27°38’ and 81°48’ N). It covers a wide range of 131 

altitudes (up to 4810 m.a.s.l.) and climatic conditions from Mediterranean climate in the south 132 

to cold climates with long winters in the north and at high altitudes. There is also an east-west 133 

climatic gradient across the temperate zone ranging from maritime climates along the Atlantic 134 

Ocean to continental climates in the eastern inlands (Peel et al., 2007; Europe, 2014).  135 

 136 

2.2 Study design and species occurrences 137 

In the focal landscape, we selected 24 south-facing and 25 north-facing forested slopes 138 

distributed across the whole area. Within each slope, we randomly selected one 25 × 25m plot 139 

within mature forest (at least 50 years old, estimated from aerial pictures). To reduce 140 

environmental heterogeneity, selected plots were located > 25 m from open areas, > 50 m 141 

from streams, > 10 m from vertical cliffs (> 5 m high), and were situated on mesic soils. Most 142 

of the plots were dominated by Norway spruce (Picea abies L. Karst.), but at some sites also 143 

birch (Betula pubescens Ehrh. and Betula pendula Roth), Aspen (Populus tremula L.) or 144 

Scots pine (Pinus sylvestris L.) co-dominated the tree layer. The plots were oriented between 145 

159° and 214° at south-facing slopes (180° = S) and between 333° and 56° at north facing 146 

slopes (360°/0° = N). The slope inclination varied between 7° and 35°, and the altitude ranged 147 

from 39 m to 385 m. We assessed the local area species composition within each of the 49 148 

chosen 25 × 25 m plots by recording the abundance of all occurring species of bryophytes and 149 

vascular plants. We estimated the abundance in three categories 1 = sporadic (few 150 

occurrences covering < 5 %), 2 = common (covering 5 – 50 %), and 3 = dominant (covering ≥ 151 
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50 %). For analyses of optima, we included all bryophyte and vascular plant species occurring 152 

in at least 5 of the plots (Appendix S1), resulting in 96 bryophytes and 50 vascular plant 153 

species. 154 

For the national scale we compiled occurrences of the study species from Swedish 155 

Artportalen (www.artportalen.se) and for the continental scale also from GBIF 156 

(www.gbif.org), and Norwegian Artsobservasjoner (www.artsobservasjoner.no). In GBIF, we 157 

included observations, literature data and herbarium specimens. We restricted the GBIF 158 

occurrence data sets to the time period 1950 to 2014. Information on the precision of 159 

coordinates was lacking for large parts of the GBIF data sets and to include as many 160 

observations as possible, we did not apply any restrictions on precision. In the continental 161 

scale data we included only countries that had an average density of at least 1 observation per 162 

1000 km
2
 of the 146 study species pooled to avoid biasing estimates of species' continental 163 

range optima due to scarce reporting from these areas (Fig. 1b).  164 

 165 

2.3 Temperature variables 166 

For both the landscape and national scale, we extracted decadal averages (2000-2010) of 167 

growing degree days (base 5°C, GDD5), minimum temperature (the yearly 5
th

 percentile of 168 

the daily min temperature, Tmin, °C) and maximum temperature (the yearly 95
th

 percentile of 169 

the daily max temperature, Tmax, °C) from freely available modelled fine-grained layers at a 170 

50 m resolution covering the whole of Sweden (Meineri & Hylander 2017). For the 171 

continental area we retrieved the same variables from Worldclim v1.4 (period 1960-1990; 172 

www.wordclim.org; Hijmans et al., 2005) at a 30 seconds resolution (~1 km). At this scale, 173 

Tmin and Tmax were monthly means derived from daily minimum and maximum 174 

measurements averaged for the period 1960-1990. We set the lowest of the twelve monthly 175 

Tmin- and the highest of the twelve monthly Tmax-values as our continental Tmin and Tmax, 176 
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respectively. We calculated GDD5 following Synes and Osborne (2011) and Nieto et al. 177 

(2015) by using the formula: GDD5 for each month = ((monthly Tmax + monthly Tmin) / 2 – 178 

Tbase [in our case 5]) × Days per month, and then summing up GDD5 for each month (those 179 

above zero) to a yearly GDD5. Thereby, we approximated a yearly heat accumulation for the 180 

chosen time period.  181 

Although GDD5, Tmin and Tmax were calculated differently at the landscape/national and 182 

continental scales, we believe that the results would be highly correlated and rank similarly 183 

across sites. For example, the 5
th

 percentiles of the coldest days of the year (Tmin at landscape 184 

and national scale) is expected to rank similarly to the average of minimum daily values over 185 

the coldest month across sites since the coldest days of the years (landscape/national scale) 186 

often occurs during the coldest month (continental scale).   187 

 188 

2.4 Temperature optima 189 

We derived the landscape climatic optima for each species as the mean value of GDD5, Tmin 190 

and Tmax at the sites where the species occurred, weighted by the abundance (1, 2 or 3, see 191 

equation 1). 192 

Equation1: 193 

                   
                                                              

