EXPONENTIALLY STABLE LINEAR TIME-VARYING DISCRETE BEHAVIORS
H Bourlès, B Marinescu, U Oberst

To cite this version:
H Bourlès, B Marinescu, U Oberst. EXPONENTIALLY STABLE LINEAR TIME-VARYING DISCRETE BEHAVIORS. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2015, 53 (5), pp.2725 - 2761. 10.1137/140988498. hal-02368005

HAL Id: hal-02368005
https://hal.archives-ouvertes.fr/hal-02368005
Submitted on 20 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Exponentially stable linear time-varying discrete behaviors

H. Bourlès*, B. Marinescu †, U. Oberst‡

September 13, 2015

Abstract

We study implicit systems of linear time-varying (LTV) difference equations with rational coefficients of arbitrary order and their solution spaces, called discrete LTV-behaviors. The signals are sequences, i.e. functions from the discrete time set of natural numbers into the complex numbers. The difference field of rational functions with complex coefficients gives rise to a noncommutative skew-polynomial algebra of difference operators that act on sequences via left shift. For this paper it is decisive that the ring of operators is a principal ideal domain and that nonzero rational functions have only finitely many poles and zeros and grow at most polynomially. Due to the poles a new definition of behaviors is required. For the latter we derive the important categorical duality between finitely generated left modules over the ring of operators and behaviors. The duality theorem implies the usual consequences for Willems’ elimination, the fundamental principle, input/output decompositions and controllability. The generalization to autonomous discrete LTV-behaviors of the standard definition of uniformly exponentially stable (u.e.s.) state space systems is unsuitable since u.e.s. is not preserved by behavior isomorphisms. We define exponentially stable (e.s.) discrete LTV-behaviors by a new analytic condition on its trajectories. These e.s. behaviors are autonomous and asymptotically stable. Our principal result states that e.s. behaviors form a Serre category, i.e., are closed under isomorphisms, subbehaviors, factor behaviors and extensions or, equivalently, that the series connection of two e.s. input/output behaviors is e.s. if and only the two blocks are. As corollaries we conclude various stability and instability results for autonomous behaviors. There is presently no algebraic characterization and test for e.s. of behaviors, but otherwise the results are constructive.

AMS-classification: 93D20, 93C55, 93C05
Key-words: exponential stability, discrete behavior, time-varying, duality

* SATIE, ENS Cachan/CNAM, 61 Avenue President Wilson, F-94230, Cachan, France. email: henri.bourles@satie.ens-cachan.fr
† École Centrale de Nantes, B.P. 92101, 1, rue de la Noé, FR-44321 Nantes Cedex 3, France. email: bogdan.marinescu@ircyn.ec-nantes.fr
‡ Institut für Mathematik, Universität Innsbruck, Technikerstrasse 13, A-6020 Innsbruck, Austria. email: ulrich.oberst@uibk.ac.at
1 Introduction

Stability theory for linear time-varying (LTV) discrete systems has been mainly developed for the discrete time set \(\mathbb{N} = \{ \text{natural numbers} \} \) and Kalman’s state space equations

\[
\begin{align*}
x(t + 1) &= A(t)x(t) + B(t)u(t), \quad y(t) = C(t)x(t) + D(t)u(t), \quad t \in \mathbb{N}, \\
x(t) &\in \mathbb{C}^n, \quad u(t) \in \mathbb{C}^m, \quad y(t) \in \mathbb{C}^p \text{ with matrices } A(t), B(t), C(t), D(t) \in \mathbb{C}^{\ell \times \ell}\end{align*}
\]

(1)
of suitable sizes. The complex field \(\mathbb{C} \) is often replaced by the real field \(\mathbb{R} \). We write \(\mathbb{C}^n := \mathbb{C}^{n \times 1} \) resp. \(\mathbb{C}^{1 \times n} \) for the space of column- resp. row-vectors. The vectors \(x(t), u(t) \text{ resp. } y(t) \) are the state, input resp. output at the time instant \(t \in \mathbb{N} \). If an initial time \(t_0 \), an initial state \(x(t_0) \) and an input \(\{u(t)\}_{t \geq t_0} \) are chosen all \(x(t) \) and \(y(t) \) for \(t \geq t_0 \) can be computed [25, (21) on p. 392] via

\[
x(t) = \Phi(t, t_0)x(t_0) + \sum_{i=t_0}^{t-1} \Phi(t, i + 1)B(i)u(i), \quad y(t) = C(t)x(t) + D(t)u(t),
\]

(2)
with \(\Phi(t, t_0) = A(t - 1) \cdots A(t_0) \).

For excellent surveys of the study of equations (1) and its history we refer to the books [25, Chs. 22-24, pp. 423-461] and [15, Ch. 3, pp. 193-368], cf. also [17].

In the present paper we treat higher order and implicit linear systems of difference equations with rational coefficients

\[
\sum_{j=0}^{d} R_{j}(t)w(t + j) = u(t), \quad t \geq n_0, \quad R_{j} \in \mathbb{C}(t)^{\ell \times \ell}, \quad w(t) \in \mathbb{C}^\ell, \quad u(t) \in \mathbb{C}^p,
\]

(3)
that may be homogeneous \((u = 0)\) or inhomogeneous \((u \neq 0)\). Here the entries of the \(R_{j} \) belong to the field \(\mathbb{C}(t) \) of rational functions in the indeterminate \(t \) and it is assumed that no \(t \geq n_0 \) is a pole of any \(R_{j} \) so that \(R_{j}(t) \in \mathbb{C}^{\ell \times \ell} \) for all \(t \geq n_0 \). For all \(n \geq n_0 \) we identify \(R_{j} = (R_{j}(t))_{t \geq n} \) and therefore use the same letter for the indeterminate and the time instants. For \(n \geq n_0 \) the interval \(n + \mathbb{N} = [n, \infty) := \{ t \in \mathbb{N} ; t \geq n \} \) is the time-set with initial time \(n \) and the space of sequences

\[
\mathbb{C}^{n + \mathbb{N}} = \{ a = (a(n), a(n + 1), \cdots) ; \forall t \geq n : a(t) \in \mathbb{C} \}
\]

(4)
is interpreted as the space of signals starting at time \(n \). We identify

\[
(\mathbb{C}^{\ell})^{n + \mathbb{N}} = (\mathbb{C}^{n + \mathbb{N}})^{\ell \times \ell} \ni X = (X_{ij})_{i \leq p, j \leq \ell} = (X(n), X(n + 1), \cdots),
\]

(5)
\[X_{ij} \in \mathbb{C}^{n + \mathbb{N}}, \quad X(t) \in \mathbb{C}^{\ell \times \ell}, \quad X_{ij}(t) = X(t)_{ij} \]
The homogeneous equations (3) give rise to the solution spaces or behaviors

\[
\forall n \geq n_0 : B(R, n) := \left\{ w \in (\mathbb{C}^{n + \mathbb{N}})^{\ell} ; \forall t \geq n : \sum_{j=0}^{d} R_{j}(t)w(t + j) = 0 \right\}.
\]

(6)

Stability theory of these solution spaces concerns the behavior of the trajectories \(w(t) \) for \(t \to \infty \).
Remark 1.1. We give some arguments for the suitability of $F := \mathbb{C}(t)$ as coefficient field. The case of periodic coefficients is not discussed here since it can be reduced to the LTI-theory.

(a) The following properties of F are decisive: (i) F is a field or, at least, a noetherian domain. (ii) If $a(t)$ belongs to F then so does $a(t + 1)$. (iii) For nonzero $a \in F$ there is $n \geq 0$ such that no $t \geq n$ is a pole or zero of a. (iv) A rational function grows at most polynomially.

(b) Rational functions have obvious advantages for numerical computations since they are given by finitely many numbers. They appear as Padé approximants of more general functions. They are often used in engineering models, cf. [2, (8.14), (8.15)], [27, Appendix].

Assume that F is a field or, at least, a noetherian domain. (ii) If F is a field with the properties (i)-(iv) [22, Ex. 1.2]. In item 7. of Section 4 and more detailed in [4] we describe another larger coefficient field with the properties (i)-(iv) of the coefficients by rational functions seems suitable.

Linearization of a nonlinear system in the neighborhood of a nominal trajectory leads to LTV-systems. Since this is only an approximation process the further approximation for

g(x)proximates C.

So arbitrary LTV-systems with continuous coefficient functions $f(t) = t^k g(t)$, $k \in \mathbb{Z}$, and existing $g(\infty)$ can be approximated for stability problems by the systems of this paper.

(c) For scalar state space systems $x(t + 1) = a(t)x(t)$ or, more generally, those of (1) one may choose arbitrary $a = (a(t))_{t \geq \tau_0} \in \mathbb{C}^{n+1}_{\tau_0}$ or A [25, p. 383]. It is surprising that Ehrenpreis’ fundamental principle holds for arbitrary discrete, even multidimensional behaviors with arbitrary varying coefficients [3, Thm. 2.1]. For the behavioral stability theory such general coefficients are not suitable. We explain this for the continuous case where the effects are clearer. So consider differential equations for smooth signals, the coefficient field of meromorphic coefficients [26], [16] and the differential equation $\cos^2(t)x'(t) - x(t) = 0$ with its solution $x(t) = c \exp(\tan(t))$. The infinitely many zeros $(n + 1/2)\pi, n \in \mathbb{Z}$, of $\cos^2(t)$ or poles of $\tan(t)$ are those time instants where the system explodes. There is no reasonable asymptotic behavior of this system. This suggests that the condition (iii) is essential for a reasonable stability theory. Due to these singularities the quoted authors, see also [2, §5.4.2.2], omit the generally infinite, discrete set of singularities from the time domain of the signals. This procedure, however, does not solve the problem because a time domain with infinitely many gaps is beyond engineering reality. Hence holomorphic or even continuous coefficients are suitable for the stability theory of state space systems [25], [15], [14], but not for that of general behaviors.

(d) Coefficient rings of smooth functions are neither domains nor noetherian in general and this is inherited by the associated rings of difference or differential operators. Algebraic properties of these rings are not known, a behavioral duality theory cannot be developed and there are no algebraic algorithms that are so important in the standard LTI (linear time-invariant) systems theories.

In contrast to the LTI-case and in analogy to, for instance, [25, Defs. 22.1, 22.5]
1 INTRODUCTION

the whole family \((\mathcal{B}(R, n))_{n \geq n_0}\) of behaviors and not just \(\mathcal{B}(R, n_0)\) has to be investigated where \(n_0\) depends on the equations. For the comparison of different systems of equations (3) we introduce the equivalence relation of the behavior families from (6) by

\[
(\mathcal{B}(R, n))_{n \geq n_0} \equiv (\mathcal{B}(R', n))_{n \geq n'_0} : \iff \\
\exists n_1 \geq \max(n_0, n'_0) \forall n \geq n_1 : \mathcal{B}(R, n) = \mathcal{B}(R', n).
\]

(7)

The equivalence class is denoted by \(cl((\mathcal{B}(R, n))_{n \geq n_0})\) (cl class, not for closure) and is called the behavior defined by (3), cf. Example 1.5.

Remark 1.2. To investigate \(cl((\mathcal{B}(R, n))_{n \geq n_0})\) for given equations (3) means to study \(\mathcal{B}(R, n)\) for \(n \geq n_1 \geq n_0\) where \(n_1\) is a possibly large initial time. The transient behavior of trajectories up to the time \(n_1\) is disregarded. This set-up is very suitable for stability questions where the limits \(\lim_{t \to \infty} w(t)\) play a dominant part.

Principal Results 1.3. We prove a module-behavior duality for the new behaviors. It implies the standard consequences for Willems’ elimination, the fundamental principle, input/output decompositions and controllability. We characterize autonomous behaviors and show that they are isomorphic to state space behaviors. Therefore the examples in [25] are typical also for the autonomous LTV-behaviors of this paper. We introduce a new notion of exponential stability (e.s.) of autonomous behaviors since uniform exponential stability (u.e.s.) [25, Def. 22.5] is not preserved by behavior isomorphisms (cf. [25, Thm. 6.15] and Example 3.2) and therefore unsuitable for the behavioral theory. We show that e.s. autonomous behaviors form a Serre subcategory of the category of all behaviors. As corollaries we prove various stability and instability results for autonomous behaviors.

Definition 1.4. A class of objects or a full subcategory \(\mathcal{E}\) of an abelian category \(\mathcal{C}\) is called a Serre subcategory if it is closed under isomorphisms, subobjects, factor objects and extensions.

We first introduce the operator algebra. The field \(\mathbb{C}(t)\) is a difference field with its natural automorphism \(\alpha\) defined by \(\alpha(h)(t) := h(t + 1)\) for \(h \in \mathbb{C}(t)\). It gives rise to the noncommutative skew-polynomial \(\mathbb{C}\)-algebra \(A\) in an indeterminate \(q\) [19, §1.2]:

\[
A := \mathbb{C}(t)[q; \alpha] = \oplus_{j \in \mathbb{N}} \mathbb{C}(t)q^j \ni f = \sum_{j \in \mathbb{N}} f_j q^j, \quad f_j \in \mathbb{C}(t),
\]

with the multiplication \((h_1 q^{j_1})(h_2 q^{j_2}) = h_1 \alpha^{j_1}(h_2) q^{j_1+j_2}\) for \(h_1, h_2 \in \mathbb{C}(t), \alpha^{j_1}(h_2)(t) = h_2(t + j_1), qh(t) = q(t + 1)q\).

(8)

The \(q^j, j \in \mathbb{N}\), are a \(\mathbb{C}(t)\)-basis of \(A\). By definition almost all (up to finitely many) coefficients \(f_j\) of \(f\) are zero. The algebra \(A\) is a left and right principal ideal domain and its finitely generated (f.g.) modules are precisely known [19, Thm. 1.2.9, §5.7, Cor. 5.7.19]. The category of left \(A\)-modules is denoted by \(A\)Mod. The category of f.g. left \(A\)-modules \(M\) with a given list of generators or, equivalently, a given representation \(M = A^{1 \times \ell}/U\) as factor module of a free module \(A^{1 \times \ell}\) by a submodule \(U\) and with the \(A\)-linear maps as morphisms is denoted by \(A\)Modf\(\phi\). Fliess [9], [10] calls a module \(M\) with the additional structure \(M = A^{1 \times \ell}/U\) a linear dynamic or (discrete LTV) system.

If the rows of \(R = \sum_{j \in \mathbb{N}} R_j q^j \in A^{p \times \ell},\ R_j \in \mathbb{C}(t)^{p \times \ell}\), generate \(U\), i.e., \(U = \)
A^{1 \times p} R$, and if no $t \geq n_0$ is a pole of any R_j we obtain the behaviors

\[
\forall n \geq n_0 : \quad B(R, n) = \left\{ w \in (\mathbb{C}^{n+N})^\ell ; \forall t \geq n : \sum_{j \in \mathbb{N}} R_j(t)w(t+j) = 0 \right\}
\]

and

\[
B(U) := \text{cl} (\{B(R, n)_{n \geq n_0}\}).
\]

Lemma 2.5 shows that $B(U)$ depends on U only and not on the special choice of R. We call $B(U)$ the behavior defined by U or associated to $A^{1 \times q}/U$, see Remark 1.2.

Example 1.5. Consider

\[
U := A_q = A(tq) \subset A, \quad \text{hence } B(A_q) = B(A(tq)), \quad \text{indeed}
\]

\[
\forall n \geq 1 : \quad B(q, n) = B(tq, n) = \{ w \in \mathbb{C}^{n+N} ; \forall k \geq n+1 : w(k) = 0 \}, \quad \text{but}
\]

\[
B(q, 0) = \{ w \in \mathbb{C}^N ; \forall k \geq 1 : w(k) = 0 \} \subseteq
\]

\[
B(tq, 0) = \{ w \in \mathbb{C}^N ; \forall k \geq 2 : w(k) = 0 \}.
\]

Also $B(A(t-2)^{-1}q) = B(A_q)$, but $B((t-2)^{-1}q, n)$ is not defined for $n \leq 2$. This motivates the introduction of the equivalence relation (7).

In Cor. and Def. 2.7 we extend the construction of $B(U)$ to a contravariant functor

\[
A^{1 \times \ell}/U \mapsto B(U),
\]

\[
(\varphi : A^{1 \times \ell}/U_1 \to A^{1 \times \ell}/U_2) \mapsto (B(\varphi) : B(U_2) \to B(U_1)), \quad (11)
\]

\[
\text{Hom}(B(U_2), B(U_1)) := \{ B(\varphi) ; \varphi : A^{1 \times \ell}/U_1 \to A^{1 \times \ell}/U_2 \}.
\]

Notice that no \mathbb{C}^{n+N} is canonically an A-module and that the behavior $B(U)$ is not of the form $\text{Hom}_A(A^{1 \times \ell}/U, W)$ for a natural signal module A^W.

Theorem 1.6. The functor (11) is a duality (contravariant equivalence). More precisely the following properties hold:

1. It transforms exact sequences of modules into exact sequences of behaviors.

2. For all $A^{1 \times \ell}/U_1, A^{1 \times \ell}/U_2 \in A^\text{Mod}_{fg}$ there is the A-linear isomorphism

\[
\text{Hom}_A(A^{1 \times \ell}/U_1, A^{1 \times \ell}/U_2) \cong \text{Hom}(B(U_2), B(U_1)), \quad \varphi \mapsto B(\varphi). \quad (12)
\]

3. For all $U_1, U_2 \subseteq A^{1 \times \ell}$:

\[
U_1 \subseteq U_2 \iff B(U_2) \subseteq B(U_1), \quad \text{especially } U_1 = U_2 \iff B(U_2) = B(U_1). \quad (13)
\]

The injectivity of the map (12) replaces the cogenerator property of the signal module $\mathbb{C}^{\mathbb{N}}$ in the standard discrete LTI-systems theory. Section 2 is devoted to the proof of Thm. 1.6 in several steps. The last step is contained in Cor. 2.12 where the injectivity of (12) is proven. The surjectivity holds by definition in (11).

The following definition of e.s. of $B(U)$ from (9) is justified by Lemma 3.7 and Example 3.2 that show that e.s. is preserved by behavior isomorphisms, but u.e.s. is not. A sequence $(\varphi(n))_{n \geq n_0} \in \mathbb{C}^{n_0+N}$ is called a sequence of at most polynomial growth (p.g.s.) if

\[
\exists c \geq 1 \exists m \in \mathbb{N} \forall n \geq n_0 : |\varphi(n)| \leq cn^m. \quad (14)
\]
This p.g.s. is called positive, \(\varphi > 0 \), if \(\varphi(n) > 0 \) for all \(n \geq n_0 \). On all finite-dimensional vector spaces \(\mathbb{C}^\ell \), \(\mathbb{C}^{1 \times \ell} \) we use the maximum norm
\[
\|v\| := \max \{|v_i|; \ i = 1, \ldots, \ell\}, \ v = (v_1, \ldots, v_\ell) \in \mathbb{C}^{1 \times \ell}.
\] (15)

Definition 1.7. The behavior \(B(U) \) from (9) is called **exponentially stable** if
\[
\exists n_1 \geq n_0 \exists d \in \mathbb{N} \exists \rho \text{ with } 0 < \rho < 1 \exists \text{ p.g.s. } \varphi \in \mathbb{C}^{n_1 + n} \text{ with } \varphi > 0
\]
\[
\forall t \geq n \geq n_1 \forall w \in B(R, n) : \|w(t)\| \leq \varphi(n)\rho^{t-n}\|w(n)\|
\] (16)
where \(x(n) := (w(n), \ldots, w(n + d - 1)) \).

It is called **uniformly exponentially stable** if \((\varphi(n))_{n \geq n_1} \) can be chosen constant.

An e.s. behavior \(B(U) \) is **asymptotically stable** in the sense that
\[
\forall n \geq n_1 \forall w \in B(R, n) : \lim_{t \to \infty} w(t) = 0.
\] (17)

Nonuniform e.s. state space systems with a nondecreasing factor \(\varphi(n) \) are also defined in [21, §3]. An e.s. behavior is always autonomous, but the trajectories \(w \) are not uniquely determined by \(w(n) \) alone, but only by the initial vector \(x(n) \). Therefore \(d \in \mathbb{N} \) is required. E.s. like u.e.s. are analytic properties of the trajectories \(w \) of the components \(B(R, n) \) of \(B(U) \) and are not defined by algebraic properties of the module \(A^{1 \times \ell}/U \). At present there is no algebraic characterization of the modules \(A^{1 \times \ell}/U \) with e.s. \(B(U) \) nor is there such a characterization of Rugh’s u.e.s. state space equations [25, Def. 22.5]. In the simplest case of state space equations \(x(t + 1) = Ax(t) \) with a constant matrix \(A \in \mathbb{C}^{n \times n} \), however, e.s. of the corresponding behavior means that \(A \) is asymptotically stable, i.e., that the spectrum \(\text{spec}(A) \), i.e., the set of eigenvalues of \(A \), belongs to the open unit disc \(\mathbb{D} := \{\lambda \in \mathbb{C}; |\lambda| < 1\} \). More generally, an autonomous LTI-behavior is asymptotically stable if and only if it is e.s. in the sense of this paper.

Theorem 1.8. The exponentially stable behaviors form a Serre subcategory of the category of all LTV-behaviors. This means that for an exact sequence of modules and its dual exact behavior sequence
\[
\begin{align*}
0 & \to A^{1 \times \ell_1}/U_1 \xrightarrow{x} A^{1 \times \ell_2}/U_2 \xrightarrow{y} A^{1 \times \ell_3}/U_3 \to 0 \\
0 & \leftarrow B(U_1) \xleftarrow{\xi(x)} B(U_2) \xleftarrow{\xi(y)} B(U_3) \leftarrow 0
\end{align*}
\] (18)
the behavior \(B(U_2) \) is e.s. if and only if \(B(U_1) \) and \(B(U_3) \) are e.s..

Corollary 1.9. The series interconnection of two input/output behaviors is e.s. if and only if both building blocks are (cf. Section 4, item 5).

Thm. 1.8 and Cor. 1.9 are equivalent in the sense that the theorem also follows easily from the corollary. Thm. 1.8 also holds for discrete LTI-behaviors where e.s. behaviors are defined as autonomous behaviors whose characteristic variety (= set of characteristic values) is contained in the open unit disc. The proof of the LTI-result is algebraic and much simpler than that of Thm. 1.8.

Due to [7], for instance, most results of this paper are constructive. However, there is presently no algorithm to check exponential stability in general. Continuous LTV-systems have been treated more often and in more detail, see, for instance, the books
2 LTV-SYSTEMS

[25] and [2] and the papers [12], [26], [14]. The Sections 2 resp. 3 are devoted to the proof of the main Theorems 1.6 resp. 1.8. In Section 2.5 we moreover characterize autonomous LTV-behaviors. The Sections 3.5 and 3.6 are devoted to various stability and instability results for autonomous behaviors. In particular we also discuss the existence and properties of quasi-poles of an autonomous behavior (cf. [2, §6.7.1]). In Section 4 we use the duality Thm. 1.6 to embed standard LTI-results into our LTV-framework and to derive LTV-analogues of Willems’ elimination, the fundamental principle, input/output decompositions and controllability. We refer to [2, Part 1, pp. 3-268] for algebraic background material.

Abbreviations

e.s. = exponentially stable, f.d. = finite-dimensional, f.g. = finitely generated, p.g.s. = sequence of at most polynomial growth, u.e.s. = uniformly e.s., w.l.o.g. = without loss of generality, $A^{*\cdot\cdot\cdot}$ = the set of matrices with entries in A of all (suitable) sizes.

2 LTV-systems

2.1 Complements of the basic data

We complete the general data of the Introduction.

Remark 2.1. The derivations of Section 2 hold for any base field instead of the complex field \mathbb{C}. The definition of e.s. needs analysis and therefore Section 3 can be carried out over the fields \mathbb{R} or \mathbb{C} only. The signals $w(t)$ are always functions of the real time variable t, but in this paper the values of the signals may be complex. Since $\mathbb{R} \subset \mathbb{C}$ the complex theory contains the real one. Equations like $e^{it} = \cos(t) + i\sin(t)$ and the complex eigenvalues of real matrices suggest to use complex coefficients and to use standard forward shift. As in (8) the difference ring $\mathbb{C}[t]$ is extended to an algebra endomorphism $\alpha : \mathbb{C}[n+1] \to \mathbb{C}[n+1]$ given as

\[(ab)(t) := a(t)b(t), \quad 1_{\mathbb{C}[n]} := (1, \cdots), \quad \alpha(a)(t) := a(t+1), \quad a, b \in \mathbb{C}[n], \quad t \geq n.\]

The endomorphism α is the standard forward shift. As in (8) the difference ring $(\mathbb{C}[n+1], \alpha)$ gives rise to the noncommutative skew-polynomial algebra $[19, \S 1.2.3]$.

\[B(n) := \mathbb{C}[n+1][q; \alpha] = \bigoplus_{j \in \mathbb{N}} \mathbb{C}[n+1]q^j \ni f = \sum_{j \in \mathbb{N}} f_j q^j, \]

\[(f, g_j)(q_j, g_j') = f_0 \alpha^i(g_j)(q^j), \quad f_i, g_j \in \mathbb{C}[n+1], \quad (\alpha^i(g))(t) = g(t+i).\]

The \mathbb{C}-algebra $B(n)$ is neither a domain nor noetherian and, in contrast to A, little is known about its algebraic properties and modules. There is the canonical action $f \circ w$ of $f = \sum_j f_j q^j \in B(n)$ on $w \in \mathbb{C}[n+1]$, defined by

\[(f \circ w)(t) := \sum_j f_j(t)w(t+j), \quad (q \circ w)(t) = w(t+1), \quad f \in B(n), \quad w \in \mathbb{C}[n+1].\]