    

                        
   

  194 

 195 

To calculate the national and continental climate optima we used a recently developed method 196 

for calculating niche hypervolumes (Blonder et al. 2017). The method calculates the niche in 197 

a multidimensional space, and produces many geometry statistics including the total volume 198 

of the niche and the niche centroid (see also Ureta et al. 2018 for the use of niche centroids as 199 

a successful measure of plant fitness). For each species we ran the model two times, for the 200 

national and continental scales respectively, and extracted the niche centroid for each of the 201 
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three focal climate variables as a proxy for the species’ optima. We used the R package 202 

“hypervolume” version 2.0.11 (Blonder 2018). We used the one-class support vector machine 203 

algorithm with default tuning parameter settings, and number of random points used to assess 204 

the species-specific hypervolumes was set to      
                           

                      
. This parameter 205 

ensures equal sampling effort of species with different number of observations, and the higher 206 

the number, the more robust results you get with a trade-off of computer power (Blonder et al. 207 

2017). The niche centroid was calculated as the mean of the random points, giving one value 208 

for each niche axes.  209 

 210 

2.5 Statistical analyses 211 

We evaluated the relationships between landscape and national species optima as well as 212 

between landscape and continental species optima for GDD5, Tmin and Tmax, for all species 213 

pooled, using Pearson correlation tests, and visualized the relationships with a trend line from 214 

a type II regression.. To investigate if these two relationships (i.e. between landscape and 215 

national as well as between landscape and continental) differed between bryophytes and 216 

vascular plants, we carried out an ANCOVA for each climate variable with organism group as 217 

a fixed factor, the landscape climate variable as a continuous predictor, and their interaction. 218 

Moreover, we tested if there was any difference between the correlation coefficients of 219 

bryophytes and vascular plants using the Fisher r-to-z transformation test with the R package 220 

“psych” (Revelle 2018). Lastly, we tested if the mean optima of vascular plants and 221 

bryophytes differed within the different scales using Student’s t-test. We also evaluated the 222 

relationships between the three examined temperature variables within each spatial scale 223 

dataset using Pearson correlation tests, and visualized them with type II regression lines. All 224 

analyses were done in R 3.6.0 (R Core Team, 2019). 225 

 226 
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3. Results 227 

3.1 Correlations between species landscape, national and continental optima 228 

Species with higher landscape optima for Tmax also had on average higher national and 229 

continental optima (landscape vs national: r = 0.45, P < 0.001; landscape vs continental: r = 230 

0.46, P < 0.001, Fig. 2b and e, Appendix 2). For GDD5, there were also positive, albeit 231 

weaker, correlations between landscape and national, and landscape and continental optima 232 

(landscape vs national: r = 0.30, P < 0.001; landscape vs continental: r = 0.28, P < 0.001, Fig. 233 

2b, Appendix 2b). For Tmin, the correlation between landscape and national optima was even 234 

weaker (r = 0.26, P = 0.002, Fig. 2c, Appendix 2c), and there was no correlation between 235 

landscape and continental optima (r = 0.04, P = 0.65, Fig. 2f, Appendix 2f).  236 

 237 

3.2 Differences between bryophytes and vascular plants 238 

The relationships between the landscape and national optima and landscape and continental 239 

optima for the three temperature variables showed similar patterns for bryophytes and 240 

vascular plants in most cases (Fig 3, p>0.05 for the interaction effect, Appendix 3). However, 241 

for the model between landscape and continental optima of minimum temperatures there was 242 

a significant effect if the interaction between organism group and temperature (Ancova, P = 243 

0.0023). For vascular plants, but not for bryophytes, Tmin optima were positively correlated 244 

across extents (Fig 3c, f, i and l, Appendix 3). Correlation coefficients did not differ 245 

significantly between the two groups, except between Tmin at landscape and continental 246 

scales where vascular plants had a higher coefficient than bryophytes (r=0.36 vs. r= –0.13; 247 

Fisher r-to-z text, P = 0.004).  248 

 249 

3.3 Within-scale relationships  250 
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There were few differences in the mean optima between the two groups (boxplots in Fig 4). 251 