It makes $\mathbb{C}[n+1]$ a $B(n)$-left module that is denoted by $B(n)\mathbb{C}[n+1]$. It is the most general natural signal module for discrete LTV-systems theory. The action \circ is extended to an
action of a matrix $R \in \mathbf{B}(n)^{p \times \ell}$ on a vector $w = (w_1, \cdots, w_\ell) \in (\mathbb{C}^{n+N})^\ell$ by

$$R = (R_{\mu, \nu})_{1 \leq \mu, \nu \leq p, 1 \leq \ell \leq \ell} = \sum_{j=0}^{d} R_j q^j \in \mathbf{B}(n)^{p \times \ell}, \quad R_{\mu, \nu} \in \mathbf{B}(n), \quad R_j \in (\mathbb{C}^{n+N})^{p \times \ell},$$

$$R \circ w := \left(\sum_{\nu=1}^{\ell} R_{\mu, \nu} \circ w_\nu \right)_{\mu = 1, \ldots, p} \in (\mathbb{C}^{n+N})^p,$$

$$\forall t \geq n : (R \circ w)(t) = \sum_j R_j(t)w(t + j). \tag{22}$$

Note that there is no action of A on \mathbb{C}^{n+N} since, for instance $(t-n)^{-1} \circ w, w \in \mathbb{C}^{n+N}, \text{ is not defined.}$

Recall the poles and zeros of a nonzero rational function $h \in \mathbb{C}(t)$: Write $h = f g^{-1}$, $f, g \in \mathbb{C}[t], \ f, g \neq 0$, with coprime f and g. A pole resp. a zero $z \in \mathbb{C}$ of h is characterized by

$$f(z) \neq 0, g(z) = 0, \quad h(z) := \infty \text{ resp. } f(z) = 0, g(z) \neq 0, \quad h(z) = 0. \tag{23}$$

is the open domain of definition of h as function. For almost all n (up to finitely many) the lattice $n + N$ is contained in $\text{dom}(h)$ and we identify

$$h \equiv \text{ident} \ (h(t))_{t \geq n} \in \mathbb{C}^{n+N}, \quad n + N \subseteq \text{dom}(h), \text{ since}$$

$$\forall n \in N \forall h_1, h_2 \in \mathbb{C}(t) \quad \text{with } n + N \subseteq \text{dom}(h_i), \quad i = 1, 2 :$$

$$(h_1 = h_2 \iff (h_1(t))_{t \geq n} = (h_2(t))_{t \geq n}). \tag{24}$$

For

$$R = \sum_j R_j q^j \in \mathbf{A}^{p \times \ell}, \quad R_j = (R_j_{\mu, \nu})_{1 \leq \mu, \nu \leq p, 1 \leq \ell \leq \ell} \in \mathbb{C}(t)^{p \times \ell}, \text{ define}$$

$$\text{dom}(R_j) := \bigcap_{\nu, \mu} \text{dom}(R_{j, \mu, \nu}), \quad \text{dom}(R) := \bigcap_j \text{dom}(R_j). \tag{25}$$

If $n_0 + N \subseteq \text{dom}(R)$ then

$$\forall n \geq n_0 : R_j \equiv \text{ident} \ (R_j(t))_{t \geq n} \in (\mathbb{C}^{n+N})^{p \times \ell}, \quad R = \sum_j R_j q^j \in \mathbf{B}(n)^{p \times \ell} \text{ and}$$

$$\mathcal{B}(R, n) \equiv \left\{ w \in (\mathbb{C}^{n+N})^\ell : R \circ w = 0 \right\}. \tag{26}$$

The last equation is the usual operator description of the behavior. The elements in $\mathbb{C} \setminus \text{dom}(R_j)$ resp. in $\mathbb{C} \setminus \text{dom}(R)$ are called the poles of R_j resp. of R. The behaviors $\mathcal{B}(R, n)$ are defined for all $n \geq n_0$ if and only if no $t \geq n_0$ is a pole of R. Since the ring $\mathbf{B}(n)$ is noncommutative the behavior $\mathcal{B}(R, n)$ is a C-space only and not a \mathbb{C}^{n+N} or $\mathbf{B}(n)$-module.

2.2 A directed system category

We formalize the equivalence relation from (7) in a more general situation with good algebraic properties and introduce a new category \mathcal{B}. The basic example for our approach is Example 2.2 below.
Consider \(\mathbb{N} \) as directed ordered set. A directed system over \(\mathbb{N} \) of \(\mathbb{C} \)-vector spaces is a countable family
\[
V = (V_i, g_i)_{i \in \mathbb{N}} = \left(V_0 \xrightarrow{g_0} V_1 \xrightarrow{g_1} V_2 \xrightarrow{g_2} \cdots \right)
\] (27)
of \(\mathbb{C} \)-spaces \(V_i \) and \(\mathbb{C} \)-linear maps \(g_i \). We identify a directed system \((V_i, g_i)_{i \geq n} \) with the longer system
\[
(V_i, g_i)_{i \geq n} = (V_i, g_i)_{i \geq 0} := \left(0 \to \cdots \to V_{n-1} \to V_n \xrightarrow{g_n} V_{n+1} \to \cdots \right)
\] (28)
A morphism from one such system to another is a family of \(\mathbb{C} \)-linear maps
\[
\Phi = (\Phi_i)_{i \in \mathbb{N}} : V = (V_i, g_i)_{i \in \mathbb{N}} \to V' = (V'_i, g'_i)_{i \in \mathbb{N}} \quad \text{with}
\forall i \in \mathbb{N} : \Phi_i : V_i \to V'_i, \quad \Phi_{i+1}g_i = g'_i\Phi_i.
\] (29)
The set \(\text{Hom}(V, V') \) of all these morphisms is naturally a \(\mathbb{C} \)-space. The composition of morphisms is, of course, the componentwise one and with this the directed systems form a category. It is abelian where kernels, cokernels etc. are formed componentwise. We form the new category \(\mathcal{B} \) as the quotient category of the direct system category modulo the following equivalence relation \(\equiv \):
\[
V = (V_i, g_i)_{i \in \mathbb{N}} \equiv V' = (V'_i, g'_i)_{i \in \mathbb{N}} \iff \exists n \forall i \geq n : V_i = V'_i, \; g_i = g'_i.
\] (30)

The equivalence class is denoted by \(\text{cl}(V) \). These \(\text{cl}(V) \) are the objects of \(\mathcal{B} \). With the identification from (28) we obtain
\[
\text{cl}((V_i, g_i)_{i \geq 0}) = \text{cl}((V_i, g_i)_{i \geq n})
\] (31)
The study of \(\text{cl}((V_i, g_i)_{i \geq n}) \) means that of \((V_i, g_i)_{i \geq n} \) for possibly large \(n \). For two objects \(\text{cl}((V_i, g_i)_{i \geq n_1}) \) and \(\text{cl}((V'_i, g'_i)_{i \geq n_2}) \) we consider direct system morphisms
\[
\Phi := (\Phi_i)_{i \geq n_1} : (V_i, g_i)_{i \geq n_1} \to (V'_i, g'_i)_{i \geq n_1},
\]
\[
\Psi := (\Psi_i)_{i \geq n_2} : (V_i, g_i)_{i \geq n_2} \to (V'_i, g'_i)_{i \geq n_2}
\] (32)
where \(n_1, n_2 \geq \max(n_0, n'_0) \) and define the equivalence relation
\[
\Phi \equiv \Psi : \iff \exists n \geq \max(n_1, n_2) \forall i \geq n : \Phi_i = \Psi_i.
\] (33)
The equivalence class is denoted by \(\text{cl}(\Phi) \). Then the set of morphisms from \(\text{cl}(V) \) to \(\text{cl}(V') \) is defined as
\[
\mathcal{B}(\text{cl}(V), \text{cl}(V')) := \text{Hom}(\text{cl}(V), \text{cl}(V')) := \{ \text{cl}(\Phi) ; \Phi = (\Phi_i)_{i \geq n} : (V_i, g_i)_{i \geq n} \to (V'_i, g'_i)_{i \geq n} \}.
\] (34)
With the componentwise \(\mathbb{C} \)-linear structure and composition we obtain the category \(\mathcal{B} \) of equivalence classes of directed systems. This is abelian too, kernels, cokernels and images being also formed componentwise.
Example 2.2. The signal spaces \mathbb{C}^{n+N}, $n \in \mathbb{N}$, give rise to the directed system

$$\left(\mathbb{C}^{0+N} \to \ldots \to \mathbb{C}^{n+N} \xrightarrow{\text{proj}_n} \mathbb{C}^{(n+1)+N} \xrightarrow{\text{proj}_{n+1}} \ldots \right)$$

where

$$\text{proj}_n : \mathbb{C}^{n+N} \to \mathbb{C}^{n+1+N}$$

and $w = (w(t))_{t \geq n} \mapsto w|_{n+1+N} := (w(t))_{t \geq n+1},$ \quad (35)

This directed system consists of \mathbb{C}-algebras and \mathbb{C}-algebra homomorphisms. Under the assumptions of (9) we obtain the subsystems

$$\mathcal{B}(R) := (B(R, n), \text{proj}_n)_{n \geq n_0} \subseteq ((\mathbb{C}^{n+N})^\ell, \text{proj}_n)_{n \geq n_0} \text{ and } \text{cl}(\mathcal{B}(R)) \subseteq \mathcal{W} = \text{cl}\left(((\mathbb{C}^{n+N})^\ell, \text{proj}_n)_{n \geq n_0} \right).$$ \quad (36)

Definition 2.3. The equivalence class $\text{cl}(\mathcal{B}(R))$ from (36) is called the LTV-behavior associated with the matrix $R \in A^{p \times \ell}$.

2.3 The functor $\text{Mod}^e_A \to \mathcal{B}$, $A^{1 \times q}/U \mapsto \mathcal{B}(U)$

We are going to show that in (9) the behavior $\mathcal{B}(U) \subseteq \mathcal{W}^\ell$ is well-defined and that the assignment $A^{1 \times q}/U \mapsto \mathcal{B}(U)$ from the objects of Mod^e_A to those of \mathcal{B} can be canonically extended to a functor $A^{\text{Mod}^e} \to \mathcal{B}$.

Assume the data from (9), i.e.,

$$R = \sum_j R_j q^j \in A^{p \times \ell}, \quad U = A^{1 \times p} R, \quad M = A^{1 \times \ell}/U, \quad n_0 + N \subseteq \text{dom}(R),$$

$$\forall n \geq n_0 : \mathcal{B}(R, n) := \left\{ w \in (\mathbb{C}^{n+N})^\ell ; \forall t \geq n : \sum_j R_j(t)w(t+j) = 0 \right\}.$$ \quad (37)

The behaviors $\mathcal{B}(R, n)$ require the knowledge of U, the knowledge of M alone does not determine the representation $M = A^{1 \times q}/U$. The standard basis $\delta = (\delta_1, \ldots, \delta_{\ell})^\top \in (A^{1 \times \ell})^\ell$ gives rise to the column

$$w = (w_1, \ldots, w_\ell)^\top \in M^\ell, \quad w_i := \delta_i + U,$$ \quad (38)

of generators of M. Conversely, the epimorphism

$$\varphi_w : A^{1 \times \ell} \to M, \quad \xi = \xi \delta \mapsto \xi w = \sum_{i=1}^{\ell} \xi_i w_i, \quad \text{with } \varphi_w(\delta_i) = w_i, \quad \ker(\varphi_w) = U,$$ \quad (39)

shows that the system of generators w of M determines both the dimension of $A^{1 \times \ell}$ and its submodule U. Therefore the category A^{Mod^e} of f.g. A-modules is defined as indicated in the Introduction: The objects of the category are pairs (M, w) of f.g. modules M with a given list w of generators or a given representation $M = A^{1 \times \ell}/U$. Notice that in $M = A^{1 \times \ell}/U$ a special system of generators of U, i.e., a representation $U = A^{1 \times p} R$ or finite presentation (=exact sequence)

$$A^{1 \times p} \xrightarrow{\phi_R} A^{1 \times \ell} \xrightarrow{\text{can}} M \to 0, \quad R \in A^{p \times \ell},$$ \quad (40)
is not assumed or part of the structure. A morphism \(\varphi : M = A^{1 \times \ell} / U \to M' = A^{1 \times \ell'} / U' \) is just an \(A \)-linear map without additional structure, i.e.,

\[
\text{Hom}(A^{1 \times \ell} / U, A^{1 \times \ell'} / U') := \text{Hom}_A(M, M'),
\]

and the composition of morphisms is also just that in \(\mathbf{A Mod} \). If \(w \) and \(w' \) are two lists of generators of a f.g. \(M \) of possibly different lengths then \((M, w) \) and \((M, w') \) are different objects in \(\mathbf{A Mod}^{\mathbf{fg}} \) and \(\text{id}_M : (M, w) \to (M, w') \) is an isomorphism, but not the identity. Exactness in \(\mathbf{A Mod}^{\mathbf{fg}} \) is defined as that in \(\mathbf{A Mod} \). A kernel of a map \(\varphi : (M, w) \to (M', w') \) is \((\ker(\varphi : M \to M'), k) \) where \(k \) is any generating system of \(\ker(\varphi) \). The category \(\mathbf{A Mod}^{\mathbf{fg}} \) is abelian and the kernel of a morphism is unique up to isomorphism as in any abstract abelian category.

Example 2.4. This example explains the structural necessity of \(w \) or \(U \) already in the LTI-theory.

\[
M := A = A_1 = A w_+ + A w_-, \ \ w_+ = 1 + q, \ \ w_- = 1 - q.
\]

\[
U_1 := \ker(A \to A_1) \ni 1 \mapsto 1 = 0,
\]

\[
U_2 := \ker(A^{1 \times 2} \to A, (\xi_+, \xi_-) \mapsto \xi_+ w_+ + \xi_- w_-) \ni (1 - q, 1 - q).
\]

Then \(B(U_1) \equiv B(U_2) \), but \(B(U_1) \not\equiv B(U_2) \) where

\[
W(n) = B(1, n) \equiv B((1 - q, 1 - q), n)
\]

\[
= \left\{ \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right) \in W(n)^2; \ w_1(t) - w_1(t + 1) - w_2(t) - w_2(t + 1) = 0 \right\},
\]

\[
w \leftrightarrow \left(\begin{array}{c} w_1 \\ w_2 \end{array} \right), \ \ w(t) = w_1(t) + w_1(t + 1) + w_2(t) - w_2(t + 1).
\]

Lemma 2.5. Assume a submodule \(U \subseteq A^{1 \times \ell} \), a matrix \(R \in A^{p \times \ell} \) with \(U = A^{1 \times p} R \) and the data from (37). Then the object

\[
B(U) := \text{cl}(\text{Hom}(R, n), \text{proj}_{n \geq n_0}) \in \mathfrak{B}
\]

depends on \(U \) only and not on the special choice of \(R \), and hence (9) is justified. Moreover \(U_1 \subseteq U_2 \) implies \(B(U_2) \subseteq B(U_1) \).

Proof. Assume that \(U_1 = A^{1 \times p_1} R_1 \subseteq U_2 = A^{1 \times p_2} R_2 \subseteq A^{1 \times \ell} \). Then there is a matrix \(X \in A^{p_1 \times p_2} \) such that \(R_1 = X R_2 \). Choose \(n_1 \geq n_0 \) such that \(n_1 + \mathbb{N} \subseteq \text{dom}(R_1) \cap \text{dom}(R_2) \cap \text{dom}(X) \). Then

\[
\forall n \geq n_1 : R_1 = X R_2 \in B(p_1 \times \ell)
\]

and

\[
B(R_2, n) := \left\{ w \in \left(\mathbb{C}^{n + \mathbb{N}} \right)^\ell; \ R_2 \circ w = 0 \right\} \subseteq B(R_1, n)
\]

\[
\implies \text{cl}(\text{Hom}(R_2, n), \text{proj}_{n \geq n_0}) = \text{cl}(\text{Hom}(R_1, n), \text{proj}_{n \geq n_0})
\]

\[
\subseteq \text{cl}(B(R_1, n), \text{proj}_{n \geq n_0}).
\]

If \(U_1 = U_2 \) the reverse inclusion follows likewise and implies the independence of \(B(U) \) in (44) of the choice of \(R \). Eq. (45) implies \(B(U_2) \subseteq B(U_1) \) if \(U_1 \subseteq U_2 \).

Next we extend the assignment \(A^{1 \times \ell} / U \mapsto B(U) \) to a contravariant functor. Let \(M_i = A^{1 \times \ell} / U_i, \ i = 1, 2 \), be two f.g. modules and \(\varphi : M_1 \to M_2 \) an \(A \)-linear map.
Since $A^{1 \times \ell_1}$ is free, φ can be embedded into various commutative diagrams with exact rows

$$
\begin{array}{ccc}
0 & \longrightarrow & U_1 \subseteq A^{1 \times \ell_1} \xrightarrow{\can_1} M_1 \longrightarrow 0 \\
0 & \longrightarrow & U_2 \subseteq A^{1 \times \ell_2} \xrightarrow{\can_2} M_2 \longrightarrow 0
\end{array}
$$

(46)

where $P \in A^{\ell_1 \times \ell_2}$, $U_1 P \subseteq U_2$, $\varphi(\xi + U_1) = \xi P + U_2$.

The following corollary is a standard result from module theory and follows easily from the diagram in (46). It was used by Cluzeau and Quadrat in systems theory [8].

Corollary 2.6. (i) The map $P \mapsto (\circ P)_{\Ind}$ induces the isomorphism

$$
\{ P \in A^{\ell_1 \times \ell_2}; \ U_1 P \subseteq U_2 \} / \{ P \in A^{\ell_1 \times \ell_2}; \ A^{1 \times \ell_1} P \subseteq U_2 \} \cong \Hom_A(M_1, M_2).
$$

(47)

(ii) The map $(\circ P)_{\Ind}$: $A^{1 \times \ell_1}/U_1 \rightarrow A^{1 \times \ell_2}/U_2$ is an isomorphism if and only if it is bijective or $(\circ P)_{\Ind}^{-1} = (\circ Q)_{\Ind}$: $A^{1 \times \ell_2}/U_2 \rightarrow A^{1 \times \ell_1}/U_1$ exists. The necessary and sufficient conditions for $Q \in A^{\ell_2 \times \ell_1}$ to satisfy $(\circ Q)_{\Ind} = (\circ P)_{\Ind}^{-1}$ are

$$
U_2 Q \subseteq U_1, \ A^{1 \times \ell_1}(PQ - \id_{\ell_1}) \subseteq U_1, \ A^{1 \times \ell_2}(QP - \id_{\ell_2}) \subseteq U_2.
$$

(48)

So the additional structure $M = A^{1 \times \ell}/U$ implies canonical matrix representations of the morphisms in \Mod^f_{\bg}, a fact that is well-known from f.d. vector spaces with given bases. For the data from (46) and (47) we additionally assume that $U_1 = A^{1 \times p_1} R_1$. The condition $A^{1 \times p_2} R_1 P = U_1 P \subseteq U_2 = A^{1 \times p_2} R_2$ implies the existence of $X \in A^{p_1 \times p_2}$ with $R_1 P = X R_2$. Again we choose n_1 sufficiently large such that $R_1, R_2, P, X \in B(n)^{\ast \ast \ast}$ for $n \geq n_1$. For $w \in B(R_2, n)$ this implies

$$
R_1 \circ (P \circ w) = X R_2 \circ w = X \circ (R_2 \circ w) = X \circ 0 = 0
$$

and hence

$$
P \circ : B(R_2, n) = \left\{ w \in (\mathbb{C}^{n+1})^{\ell_1}; \ R_2 \circ w = 0 \right\} \rightarrow B(R_1, n), \ w \mapsto P \circ w.
$$

(49)

Corollary 2.7. For an A-linear map

$$
\varphi = (\circ P)_{\Ind} : A^{1 \times \ell_1}/U_1 \rightarrow A^{1 \times \ell_2}/U_2 \text{ define}
$$

$$
P \circ : B(\varphi) := B((\circ P)_{\Ind}) := \cl((P \circ : B(R_2, n)) \rightarrow B(R_1, n))_{n \geq n_1} : B(U_2) = \cl((B(R_2, n), \proj_n)_{n \geq n_1}) \rightarrow B(U_1).
$$

Then $B(\varphi)$ is well-defined, i.e., independent of the choice of P, and the assignment

$$
\Mod^f_{\bg} \rightarrow \mathfrak{B}, \ A^{1 \times \ell}/U \mapsto B(U), \ \varphi = (\circ P)_{\Ind} \mapsto B(\varphi) = P \circ,
$$

(51)

is a contravariant additive functor.

Proof. Equation (49) implies $P \circ : B(U_2) \rightarrow B(U_1)$. If also $\varphi = (\circ P)_{\Ind}$ equation (47) implies $A^{1 \times \ell_1}(P_1 - P) \subseteq U_2 = A^{1 \times \ell_2} R_2$ or, equivalently, the existence of a matrix X such that $P_1 - P = X R_2$. For sufficiently large $n_2 \geq n_1$ this implies $P_1, X \in B(n)^{\ell_1 \times \ell_2}$ for $n \geq n_2$ and hence

$$
\forall w \in B(R_2, n) : \ P_1 \circ w = P \circ w + X \circ (R_2 \circ w) = P \circ w \implies P \circ = P_1 \circ.
$$

(52)

Thus $B(\varphi)$ is well-defined. The functorial property and the additivity of this assignment follow directly from the explicit construction of $B(U)$ and $B(\varphi)$, cf. the definition of the category \mathfrak{B} in Section 2.2. □
2 LTV-SYSTEMS

Remark 2.8. If \(AW \) is any signal module and \(M = \mathbb{A}^{1 \times \ell} / U, \) \(U = \mathbb{A}^{1 \times p} R \), then
\[
B_W(U) := U^+ := \{ w \in W^2; \ R \circ w = 0 \} \cong \text{Malgrange } \text{Hom}_A(M, W).
\]
(53)

This shows that \(B(U) \) is the analogue of \(\text{Hom}_A(M, W) \) in standard behavioral systems theory, but \(B(U) \) is not of this form for a natural \(W \). Recall that \(AW \) is injective if and only if \(\text{Hom}_A(\cdot, W) \) is exact and a cogenerator if and only if
\[
\text{Hom}_A(M_1, M_2) \to \text{Hom}_C(\text{Hom}_A(M_2, W), \text{Hom}_A(M_1, W)), \ \varphi \mapsto \text{Hom}(\varphi, W),
\]
(54)
is a monomorphism for all \(M_1, M_2 \in \mathbb{A} \text{ Mod} \).

2.4 The exactness of \(\mathbb{A}^{1 \times \ell} / U \mapsto B(U) \)

In this section we prove the exactness of the functor \(\mathbb{A}^{1 \times \ell} / U \mapsto B(U) \). This is the analogue of the injectivity of the signal modules in the standard LTI-theory.

Consider f.g. modules \(M_i := \mathbb{A}^{1 \times \ell_i} / U_i \in \mathbb{A} \text{ Mod}^\text{fg} \), \(i = 1, 2, 3 \), and a sequence of \(\mathbb{A} \)-linear maps
\[
M_1 \xrightarrow{\varphi = (\alpha P)_{\text{ind}}} M_2 \xrightarrow{\psi = (\alpha Q)_{\text{ind}}} M_3, \ U_1 P \subseteq U_2, \ U_2 Q \subseteq U_3.
\]
(55)

Application of the functor \(\mathbb{A}^{1 \times \ell} / U \mapsto B(U) \) furnishes the sequence of behaviors
\[
B(U_1) \xrightarrow{B(\varphi) = P_0} B(U_2) \xrightarrow{B(\psi) = Q_0} B(U_3).
\]
(56)

First we prove that \(P_0 : B(U_2) \to B(U_1) \) is an epimorphism if \(\varphi = (\alpha P)_{\text{ind}} \) is injective. The simplest case is that \(\ell_1 = \ell_2 = 1, U_1 = U_2 = 0 \) \(\neq \) \(P = p_0 q^d + \cdots + P_d \) \(\in \mathbb{A} \) and \(P_d \neq 0 \). If \(n_0 \) is chosen such that no \(t \geq n_0 \) is a pole of any \(P_i \) or a zero of \(P_d \) then
\[
P_0 : \mathbb{C}^{n+N} = B(0, n) \to \mathbb{C}^{n+N} = B(0, n), \ w \mapsto P \circ w = \mathbf{u},\ n \geq n_0,
\]
with \((P \circ w)(t) = P_d(t)w(t) + P_{d-1}(t)w(t) + \cdots + P_0(t)w(t) = \mathbf{u}(t), \)
(57)
is surjective since the last equation can be solved inductively. Therefore
\[
P_0 : W = B(0) = \text{cl}((\mathbb{C}^{n+N})_{n \geq n_0}) \to W
\]
is an epimorphism. In the general case let \(\mathbf{w} = (w_1, \cdots, w_{\ell_1})^T \in M_1^{\ell_1} \) be the generating system of \(M_1 \). Then there is \(\mathbf{v} = (v_1, \cdots, v_{\ell_1})^T \in M_2^{\ell_2} \) such that
\[
M_2 = \sum_{i=1}^{\ell_1} \mathbb{A} \varphi(w_i) + \sum_{j=1}^{\ell} \mathbb{A} \mathbf{v}_j \implies M_2 = \mathbb{A}^{1 \times \ell_2} / U_2' \quad (59)
\]
where \(\ell_2 = \ell_1 + \ell, \ U_2' = \ker \left(\mathbb{A}^{1 \times (\ell_1 + \ell)} \to M_2, \ (\xi, \eta) \mapsto \varphi(\xi \mathbf{w}) + \eta \mathbf{v} \right). \)

We obtain a commutative diagram
\[
\begin{array}{ccc}
\mathbb{A}^{1 \times \ell_1} & \xrightarrow{\text{can}_1} & \mathbb{A}^{1 \times (\ell_1 + \ell)} \\
\text{can}_2 \downarrow & & \text{can}_2 \downarrow \\
M_1 = \mathbb{A}^{1 \times \ell_1} / U_1 & \xrightarrow{\varphi} & M_2 = \mathbb{A}^{1 \times (\ell_1 + \ell)} / U_2' \\
& \xrightarrow{\text{id}_{\mathbb{A}^{1 \times \ell_2}}} & M_2 = \mathbb{A}^{1 \times \ell_2} / U_2
\end{array}
\]
(60)
where \(Q \) is a suitable matrix that induces the identity isomorphism, i.e., \((\circ Q)_{\text{ind}} = \text{id}_{\ell_1} \), and therefore also the isomorphism \(Q : \mathcal{B}(\mathcal{U}_2) \cong \mathcal{B}(\mathcal{U}_1) \). It therefore suffices to prove that \((\text{id}_{\ell_1}, 0) : \mathcal{B}(\mathcal{U}_2') \to \mathcal{B}(\mathcal{U}_1) \) is an epimorphism, i.e., surjective for large \(\ell \). By induction on \(\ell \) we assume \(\ell = 1 \) wlog.