The largest difference was a lower value for growing degree days for bryophytes than for 252 

vascular plants in the continental data (P = 0.042, Fig. 4c,i).  253 

 254 

Correlations between the three examined temperature variables differed among the three 255 

spatial extents. GDD5 and Tmax were positively correlated at all extents (landscape: r = 0.40, 256 

P = 0.005; national: r = 0.89, P < 0.001; and continental: r = 0.83, P < 0.001, Appendix 4 257 

and 5), while Tmin was correlated to GDD5 only at the national and continental extents 258 

(landscape: r = 0.26, P = 0.07; national: r = 0.91, P < 0.001; continental: r = 0.78, P < 0.001). 259 

There were no correlation between Tmin and Tmax at the landscape (r = –0.21, P = 0.15), but 260 

a positive correlation at the national and continental extents (national: r = 0.67, P < 0.001; 261 

continental: r = 0.39, P < 0.001) (Appendix 4 and 5).  262 

 263 

4. Discussion 264 

Our study provided evidence of clear positive correlations between plant species 265 

landscape climatic optima and their optima at larger, national and continental extents for two 266 

of three examined climate variables. Species growing under locally warm conditions with 267 

high maximum temperatures, on average tended to have more equator skewed distributions, 268 

and vice versa.  In this context the landscape optima can in fact be closer to a species thermal 269 

limit for species at their distribution margins, and the broader implication of our results is that 270 

knowledge about a species wider geographic distribution can suggest where in a focal 271 

landscape it is most likely occurring. At the same time, it is important to note that the highest 272 

observed correlation coefficient between landscape and a larger scale optima was 0.47, 273 

suggesting that the relationships are relatively weak. Also notable is that the pattern observed 274 

for maximum temperature was largely absent for minimum temperature.Few studies have 275 
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specifically tested if it is possible to upscale or downscale distributions across areas of 276 

different spatial extents, while the question of upscaling and downscaling distributions in 277 

relation to grain size has received more attention (see below). However, the question of up- or 278 

downscaling across spatial extent resembles the more investigated question of how well future 279 

species distributions can be predicted based on current species distributions (e.g. Austin and 280 

Van Niel, 2011; Franklin et al. 2013), and if species niches are consistent across areas (Wasof 281 

et al., 2015). However, Kambach et al. (2019) studied different extents and demonstrate that 282 

the niche breadth plants in the Alps is a poor predictor of the global niche breadth of the same 283 

species. Our results showed that correlations between optima at different spatial extents 284 

differed among environmental variables, which suggest that some relationships might be more 285 

linked to causal drivers, while others are mostly correlative. Thus, the success of upscaling 286 

and downscaling between different spatial extents or predictions of distributions in new areas 287 

may sometimes be good and sometimes misleading, depending on whether the identified 288 

variables representing causal drivers of distributions (see also Menke et al. 2009).  289 

One problem with comparing models at different geographical extents is that the grain 290 

size often is larger in larger areas. Larger grid cells fail to detect more of the within grid 291 

heterogeneity (Randin et al., 2009, Meineri and Hylander 2017), and as a result different sets 292 

of variables, varying over different spatial scales, might explain the distribution at different 293 

grain sizes (Pearson and Dawson, 2003; Menke et al., 2009; Connor et al. 2018). However, 294 

Collingham et al. (2000) did not find that the influence of different environmental variables 295 

varied among grain size, and was optimistic regarding the possibility of upscaling to coarser 296 

resolutions, especially when holding the spatial extent constant. In contrast, models calibrated 297 

at larger grid cells did not produce realistic downscaled distribution maps for three invasive 298 

plant species in Britain, although this might have been partly due to the fact that distributions 299 

were not in equilibrium with environmental conditions at either spatial scale (Collingham et 300 
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al., 2000). Still, data from larger grid cells might generate downscaled distribution maps that 301 

are quite accurate in some cases, as shown for several species groups in Britain (Barwell et al. 302 

2014, Fernandes et al. 2014), and the field is developing fast (Keil et al. 2013, Groom et al. 303 

2018). We found very similar patterns when correlating the landscape optima to fine-gridded 304 

national data and to coarse-gridded continental scale data. This suggest that our larger scale 305 

datasets quite well describe the distributional optima for the species, despite the difference in 306 

both extent and grain size. A likely reason for this pattern is that both dataset covers long 307 

latitudinal gradients, which are more important to estimate optima than within grid-cell 308 

variation. Thus, for studies focusing on niche hypervolume size or shape there is a larger risk 309 

for biases due to different grid sizes than in studies focusing on niche centroids (Kambach 310 