Lemma 2.9. \((\circ P)_{\text{ind}} : A^{1 \times \ell_1} / U_1 \to A^{1 \times (\ell_1 + 1)} / U_2 \) is injective then \(P : \mathcal{B}(\mathcal{U}_2) \to \mathcal{B}(\mathcal{U}_1) \) is an epimorphism.

Proof. By the preceding reduction steps we may assume that a special injective linear map

\[
(\circ \text{id}_{\ell_1}, 0)_{\text{ind}} : A^{1 \times \ell_1} / U_1 \to A^{1 \times (\ell_1 + 1)} / U_2
\]

is given. We have to show that

\[
(\text{id}_{\ell_1}, 0) = \text{proj} : \mathcal{B}(\mathcal{U}_2) \to \mathcal{B}(\mathcal{U}_1), \ w = (w_1, \ldots, w_\ell_1, w_\ell_1 + 1)^\top \mapsto (w_1, \ldots, w_\ell_1)^\top,
\]

is an epimorphism. Let

\[
U_2 = A^{p_2 \times (\ell_1 + 1)} R_2, \quad R_2 = (R_2', R_2'') \in A^{p_2 \times (\ell_1 + 1)}. \tag{64}
\]

Wlog we assume \(R_2'' \neq 0 \). Then \(\alpha := A^{1 \times p_2} R_2'' \) is a nonzero left ideal of \(A \) and cyclic of the form

\[
\alpha = Af, \quad 0 \neq f = f_0 q^d + \cdots + f_0 \in A, \ f_0 \neq 0, \text{ hence } R_2'' = Y_2 f, \ A^{1 \times p_2} Y_2 = A.
\]

The relation module

\[
K := \{ \xi \in A^{1 \times p_2}; \ M_2 = 0 \} = \{ \xi \in A; \ M_2 = 0 \} \subseteq A^{1 \times p_2}
\]

is free of dimension \(p_2 - 1 \). Let the rows of \(X_1 \in A^{(p_2 - 1) \times p_2} \) be a basis of \(K \). We obtain the exact sequence of free modules

\[
0 \to A^{1 \times (p_2 - 1)} \xrightarrow{X_1} A^{1 \times p_2} \xrightarrow{Y_2} A \to 0. \tag{65}
\]

In particular, \(X_1 \) is a universal left annihilator of \(R_2'' \) or \(Y_2 \). Standard arguments furnish a retraction \(Y_1 \in A^{p_2 \times (p_2 - 1)} \) of \(X_1 \) with \(X_1 Y_1 = \text{id}_{p_2 - 1} \) and a section \(X_2 \in A^{1 \times p_2} \) of \(Y_2 = X_2 Y_2 \) such that

\[
0 \leftarrow A^{1 \times (p_2 - 1)} \xleftarrow{Y_2} A^{1 \times p_2} \xleftarrow{X_2} A \leftarrow 0 \text{ is exact too and}
\]

\[
E_1 := Y_1 X_1 = E_1^2, \quad E_2 := Y_1 X_2 = E_2^2, \quad E_1 + E_2 = Y_1 X_1 + Y_2 X_2 = \text{id}_{p_2}.
\]

A simple computation yields

\[
U_1 = (\circ (\text{id}_{\ell_1}, 0)^{-1} (U_2)) = A^{1 \times (p_2 - 1)} R_1 \text{ with } R_1 := X_1 R_2' \in A^{(p_2 - 1) \times \ell_1} \quad \text{and} \quad R_2' = \text{id}_{p_2} R_2' = Y_1 X_1 R_2' + Y_2 X_2 R_2' = Y_1 R_1 + Y_2 X_2 R_2'. \tag{66}
\]

Choose \(n_0 \) such that none of the constructed matrices has a pole \(t \geq n_0 \) and that \(f_d(t) \neq 0 \) for \(t \geq n_0 \). Then

\[
\mathcal{B}(\mathcal{U}_2) = \text{cl} ((\mathcal{B}(\mathcal{R}_2, n))_{n \geq n_0}), \quad \mathcal{B}(\mathcal{U}_1) = \text{cl} ((\mathcal{B}(\mathcal{R}_1, n))_{n \geq n_0}),
\]

\((\text{id}_{\ell_1}, 0) : \mathcal{B}(\mathcal{U}_2) \to \mathcal{B}(\mathcal{U}_1), \forall n \geq n_0 : (\text{id}_{\ell_1}, 0) : \mathcal{B}(\mathcal{R}_2, n) \to \mathcal{B}(\mathcal{R}_1, n). \tag{68}
\]
As usual choose \(B \). Hence it remains to show that \(\text{surjectivity of} \quad R_1 \circ v = X_1 R_2' \circ v = 0 \), (69)

\[
R_1 \circ v = Y_1 R_1 \circ v + Y_2 X_2 R_2' \circ v = Y_2 X_2 R_2' \circ v = Y_2 \circ (X_2 R_2' \circ v).
\]

According to (57) there is an \(u \in \mathbb{C}^{n+N} \) with \(f \circ u = X_2 R_2' \circ v \). We infer

\[
R_2 \circ v = R_2' \circ (v_1, \ldots, v_{\ell_1})^T = Y_2 \circ f \circ u = Y_2 f \circ u = R_2' \circ u
\]

\[
\implies R_2 \circ (v_1, \ldots, v_{\ell_1}, -u)^T = (R_2', R_2') \circ (v_1, \ldots, v_{\ell_1}, -u)^T = R_2' \circ v - R_2' \circ u = 0
\]

\[
\implies (v_1, \ldots, v_{\ell_1}, -u)^T \in B(R_2, n).
\]

As required we have thus shown the surjectivity of

\[
(id_{\ell_1}, 0) : B(R_2, n) \to B(R_1, n), \quad (v_1, \ldots, v_{\ell_1}, -u)^T \mapsto v.
\]

Theorem 2.10. The functor

\[
\mathbf{A} \text{Mod}^{f_k} \to \mathcal{B}, \quad M = \mathbf{A}^{1 \times \ell} / U \mapsto B(U),
\]

is exact, i.e., (56) is exact if (55) is exact.

Proof. The exactness of (55) implies

\[
U'_3 := (\circ Q)^{-1}(U_3) = \mathbf{A}^{1 \times \ell_1} P + U_2
\]

\[
\implies \mathbf{A}^{1 \times \ell_1} / U_1 \xrightarrow{(\circ \text{id}_2) \text{ind}} \mathbf{A}^{1 \times \ell_2} / U_2 \xrightarrow{\circ \text{id}_2 \text{ind}} \mathbf{A}^{1 \times \ell_3} / U_3
\]

is exact and \(\psi \) factorizes as

\[
\psi = (\circ Q) \text{ind} : \mathbf{A}^{1 \times \ell_3} / U_2 \xrightarrow{(\circ \text{id}_2) \text{ind}} \mathbf{A}^{1 \times \ell_2} / U_2 \xrightarrow{\circ Q \text{ind}} \mathbf{A}^{1 \times \ell_3} / U_3
\]

\[
\implies Q \circ : B(U_3) \xrightarrow{Q \circ} B(U'_3) \subseteq B(U_2).
\]

But

\[
\mathbf{A}^{1 \times \ell_3} / U_2 \xrightarrow{\text{ind}^2} \mathbf{A}^{1 \times \ell_3} / U_3 \text{ is injective}
\]

\[
\implies Q \circ : B(U_3) \xrightarrow{Q \circ} B(U'_3) \text{ is an epimorphism}
\]

\[
\implies \text{im} (Q \circ : B(U_3) \to B(U_2)) = B(U'_3).
\]

Hence it remains to show that \(B(U'_3) = \ker (P \circ : B(U_2) \to B(U_1)) \). Let

\[
U_2 = \mathbf{A}^{1 \times p_2} R_2 \implies U'_3 = \mathbf{A}^{1 \times \ell_1} P + \mathbf{A}^{1 \times p_2} R_2 = \mathbf{A}^{1 \times (\ell_1 + p_2)} (P, R_2).
\]

As usual choose \(n_0 \) such that none of the constructed matrices has a pole \(t \geq n_0 \). Then

\[
B(U_2) = \text{cl} \left(\left(B(R_2, n) \right)_{n \geq n_0} \right), \quad B(U'_3) = \text{cl} \left(\left(B((P, R_2), n) \right)_{n \geq n_0} \right)
\]

\[
\forall n \geq n_0 : B(R_2, n) = \{ w \in (C^{n+N})_{\ell_2} : R_2 \circ w = 0 \} ,
\]

\[
\forall n \geq n_0 : B((P, R_2), n) = \{ w \in (C^{n+N})_{\ell_2} : R_2 \circ w = 0, \ P \circ w = 0 \} = \ker (P \circ : B(R_2, n) \to (C^{n+N})_{\ell_1})
\]

\[
\implies B(U'_3) = \text{cl} \left(B((P, R_2), n) \right) = \ker (P \circ : B(U_2) \to B(U_1)) .
\]

\(\square \)
2.5 Autonomous behaviors

We prove the analogue of the cogenerator property of the standard signal modules for the behaviors of this paper and simultaneously characterize autonomous behaviors.

A finitely generated A-module $M_1 = A^{1 \times \ell_1} / U_1 = A^{1 \times \ell_1} / A^{1 \times p_1} R_1$ is isomorphic to a direct sum of cyclic modules [19, Cor. 5.7.19]. Hence there is an isomorphism

$$M_1 = A^{1 \times \ell_1} / U_1 \cong A / A f_1 \times \cdots \times A / A f_r \times A^{1 \times (\ell_2 - r)} = A^{1 \times \ell_2} / U_2 =: M_2$$

where $r \geq 0$, $f_i \in A$, $\deg_q(f_i) > 0$, $U_2 = A^{1 \times \ell_2} R_2$,

$$R_2 = \text{diag}(f_1, \cdots, f_r, 0, \cdots, 0) \in A^{\ell_2 \times \ell_2}.$$ \hfill (72)

A special matrix R_2 is called the Jacobson/Smith/Teichmüller/Nakayama-form of R_1 and is computed with the help of euclidean division that is applicable in A and makes it a euclidean ring. If $R_1 \in \mathbb{Q}(t)[q; \alpha]^{p_1 \times \ell_1} \subset A^{p_1 \times \ell_1} = \mathbb{C}(t)[q; \alpha]^{p_1 \times \ell_1}$ then R_2 and thus the f_i can be computed with the the Jacobson package of [7]. The functor $A^{1 \times \ell} / U \mapsto B(U)$ is applied to the first line of (72) and implies the isomorphism

$$B(U_1) \cong B(U_2) = B(A f_1) \times \cdots \times B(A f_r) \times W^{\ell_2 - r}$$

where $W = B(0) = \text{cl} \left(\cdots \mathbb{C}^{n+N} \xrightarrow{\text{proj}} \mathbb{C}^{n+1+N} \to \cdots \right).$ \hfill (73)

The systems $B(A f_j)$ are particularly simple: Consider, more generally, any

$$g = g_d q^d + \cdots + g_0 \in A, \quad \deg_q(g) = d, \quad \text{i.e., } g_d \neq 0$$

$$\implies \mathbb{C}(t)^{1 \times d} \cong A / A g, \quad (a_0, \cdots, a_{d-1}) \mapsto \sum_{i=0}^{d-1} a_i q^i + A g, \quad a_i \in \mathbb{C}(t),$$ \hfill (74)

$$\implies d = \dim_{\mathbb{C}(t)}(A / A g) < \infty.$$

The preceding isomorphism follows via euclidean division. Choose n_0 such that no $t \geq n_0$ is a pole of any g_i or a zero of g_d. For all $n \geq n_0$ we obtain the isomorphisms

$$B(g, n) = \left\{ w \in \mathbb{C}^{n+N}; \forall t \geq n : g_d(t) w(t + d) + \cdots + g_0(t) w(t) = 0 \right\} \cong \mathbb{C}^d$$

$$w \mapsto (w(0), \cdots, w(d-1))^T.$$ \hfill (75)

We conclude

$$\forall n \geq n_0 : \dim_{\mathbb{C}}(B(g, n)) = d$$

$$B(A g) = \text{cl} ((B(g, n))_{n \geq n_0}) = 0 \iff d = 0.$$ \hfill (76)

Theorem 2.11. If $M_1 = A^{1 \times \ell_1} / U_1$ is nonzero then so is $B(U_1)$.

Proof. In (73) W is nonzero and so are the behaviors $B(A f_j)$ of \mathbb{C}-dimension $\deg_q(f_j) > 0$. Hence $B(U_1)$ is zero if and only if $\ell_2 = 0$. Equation (72) implies likewise that $M_1 = 0$ if and only if $\ell_2 = 0$. \hfill \square

Corollary 2.12. For $M_i = A^{1 \times \ell_i} / U_i$, $i = 1, 2$, the \mathbb{C}-linear map

$$\text{Hom}_A(M_1, M_2) \rightarrow B(B(U_2), B(U_1)), \quad \varphi = (\alpha P)_{\text{ind}} \mapsto B(\varphi) = P \circ ,$$ \hfill (77)

is injective, and therefore

$$\text{Hom}_A(M_1, M_2) \cong \text{Hom}(B(U_2), B(U_1)) := \{ B(\varphi) : \varphi : M_1 \rightarrow M_2 \}.$$ \hfill (78)
Therefore the exact functor $\mathbf{A}^{\text{Mod}}_{\mathbf{g}} \to \mathfrak{B}$, $\mathbf{A}^{1 \times \ell}/U \mapsto \mathcal{B}(U)$, induces a duality between $\mathbf{A}^{\text{Mod}}_{\mathbf{g}}$ and the subcategory $\{\text{LTV-behaviors}\}$ of \mathcal{B} whose objects are the behaviors and whose morphisms are the behavior morphisms $\mathcal{B}(\varphi)$. The proof of Thm. 1.6 is thus complete.

Proof. Let $\varphi : M_1 = \mathbf{A}^{1 \times \ell_1}/U_1 \to M_2 = \mathbf{A}^{1 \times \ell_2}/U_2$ and $B(\varphi) = 0$. The linear map φ can be factorized as

$$M_1 \xrightarrow{\varphi_1} M_3 = \mathbf{A}^{1 \times \ell_3}/U_3 \xrightarrow{\varphi_2} M_2, \quad \varphi = \varphi_2 \varphi_1,$$

where φ_1 is an epimorphism and φ_2 a monomorphism. This factorization is obtained by the corresponding one in \mathbf{A}^{Mod} with $M_3 := \varphi(M_1)$ and by the choice of a list w_3 of generators of M_3 that induces the representation $M_3 = \mathbf{A}^{1 \times \ell_3}/U_3$. This factorization implies $0 = B(\varphi) = B(\varphi_1)B(\varphi_2)$ with an epimorphism $B(\varphi_2)$ and a monomorphism $B(\varphi_1)$ since $\mathbf{A}^{1 \times \ell}/U \mapsto \mathcal{B}(U)$ is exact. We infer $B(U_3) = 0$, hence $M_3 = 0$ by Thm. 2.11 and $\varphi = 0$.

The torsion submodule $\text{tor}(M)$ of M is the set of all elements $x \in M$ that are annihilated by some nonzero $g \in \mathbf{A}$ ($gx = 0$). The isomorphism (72) then implies the isomorphisms

$$\text{tor}(M_1) \cong \text{tor}(M_2) = \bigoplus_{j=1}^r \mathbf{A}/\mathbf{A}f_j \cong \mathbb{C}(t)^{1 \times d}, \quad d := \sum_{j=1}^r \deg(f_j),$$

$$M_1/\text{tor}(M_1) \cong M_2/\text{tor}(M_2) \cong \mathbf{A}^{\ell_2 - r}.$$ \hfill (79)

The module M_1 is called torsion (adjective) or a torsion module if $M_1 = \text{tor}(M_1)$ and torsionfree if $\text{tor}(M_1) = 0$. In the latter case $M_1 \cong \mathbf{A}^{\ell_2 - r}$ is free.

Since \mathbf{A} is a noetherian domain it has the quotient skew-field $[19, \text{Thm. 2.1.15}]$

$$K := \text{quot}(\mathbf{A}) := \{a^{-1}b; \, a, b \in \mathbf{A}, \, a \neq 0\} = \{ba^{-1}; \, a, b \in \mathbf{A}, \, a \neq 0\} \supset \mathbf{A}. \quad (80)$$

The rank of a matrix $R \in K^{k \times \ell}$ is defined by

$$\text{rank}(R) = \dim (\mathbf{K}(K^{1 \times k}R)) = \dim ((RK^{\ell})_{\mathbf{K}}) \quad (81)$$

where the row space resp. column space of R are a left resp. a right \mathbf{K}-space. For $R \in K^{k \times \ell}$, $U := \mathbf{A}^{1 \times k}U$ and $M := \mathbf{A}^{1 \times \ell}/U$ there is also the quotient module

$$\mathbf{K} \otimes_{\mathbf{A}} M \cong \{a^{-1}x; \, 0 \neq a \in \mathbf{A}, \, x \in M\} = K^{1 \times \ell}/KU, \quad x = \xi + U, \quad \xi \in \mathbf{A}^{1 \times \ell} \subset K^{1 \times \ell}, \quad a^{-1}x = a^{-1} \otimes x = a^{-1}\xi + KU. \quad (82)$$

The canonical map can : $M \to \mathbf{K} \otimes_{\mathbf{A}} M$, $x \mapsto 1 \otimes x$, has the kernel $\text{tor}(M)$. The rank of M is defined by

$$\text{rank}(M) := \dim_{\mathbf{K}}(\mathbf{K} \otimes_{\mathbf{A}} M), \quad \text{hence} \quad \text{rank}(R) = \dim((\mathbf{A}U) = \dim(\mathbf{K}KU) \quad \text{and} \quad \text{rank}(R) + \text{rank}(M) = \ell. \quad (83)$$

Lemma 2.13. For the data of (72) and (73) the following properties are equivalent for the module $M_1 = \mathbf{A}^{1 \times \ell_1}/U_1$, $U_1 = \mathbf{A}^{1 \times \nu_1}R_1$, and behavior $\mathcal{B}(U_1) = \text{cl}(((\mathcal{B}(R_1, n)))_{n \geq n_0})$:
(i) \(\text{rank}(M_1) = 0\) or \(\text{rank}(R_1) = \ell_1\).

(ii) \(M_1\) is a torsion module.

(iii) \(d := \dim_{\mathbb{C}(\ell)}(M_1) < \infty\).

(iv) There are \(n_0, d \in \mathbb{N}\) such that \(\forall n \geq n_0 : \dim_{\mathbb{C}}(B(R_1, n)) = d\).

Proof. (i) \(\iff\) (ii): obvious. (ii) \(\iff\) (iii): (79) with \(d = \sum_{j=1}^{r} \deg_q(f_j)\).

(iii) \(\iff\) (iv): For sufficiently large \(n_0\) and \(n \geq n_0\) we have

\[
B(R_1, n) \cong B(R_2, n) = B(f_1, n) \times \cdots \times B(f_r, n) \times B(0, n)^{q_2-r},
\]

\[
\dim_{\mathbb{C}}(B(f_1, n) \times \cdots \times B(f_r, n)) = \sum_{j=1}^{r} \deg_q(f_j) = d, \quad \text{but} \quad \dim_{\mathbb{C}}(B(0, n)) = \infty.
\]

(84)

\[\square\]

Definition 2.14. If the conditions of Lemma 2.13 are satisfied the behavior \(B(U_1)\) is called autonomous.

Definition 2.15. Consider a f.g. module \(M = A^{1 \times \ell}/U\) with \(U = A^{1 \times p} R, R \in A^{p \times \ell}, n_0 + N \subseteq \text{dom}(R)\) and the associated behaviors

\[
\forall n \geq n_0 : B(R, n) := \begin{cases} w \in (\mathbb{C}^{n+N})^\ell ; \forall t \geq n : \sum_{j=0}^{k} R_j(t)w(t+j) = 0 \end{cases},
\]

\[
B(U) = \text{cl}((B(R, n))_{n \geq n_0}).
\]

The behavior \(B(U)\) is called trajectory-autonomous (t-autonomous) of memory size \(d\) if there are \(n_1 \geq n_0\) and \(d \in \mathbb{N}\) such that

\[
\forall n \geq n_1 : B(R, n) \to \mathbb{C}^{d_q}, \ w \mapsto (w(n), \cdots, w(n+d-1)),
\]

is injective, (86) but not necessarily bijective. This means that for sufficiently large \(n\) all trajectories \(w \in B(R, n)\) with initial time \(n\) are uniquely determined by the initial data \(x(n) := (w(n), \cdots, w(n+d-1))\). The number \(d\) is obviously not unique.

Corollary 2.16. The behaviors \(B(A_{f_1})\) from (74) resp. \(B(A_{f_1}) \times \cdots \times B(A_{f_r})\) from (73) are obviously t-autonomous of memory sizes

\[
\deg_q(g) \text{ resp. } \max \{\deg_q(f_j) ; j = 1, \cdots, r\}.
\]

(87)

Lemma 2.17. Trajectory-autonomy is preserved by isomorphisms.

Proof. Consider two isomorphic f.g. modules and their associated isomorphic behaviors (cf. Cor. 2.6):

\[
M_i := A^{1 \times \ell_i}/U_i, \ U_i = A^{1 \times p_i} R_i, R_i \in A^{p_i \times \ell_i}, \ \varphi = (\circ P)_{\text{ind}} : M_1 \cong M_2, \ B(\varphi) : B(U_2) \cong B(U_1).
\]

(88)
Let \(P = \sum_{i=0}^{k} P_2 q^i \). Assume that \(\mathcal{B}(U_1) \) is \(t \)-autonomous with memory size \(d_1 \) and define \(d_2 := d_1 + k \). There is an \(n_1 \) such that
\[
\forall n \geq n_1 : P_0 : \mathcal{B}(R_2, n) \cong \mathcal{B}(R_1, n), \ w_2 \mapsto w_1 := P \circ w_2,
\]
and \(\forall t \geq n \geq n_1 : w_1(t) = \sum_{j=0}^{k} P_j(t) w_2(t + j) \), especially
\[
\forall i = 0, \cdots, d_1 - 1 : w_1(n+i) = \sum_{j=0}^{k} P_j(n+i) w_2(n+j).
\]

If \(0 \leq i \leq d_1 - 1 \) and \(0 \leq j \leq k \) then \(n \leq n+i+j \leq n+d_1-1+k = n+d_2-1 \). If \(w_2(n) = \cdots = w_2(n+d_2-1) = 0 \) then \(w_1(n) = \cdots = w_1(n+d_1-1) \). Since \(\mathcal{B}(U_1) \) has memory size \(d_1 \) this implies \(w_1 = 0 \) and hence \(w_2 = 0 \) since \(P_0 \) in (89) is bijective. We conclude that \(\mathcal{B}(U_2) \) has memory size \(d_2 \).

Theorem 2.18. A behavior \(\mathcal{B}(U_1) \) is \(t \)-autonomous if and only if it is autonomous.

Proof. This follows directly from the isomorphism (73) and the preceding lemma since \(\mathcal{B}(A_{f_1}) \times \cdots \times \mathcal{B}(A_{f_r}) \) is \(t \)-autonomous according to Cor. 2.16, but \(W = \mathcal{B}(0) \) is obviously not.

3 Exponentially stable (e.s.) behaviors

The main goal of Section 3 is the proof of Thm. 1.8.

3.1 Exponential stability for state space behaviors

We first recall the notion of uniform exponential stability for state space systems. We endow all \(\mathbb{C}^\ell \), \(\ell \geq 0 \), and matrix spaces \(\mathbb{C}^{\ell \times \ell} \) with the maximum norm
\[
\forall v = (v_1, \cdots, v_\ell) \in \mathbb{C}^{\ell} : \|v\| := \max \{|v_i|; 1 \leq i \leq \ell\},
\]
\[
\forall A \in \mathbb{C}^{\ell \times \ell} : \|A\| := \max \{|Av|; v \in \mathbb{C}^{\ell}, \|v\| = 1\},
\]
and hence \(\forall v \in \mathbb{C}^{\ell} : \|Av\| \leq \|A\| \|v\| \).

Definition 3.1. (cf. [25, Def. 22.5], (2)) A state space system
\[
w(t+1) = A(t)w(t), \ A \in (\mathbb{C}^{n_0+N})^{\ell \times \ell}, \ \text{or}
\]
\[
\forall t \geq n \geq n_0 : w(t) = \Phi(t,n)w(n), \ \Phi(t,n) := A(t-1) \cdots A(n),
\]
is called uniformly exponentially stable (u.e.s.) if
\[
\exists c \geq 1, \exists \rho \in \mathbb{R} \text{ with } 0 < \rho < 1, \forall t \geq n \geq n_0 \forall w \in \mathcal{B}(\text{id}_\ell q - A, n) : \|w(t)\| \leq c\rho^{t-n} \|w(n)\| \text{ or, equivalently, } \|\Phi(t,n)\| \leq c\rho^{t-n}.
\]

Notice that Rugh [25] admits arbitrary \(A \in (\mathbb{C}^{n_0+N})^{\ell \times \ell} \) (mostly \(n_0 = 0 \)), hence \(\text{id}_\ell q - A \in \mathcal{B}(n_0)^{\ell \times \ell} \) (cf. 20). The behavioral theory of this paper cannot be extended from the field \(\mathbb{C}^{(t)} \) to the nonnoetherian ring \(\mathbb{C}^{(t)} \) with many zero-divisors. The following example shows that u.e.s. is not preserved by behavior isomorphisms and is therefore unsuitable for the behavioral LTV-theory of this paper.
Example 3.2. Let
\[\ell := 2, \quad A := \begin{pmatrix} \rho_1 & 0 \\ 0 & \rho_2 \end{pmatrix}, \quad 0 < \rho_1 < \rho_2 < 1, \quad R := q \text{id}_2 - A, \quad n \geq 0, \]
\[B_1(n) := B_1(R, n) := \left\{ w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in \left(\mathbb{C}^{n+N} \right)^2 ; w(t+1) = Aw(t) \right\} = \mathbb{C}\rho_1^{-n} \oplus \mathbb{C}\rho_2^{-n} \]
\[X(t) := \begin{pmatrix} 1 \\ t \end{pmatrix} \in \text{Gl}_2(\mathbb{C}[t]) \subset \text{Gl}_2(\mathbb{A}), \quad B(t) := X(t+1)AX(t)^{-1} \]
\[v(t) := X(t)w(t), \quad B_2 := X \circ B_1, \]
\[B_2(n) := X \circ B_1(n) = \left\{ v(t) = X(t)w(t); \quad w(t+1) = Aw(t) \right\} = \left\{ v \in \left(\mathbb{C}^{n+N} \right)^2 ; \quad v(t+1) = B(t)v(t) \right\}. \]