2019).  311 

The correlations between landscape and continental optima were strongest for 312 

maximum temperature, weaker but significant for growing degree days, and even weaker or 313 

not significant for minimum temperature. Both growing degree days and maximum 314 

temperature characterize the climatic conditions during the plant growing season, suggesting 315 

that these variables should have an important effect on plant performance. However, 316 

minimum temperature has also been highlighted as important for species distributions at 317 

different spatial scales (Aschcroft et al., 2011; Dobrowski, 2011; Scherrer and Körner, 2011; 318 

Illán et al., 2014), including the range limits of tree species towards cold conditions (Sakai, 319 

1979; Körner, 2012, Kreyling et al. 2015). Niche conservatism has been higher for the cold 320 

than warm thermal limit for a number of alpine plant species (Pellissier et al., 2013). 321 

However, a majority of our studied species might not be affected by yearly minimum 322 

temperature in northern regions such as in our focal landscape, since they are resting and 323 

protected by snow cover during winter periods there (cf. Vercauteren et al., 2013). Trees and 324 

shrubs that extend above the snow cover are more affected by winter frosts than for example 325 
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herbs (Walter and Breckle, 1989). Thus, the correlation between minimum temperature and 326 

species landscape scale distribution may not be so informative for continental scale 327 

distribution and vice versa when part of the distribution is including winters with snow cover. 328 

Yet, perhaps minimum temperatures during late spring, which we did not include in this 329 

study, might have a stronger effect on distributions (Muffler et al. 2016). Although both 330 

growing degree days and maximum temperature might influence distributions, it is difficult to 331 

disentangle their independent effects since they are correlated and correlations are similar at 332 

all the scales. In contrast, the correlations between minimum and maximum temperature were 333 

in different directions at the different spatial scales; notably even with a tendency to be 334 

negatively correlated at the landscape scale (Appendix 4c and f). This difference in 335 

correlations among climatic variables between scales may explain why we found less of 336 

landscape-large scale optima correlations for minimum temperature than for growing degree 337 

days and maximum temperature (Hylander et al., 2015, Meineri et al., 2015). Similarly, 338 

Menke et al. (2009) suggested that differences in the distribution of environmental conditions 339 

between areas greatly reduces the predictive power of species distribution models 340 

parameterized in different areas. Such difference in distribution of environmental conditions 341 

might apply also to our case, even if our focal landscape is nested within the other areas, 342 

partly explaining different patterns for maximum and minimum temperatures.  343 

Several factors may contribute to weak correlations between landscape and larger 344 

scale optima. A likely ecological explanation to this is that several factors interact, in a 345 

species-specific way, to determine where a species can occur in the landscape (e.g. Gaston, 346 

2009, Zellweger et al., 2016). For example, while two species might have similar high 347 

continental optima for growing degree days, this might be due to a direct dependence on 348 

longer growing season in one of the species but due to dependence on humid conditions, 349 

which are correlated with growing degree days, for the other species. As a consequence, they 350 
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might differ in landscape optima for growing degree days if the correlation between growing 351 

degree days and humidity is different at the landscape scale than at the continental scale 352 

(Hylander et al. 2015). In our study many species, especially of bryophytes, with a high 353 

maximum temperature landscape optima also had a low minimum temperature optima at 354 

landscape scale (Fig 4d), reflecting the tendency of a negative correlation between these 355 

variables in this particular landscape (Appendix 4d). This fact constrains the possibility for 356 

strong simultaneous correlations for both maximum and minimum optima between landscape 357 

and larger scales optima, since the two variables at larger scales were strongly positively 358 

correlated (Appendix 4e and f). Also, local adaptation, biotic interactions and dispersal 359 

limitation are likely to decrease the strength of the correlations between spatial scales 360 

(Lavergne et al. 2010; Svenning et al. 2015; Herrero et al. 2016). Still, the optima correlations 361 

for maximum temperature found in our study lend support to the notion that populations of 362 

the same species to some extent are influenced similarly by climatic variables across their 363 

geographical range (e.g. Pearman et al., 2008; Wiens et al., 2010; Wasof et al., 2015). Given 364 

that many of the species are close to their poleward distribution limit in the focal landscape, 365 

we might have expected a clustering of species landscape optima at the warmest end of the 366 

climate gradients. Yet, a visual inspection of the graphs does not reveal any such clustering 367 