Notice that both \(B_1 \) and \(B_2 \) are state space behaviors as in [25], \(B_1 \) is an LTI-behavior with an asymptotically stable matrix and \(B_2 \) is an LTV-behavior. Obviously
\[X \circ : B_1(n) \cong B_2(n), \quad w \mapsto X \circ w = Xw, \]
is an isomorphism of state space behaviors. But
\[X(t)^{-1} = \begin{pmatrix} 1 & -t \\ 0 & 1 \end{pmatrix} \implies B(t) = \begin{pmatrix} 1 & t+1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \rho_1 & \rho_2 - \rho_1 \\ 0 & \rho_2 \end{pmatrix} \]
\[\implies \forall t \geq n \geq 1 \forall v \in B_2(n) : v_1(t+1) = \rho_1 v_1(t) + \rho_2 v_2(t) + (\rho_2 - \rho_1) tv_2(t) \]
\[\implies \forall n \geq 1 \forall v \in B_2(n) : v_1(n+1) = \rho_1 v_1(n) + \rho_2 v_2(n) + (\rho_2 - \rho_1) nv_2(n). \]

For any \(n \geq 1 \) let \(v^n := (v^n_1, v^n_2) \top \in B_2(n) \) be the unique trajectory with
\[v^n_1(n) := v^n_2(n) := 1 \quad \text{and hence} \quad \|v^n(n)\| = \max(\|v^n_1(n)\|, |v^n_2(n)|) = 1 \]
\[\implies v^n_1(n+1) = \rho_1 + \rho_2 + (\rho_2 - \rho_1)n \implies (\rho_2 - \rho_1)n \leq \rho_1 + \rho_2 + |v^n_1(n+1)|. \]

Assume that \(B_2 \) is u.e.s. Then there are \(c \geq 1 \) and \(\rho, \quad 0 < \rho < 1 \), with
\[\forall t \geq n \geq 1 : \quad |v^n_1(t)| \leq \|v^n(t)\| \leq \rho c^{-n} \|v^n(n)\| = \rho c^{-n} \]
\[\implies |v^n_1(n+1)| \leq \rho c^{(\rho_2 - \rho_1)n} \leq \rho_1 + \rho_2 + \rho c. \]

This is a contradiction and thus \(B_2 \) is not u.e.s. but, of course, e.s.. A nontrivial computation shows that for all \(\rho_3 \) with \(\rho_2 < \rho_3 < 1 \) there is a \(c_3 \geq 1 \) such that
\[\forall t \geq n \geq 1 : \quad \|X_B(t, n)\| = \|B(t-1)\cdots B(n)\| \leq \varphi(n)\rho_3^{-n} \quad \text{with} \quad \varphi(n) := c_3n. \]

The initial condition \(x(n) = (w(n), \cdots, w(n+d-1)) = 0 \) (cf. the definition) and (16) imply \(w = 0 \). So an e.s. behavior is autonomous. For \(p \in \mathbb{C}[t] \) and \(h \in \mathbb{C}(t) \) with \(n_0 + N \subseteq \text{dom}(h) \) the sequences \((p(n))_{n \geq 0} \in \mathbb{C}^N \) and \((h(n))_{n \geq n_0} \) are obviously p.g.s.. This implies that for any matrix \(A \in \mathbb{C}(t)^{p \times d} \) and \(n_0 + N \subseteq \text{dom}(A) \) also the norm sequence \(\|A(n)\|_{n \geq n_0} \) is a p.g.s.. The sum and product of p.g.s. are again such.

Corollary 3.3. Consider a matrix \(A(t) \in \mathbb{C}(t)^{p \times d} \) that has no poles \(t \geq n_0 \). \(R := q \text{id}_d - A \) is an LTV and for all \(n \geq n_0 \) the associated state space behaviors
\[B(R, n) := \left\{ w \in \left(\mathbb{C}^{n+N} \right)^d ; \quad \forall t \geq n : \quad w(t+1) = A(t)w(t) \right\} \cong \mathbb{C}^d, \quad w \mapsto w(n). \]
Then $B = \text{cl} \left((B(R, n))_{n \geq n_0} \right)$ is e.s. if and only if there are $n_1 \geq n_0$, a p.g.s. $\varphi_2 > 0$ in \mathbb{R}^{n_1+n} and ρ_2 with $0 < \rho_2 < 1$ such that

$$\forall t \geq n \geq n_1 \forall w \in B(R, n) : \|w(t)\| \leq \rho^{t-n} \varphi_2(n) \|w(n)\| \text{ or } \|\Phi(t, n)\| \leq \varphi_2(n) \rho^{t-n}, \Phi(t, n) := A(t-1) \cdots A(n).$$

(98)

The e.s. here differs from u.e.s. in Def. 3.1 by the additional p.g. factor $\varphi_2(n)$ instead of a constant.

Proof. It has only to be shown that (98) is necessary. With $x(n) := (w(n), \ldots, w(n+d-1))$ and $\|x(n)\| = \max \{ \|w(n+i)\| : 0 \leq i \leq d-1 \}$ equation (16) furnishes

$$\forall t \geq n \geq n_1 \geq n_0 \forall w \in B(R, n) : \|w(t)\| \leq \rho^{t-n} \varphi_1(n) \|x(n)\|.$$

The norm sequence $\{\|A(n)\|\}_{n \geq n_1}$ is a p.g.s. and so are

$$\|\Phi(n+i, n)\| \leq \|A(n+i-1)\| \cdots \|A(n)\|$$

and

$$\varphi(n) := \max \{ \|\Phi(n+i, n)\| : 0 \leq i \leq d-1 \}.$$

But

$$w(n+i) = \Phi(n+i, n)w(n)$$

$$\implies \|w(n+i)\| \leq \|\Phi(n+i, n)\| \|w(n)\| \leq \varphi(n) \|w(n)\| \implies \|x(n)\| \leq \varphi(n) \|w(n)\|$$

$$\implies \forall t \geq n \geq n_1 : \|w(t)\| \leq \rho^{t-n} \varphi_1(n) \|x(n)\| \leq \rho^{t-n} \varphi(n) \|w(n)\||$$

$$= \rho^{t-n} \varphi_2(n) \|w(n)\| \text{ with the p.g.s. } \varphi_2(n) := \varphi_1(n) \varphi(n).$$

Corollary 3.4. If in the preceding corollary the matrix A is constant, i.e., $A \in \mathbb{C}^{s \times \ell} \subset \mathbb{C}(t)^{s \times \ell}$, then $w(t+1) = Aw(t)$ is e.s. if and only if the spectrum $\text{spec}(A)$ is contained in the open unit disc $D := \{z \in \mathbb{C} : |z| < 1 \}$.

Proof. It is well-known that $\text{spec}(A) \subset D$ implies (98) with a constant φ_2. Let, conversely, (98) be satisfied and assume that λ is an eigenvalue of A with nonzero eigenvector $w(n)$. Then

$$w(t) = A^{t-n}w(n) = \lambda^{t-n}w(n) \text{ and } |\lambda|^{t-n} \|w(n)\| = \|w(t)\| \leq \varphi(n) \rho^{t-n} \|w(n)\|$$

with $0 < \rho < 1 \implies \lim_{t \to \infty} \lambda^t = 0 \implies |\lambda| < 1.$

We apply Cor. 3.3 to any $f := f_0q^d + \cdots + f_0 \in A$, $\deg_q(f) = d$, and $n_0 \in \mathbb{N}$ such that no $t \geq n_0$ is a pole of any f_i or a zero of f_d. We first construct the usual isomorphic state space system. Define

$$A := \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ -f_d & 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{C}(t)^{d \times d}, \quad R := q \text{id}_d - A \in \mathbb{A}^{d \times d}.$$

(99)
With \(q_d := (1, q, \ldots, q^{d-1})^\top \) and \(\delta_{0,d} := (0, 0, \ldots, 0) \) these data imply the standard \(A \)-linear isomorphism

\[
(\circ \delta_{0,d})_{\text{ind}} : A/A f \xrightarrow{\cong} A^{1 \times d}/A^{1 \times d} R : (\circ q_d)_{\text{ind}},
\]

\[
\eta + A f \rightarrow \eta \delta_{0,d} + A^{1 \times d} R = (\eta, 0, \ldots, 0) + A^{1 \times d} R
\]

\[
\xi_{q_d} + A f = \sum_{i=0}^{d-1} \xi_i q^i + A f \xleftarrow{\cong} \xi + A^{1 \times d}(q \text{id}_d - A).
\]

\[(100)\]

For \(n \geq n_0 \) this module isomorphism gives rise to the behavior isomorphism

\[
B(f, n) = \{ w \in \mathbb{C}^{n+N} ; \forall t \geq n : f_d(t)w(t+d) + \cdots + f_0(t)w(t) = 0 \} \cong
\]

\[
B(q \text{id}_d - A, n) = \{ x \in (\mathbb{C}^{n+N})^d ; \forall t \geq n : x(t+1) = A(t)x(t) \} \cong \mathbb{C}^d,
\]

\[
w(t) = x_0(t) \leftrightarrow x(t) = (x_0(t), \ldots, x_{d-1}(t))^\top = (w(t), \ldots, w(t+d-1))^\top \leftrightarrow x(n) = (w(n), \ldots, w(n+d-1))^\top.
\]

\[(101)\]

The preceding isomorphisms and Cor. 3.3 imply

Corollary 3.5. For \(f := f_d q_d + \cdots + f_0 \), \(f_d \neq 0 \), the behavior \(B(A f) \) is e.s. if and only if there are \(n_1 \), a p.g.s. \(\varphi \) with \(\varphi(n) > 0 \) and \(\rho (0 < \rho < 1) \) such that

\[
\forall t \geq n \geq n_1 \forall w \in B(f, n) : |w(t)| \leq \varphi(n)\rho^{t-n} \max \{|w(n+i)|; 0 \leq i \leq d-1\}.
\]

\[(102)\]

The isomorphisms (100) and (101) can be generalized in the following fashion. Consider an arbitrary torsion module

\[
M = A^{1 \times \ell}/A^{1 \times p} R \cong \bigoplus_{j=1}^r A/A f_j \quad 0 \neq f_j \in A = \mathbb{C}(t)[q; \alpha], \quad d_j := \deg_q(f_j) > 0,
\]

\[(103)\]

and let \(A_j \in \mathbb{C}(t)^{d_j \times d_j} \) be derived from \(f_j \) like \(A \) from \(f \) in (99). We define \(R_1 := \text{diag}(f_1, \ldots, f_r) \in A^{r \times r}, \quad d := \sum_{j=1}^r d_j, \quad A := \text{diag}(A_1, \ldots, A_r) \in \mathbb{C}(t)^{d \times d} \) and \(R_2 := q \text{id}_d - A \) and obtain the isomorphisms

\[
M = A^{1 \times \ell}/A^{1 \times q} R \cong A^{1 \times r}/A^{1 \times r} R_1 \cong A^{1 \times d}/A^{1 \times d} R_2
\]

\[(104)\]

where the second isomorphism in (104) is explicitly given by

\[
(\eta_1, \ldots, \eta_r) + A^{1 \times r} R_1 \rightarrow (\eta_1 \delta_{0,d_1}, \ldots, \eta_r \delta_{0,d_r}) + A^{1 \times d} R_2,
\]

\[
\xi_1 q_{d_1}, \ldots, \xi_r q_{d_r}) + A^{1 \times r} R_1 \leftarrow (\xi_1, \ldots, \xi_r) + A^{1 \times d} R_2.
\]

\[(105)\]

Theorem 3.6. For the torsion module \(M \) from (103) and the derived data from (104) there are matrices \(P \in A^{r \times d}, Q \in A^{d \times \ell} \) that induce an isomorphism \((\circ P)_{\text{ind}} \) and its inverse \((\circ Q)_{\text{ind}} \) as follows:

\[
(\circ P)_{\text{ind}} : \quad M = A^{1 \times \ell}/A^{1 \times p} R \xrightarrow{\cong} A^{1 \times d}/A^{1 \times d} (q \text{id}_d - A) : (\circ Q)_{\text{ind}}
\]

\[
\omega + A^{1 \times p} R \quad \rightarrow \quad \omega P + A^{1 \times d} (q \text{id}_d - A)
\]

\[
\xi Q + A^{1 \times p} R \quad \leftarrow \quad \xi + A^{1 \times d} (q \text{id}_d - A).
\]

\[(106)\]
For sufficiently large \(n_0 \) and \(n \geq n_0 \) these isomorphisms induce behavior isomorphisms

\[Q \circ \mathcal{B}(R, n) := \left\{ w \in (\mathbb{C}^{n+n})^\ell : R \circ w = 0 \right\} \xrightarrow{\sim} \mathcal{B}(q \text{id}_d - A, n) = \left\{ x \in (\mathbb{C}^{n+n})^d : x(t+1) = A(t)x(t) \right\} : P \circ, \]

\[w = P \circ x \longleftrightarrow x = Q \circ w, \text{ and hence} \]

\[Q \circ \mathcal{B}(U) := \text{cl} (\mathcal{B}(q \text{id}_d - A, n)_{n \geq n_0}) \xrightarrow{\sim} \mathcal{B}(A^{1 \times d}(q \text{id}_d - A)) := \text{cl} (\mathcal{B}(q \text{id}_d - A, n)_{n \geq n_0}) : P \circ. \]

Moreover there are the \(\mathbb{C} \)-linear isomorphisms

\[\mathcal{B}(q \text{id}_d - A, n) \cong \mathbb{C}^d, \ x \mapsto x(n), \ x(t) := \Phi(t, n)x(n), \text{ where} \]

\[\forall t \geq n : \Phi(t, n) := A(t-1) \cdots A(n), \Phi(n, n) = \text{id}_d. \]

The isomorphism (108) means that for a given \(v \in \mathbb{C}^d \) there is a unique trajectory \(x \) with initial vector \(x(n) = v \) and \(x(t) = \Phi(t, n)x(n) \). The behaviors \(\mathcal{B}(q \text{id}_d - A, n) \) are \(d \)-dimensional over \(\mathbb{C} \).