(Fig 2 and 3). The regression slopes and correlation coefficients were overall very similar for 368 

vascular plants and bryophytes. This was somewhat surprising given that these groups have 369 

quite different ecophysiological traits and it could be expected that the distribution of vascular 370 

plants would be mostly influenced by growing degree days while the distribution of 371 

bryophytes is more influenced by maximum temperatures, affecting moisture conditions 372 

(Dynesius et al. 2009; Gotsch et al. 2017). The reproduction of bryophytes is facilitated by 373 

water and the poikilohydric state of bryophytes causes them to easily dry up (Proctor, 2009). 374 

In particular, many forest bryophytes are likely to be favoured by moist conditions (Hylander 375 
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et al., 2005; Gotsch et al. 2017). Higher incoming solar radiation, and thus warmer maximum 376 

temperature, might lead to shorter periods of net assimilation and reproduction due to drought 377 

(Hylander, 2005; Proctor, 2009). This is perhaps the reason for the somewhat colder 378 

maximum temperature optima at the landscape scale for bryophytes than for vascular plants 379 

(cf. Ratcliffe, 1968). The vascular plants in this study had somewhat higher values of growing 380 

degree days at the continental scale compared to bryophytes, which indicate the possible 381 

importance of a warm and long growing season for their performance. Yet, the only 382 

difference found between vascular plants and bryophyte correlations was a significant 383 

correlation of minimum temperature optima between landscape and continental scales for 384 

vascular plants that was not detected for bryophytes. Thus, even if most vascular plants are 385 

under the snow in the winter it seems like the southern species still to some extent have a 386 

higher chance of finding a suitable site in places with mild winter conditions. It would be 387 

interesting to find out to what extent there is a stronger co-occurrence pattern of southern 388 

vascular plants than southern bryophytes in the rare type of places with a combination of 389 

warm long summers and mild winters in the focal landscape.  390 

In conclusion, the correlations between landscape optima and optima at larger spatial 391 

extents suggest that there is sufficient climatic variation also in topographic heterogeneous 392 

landscapes for the distribution of sessile species to be regulated by climate (Scherrer and 393 

Körner, 2011; Ashcroft and Gollan, 2012; Meineri et al., 2015). In our study system, optima 394 

of maximum temperature had relatively strong correlations between the scales, while optima 395 

for minimum temperature were correlated for vascular plants but not bryophytes. We may 396 

thus to some extent infer the drivers of distributions of species at larger spatial extents by 397 

studying landscape climatic optima, and vice versa. However, the fact that the strength of 398 

correlations differed between the three examined temperature variables suggest that it is not 399 

possible to routinely upscale or downscale species distributions across geographical extents. 400 
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Figures 611 

 612 

 613 

Figure 1 a) Location of the focal landscape with the 49 inventoried sites in the middle of 614 

Sweden between the latitudes 62°50’ and 63°12’ N. The national data was for the whole of 615 

Sweden (small map in the left of the panel) b) The location of the continental area in Europe. 616 

Background overview maps, © Lantmäteriet Gävle 2014 I2014/00691.  617 

618 
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 620 

Figure 2. The correlations between landscape versus national climatic optima (a-c) and 621 

landscape versus continental climatic optima (d-f) of all species for the three temperature 622 

variables growing degree days GDD5, maximum temperature Tmax °C, and minimum 623 

temperature Tmin °C., respectively. A major axis type II regression is projected on significant 624 

correlations p<0.05 with corresponding r-values. Note that the ranges on the axes as well as 625 

the metrics are different in the different data sets (see methods). 626 
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 629 

 630 

Figure 3. The correlations between landscape and continental climatic optima of (a-c) 631 

bryophytes and (d-f) vascular plants for the three temperature variables growing degree days 632 



 
 

30 
 

GDD5, maximum temperature Tmax °C and minimum temperature Tmin °C., respectively. 633 

Panels (g-l) show the same for correlations between landscape and national climatic optima. 634 

A major axis type II regression is projected on significant correlations p<0.05 with 635 

corresponding r-values. Note that the ranges on the axes as well as the metrics are different in 636 

the different data sets (see methods). 637 

638 



 
 

31 
 

  639 

 640 

Figure 4.  Variation in optima of growing degree days GDD5, maximum temperature Tmax 641 

°C and minimum temperature Tmin °C within three different scales a-c) landscape, d-f) 642 

national and g-i) continental scales. Bryophytes (96 species) are shown with green circles and 643 

vascular plants (50 species) with orange triangles. Boxplots indicate the median and variation 644 

for the optima of bryophytes grey and vascular plants light grey, where significant differences 645 

at P < 0.05 between the two groups are indicated with the symbols a–b. 646 
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