The preceding theorem shows that autonomous behaviors are isomorphic to state space behaviors that are the main subject of [25, Ch. 20-22].

3.2 Preservation of e.s. under behavior isomorphisms

Lemma 3.7. Exponential stability is preserved by isomorphisms, i.e., if \(A^{1 \times t_1}/U_1 \cong A^{1 \times t_2}/U_2 \) and if \(\mathcal{B}(U_1) \) is e.s. then so is \(\mathcal{B}(U_2) \) (\(\cong \mathcal{B}(U_1) \)).

Proof. Let \(U_i = A^{1 \times r_i}: R_i, \ i = 1, 2 \), and consider an isomorphism and its inverse

\[(\circ P_2)_{\text{ind}} : A^{1 \times t_1}/U_1 \xrightarrow{\sim} A^{1 \times t_2}/U_2 : (\circ P_2)_{\text{ind}}. \]

Let \(P_i = \sum_{j=0}^{d_i} P_{ij}(t)q^j, \ i = 1, 2 \). Then there is an \(n_0 \) such that for all \(t \geq n \geq n_0 \)

\[P_1 \circ : \mathcal{B}(R_2, n) \xrightarrow{\sim} \mathcal{B}(R_1, n) : (P_1 \circ)^{-1} = P_2 \circ \]

\[w_2(t) = \sum_{j=0}^{d_2} P_{2j}(t)w_1(t+j) \longleftrightarrow w_1(t) = \sum_{j=0}^{d_1} P_{1j}(t)w_2(t+j). \]

Assume that \(\mathcal{B}(U_1) \) is e.s. and that for a p.g.s. \(\varphi_1 > 0 \) and \(\rho_1, \ 0 < \rho_1 < 1 \),

\[\forall t \geq n \geq n_0 \forall w_1 \in \mathcal{B}(R_1, n) : \|w_1(t)\| \leq \rho_1^{-n} \varphi_1(n)\|x_1(n)\| \]

where \(x_1(t) = (w_1(t), \cdots, w_1(t+d-1)) \).

For \(w_2 \in \mathcal{B}(R_2, n) \) define \(x_2(t) := (w(t), \cdots, w(t+d_2 + d_2 - 1)). \) Now let

\[w_2 \in \mathcal{B}(R_2, n), \ w_1 := P_1 \circ w_2 \Longrightarrow w_2 = P_2 \circ w_1, \]

hence \(w_1(t) = \sum_{j=0}^{d_1} P_{1j}(t)w_2(t+j), \ w_2(t) = \sum_{i=0}^{d_2} P_{2i}(t)w_1(t+i). \)
Since the P_{ij} are rational they are p.g. and therefore there are $m_i \in \mathbb{N}$ and $c_i \geq 1$ such that $\|P_{ij}(t)\| \leq c_i t^{m_i}$ for $i = 1, 2$, and $0 \leq j \leq d_i$, hence
\[
\|w_2(t)\| \leq \sum_{i=0}^{d_2} \|P_{2i}(t)\| |w_1(t+i)| \leq (d_2 + 1)c_2 t^{m_2} \max\{\|w_1(t+i)\|; 0 \leq i \leq d_2\}.
\]
Moreover
\[
\|w_1(t+i)\| \leq \rho_1^{t+i-n} \varphi_1(n)\|x_1(n)\| \leq \rho_1^{t-n} \varphi_1(n)\|x_1(n)\|
\]
\[
\implies \|w_2(t)\| \leq (d_2 + 1)c_2 t^{m_2} \rho_1^{t-n} \varphi_1(n)\|x_1(n)\|.
\]
(113)

Likewise
\[
\|x_1(n)\| = \max\{\|w_1(n+i)\|; 0 \leq i \leq d - 1\}
\]
\[
\|w_1(n+i)\| \leq (d_1 + 1)c_1 (n+i)^{m_1} \max\{\|w_2(n+i+j)\|; 0 \leq j \leq d_1\}
\]
(114)
\[
\implies \|x_1(n)\| \leq (d_1 + 1)c_1 (n + d - 1)^{m_1}\|x_2(n)\|
\]
Inserting (114) into (113) furnishes
\[
\|w_2(t)\| \leq (d_2 + 1)c_2 t^{m_2} \rho_1^{t-n} \varphi_1(n)\|x_1(n)\|
\]
(115)
\[
\leq (d_2 + 1)c_2 t^{m_2} \rho_1^{t-n} \varphi_1(n)(d_1 + 1)c_1 (n + d - 1)^{m_1}\|x_2(n)\|
\]
\[
\leq c_3(t-n)^{m_3}\rho_1^{t-n} (t/(t-n))^{m_2} (n + d - 1)^{m_1}\varphi_1(n)\|x_2(n)\|
\]
with $c_3 := (d_1 + 1)(d_2 + 1)c_1 c_2 \geq 1$. We choose ρ_2 with $\rho_1 < \rho_2 < 1$ and $c_4 \geq 1$ such that $t^{m_2} \rho_1^t \leq c_4 \rho_2^t$. Moreover $t/(t-n) = 1 + n/(t-n) \leq 1 + n$ for $t > n$ and hence
\[
\forall t > n \geq n_0: \|w_2(t)\| \leq \rho_2^{t-n} \varphi_2(n)\|x_2(n)\|
\]
where $\varphi_2(n) := c_3 c_4 (1 + n)^{m_3} (n + d - 1)^{m_1} \varphi_1(n) > 0$
(116)
is also p.g.. We choose $\varphi_2(n) \geq 1$. This implies $\varphi_2(n) \geq 1$ and thus (116) also for $t = n$ and the e.s. of $B(U_2)$.

Thm. 3.6 and Lemma 3.7 imply that in connection with exponential stability of a behavior one may assume that it is a state space behavior. It is an open question which e.s. state space behaviors are isomorphic to u.e.s. ones.

3.3 The standard form of short exact sequences

We derive standard forms of short exact sequences (117) under isomorphism that essentially simplify the proof of Thm. 1.8.

Consider the exact sequence
\[
0 \to M_1 \xrightarrow{\varphi} M_2 \xrightarrow{\psi} M_3 \to 0
\]
(117)
of f.g. A-modules. After the choice of presentations $M_i = A^{1 \times \ell_i}/U_i$ the exact sequence (117) induces an exact behavior sequence
\[
0 \leftarrow \mathcal{B}_1 \xrightarrow{B(\varphi)} \mathcal{B}_2 \xrightarrow{B(\psi)} \mathcal{B}_3 \leftarrow 0
\]
(118)
Let
\[
M_i = A^{1 \times \ell_i}/U_i, \quad U_i = A^{1 \times p_i} R_i, \quad R_i \in A^{\ell_i \times \ell_i}, \quad i = 1, 3,
\]
can$_i : A^{1 \times \ell_i} \to M_i, \quad \xi \mapsto \xi + U_i, \quad w_{ij} := \delta_j + U_i, \quad w_i := (w_{i1}, \ldots, w_{i\ell_i})^T \in M_{\ell_i}$,
be arbitrarily chosen such presentations where, as usual, the δ_j are the standard basis vectors. Choose an inverse image $v \in M_2^{(1)}$ of w_2 under ψ, $\psi(v) = w_3$. Then $w_2 := (\varphi_{(w_1)}) \in M_2^{(1)}$ is a generating system of M_2 with its associated presentation, i.e.,

$$U_2 := \ker \left(\text{can}_2 : A^{1 \times (T_3 + T_4)} \to M_2, \ (\xi, \eta) \mapsto \xi v + \eta \varphi(w_1) \right),$$

$M_2 = A^{1 \times (T_3 + T_4)}/U_2$. \(\text{(120)} \)

Remark 3.8. The following Lemma 3.9 is a special case of [6, Prop. V.2.2]. It was rediscovered and applied to systems theory by Quadrat and Robertz in [24, Thm. 7, \$5] and [23, Thm. 7, \$4]. The proof given here is more direct.

Lemma 3.9. For the data of (119) and (120) there is a matrix $R \in A^{p_3 \times T_4}$ such that

$$U_2 = A^{1 \times (p_3 + p_1)} R_2, \ R_2 := \left(\begin{array}{cc} R_3 & R \\ 0 & R_1 \end{array} \right) \in A^{(p_3 + p_1) \times (T_3 + T_4)}. \ (121)$$

Proof. The choice of w_2 induces a commutative diagram with exact rows and columns

$$\begin{array}{cccccc}
0 & \rightarrow & U_1 & \rightarrow & U_2 & \rightarrow & U_3 & \rightarrow & 0 \\
0 & \rightarrow & A^{1 \times T_4} & \rightarrow & A^{1 \times (T_3 + T_4)} & \rightarrow & A^{1 \times T_3} & \rightarrow & 0 \\
0 & \rightarrow & M_1 & \rightarrow & M_2 & \rightarrow & M_3 & \rightarrow & 0
\end{array} \ (122)$$

The exactness of the first row is a consequence of the snake lemma [6, L. III.3.2-3].

By definition the rows $(R_3)_{i-}$, $i = 1, \ldots, p_3$, belong to U_3. Since $U_2 \rightarrow U_3$ is surjective there are rows $R_i - \in A^{1 \times T_4}$ such that

$$(R_3)_{i-} = 0 \subseteq A^{1 \times (T_3 + T_4)}, \ \text{i.e.,} \ (R_3)_{i-} = 0 \subseteq A^{(p_3 + p_1) \times (T_3 + T_4)}. \ (123)$$

Let $R \in A^{p_3 \times T_4}$ be the matrix with rows R_i- and $R_2 := \left(\begin{array}{cc} R_3 & R \\ 0 & R_1 \end{array} \right) \in A^{(p_3 + p_1) \times (T_3 + T_4)}$. Then

$$R_2 w_2 = \left(\begin{array}{cc} R_3 & R \\ 0 & R_1 \end{array} \right) \varphi_{(w_1)} = \left(\begin{array}{c} R_3 + \varphi_{(w_1)} \\ \varphi_{(R_1 \cdot w_1)} \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = 0$$

$$\Rightarrow R_3 v + R \varphi_{(w_1)} = 0 \Rightarrow A^{1 \times (p_3 + p_1)} R_2 \subseteq U_2. \ (124)$$

Let, conversely,

$$(\xi, \eta) \in U_2 \subseteq A^{1 \times (T_3 + T_4)} \Rightarrow \xi v + \eta \varphi_{(w_1)} = 0$$

$$\Rightarrow \xi w_3 = \psi_{(v)} = 0 \Rightarrow \psi_{(v + \eta \varphi_{(w_1)})} = 0 \Rightarrow \xi \in U_3 = A^{1 \times p_3} R_3 \ (125)$$

$$\Rightarrow \exists \xi_1 \text{ with } \xi = \xi_1 R_3 \Rightarrow \xi_1 R_3 v + \varphi_{(\eta w_1)} = 0.$$

With the last equation of (124) this implies

$$\varphi_{(v - \xi_1 R w_1)} = 0 \Rightarrow (\eta - \xi_1 R) w_1 = 0$$

$$\Rightarrow \eta - \xi_1 R \in U_1 \Rightarrow A^{1 \times p_1} R_1 \Rightarrow \exists \xi_1 : (\eta - \xi_1 R) = \xi_2 R_1 \ (126)$$

$$\Rightarrow (\xi_1, \xi_2) R_2 = (\xi_1, \xi_2) \left(\begin{array}{cc} R_3 & R \\ 0 & R_1 \end{array} \right) = (\xi_1 R_3, \xi_1 R + \xi_2 R_1) = (\xi, \eta)$$

$$\Rightarrow (\xi, \eta) \in A^{1 \times (p_3 + p_1)} R_2 \Rightarrow U_2 \subseteq A^{1 \times (p_3 + p_1)} R_2.$$

□
In the sequel we therefore assume w.l.o.g. that the exact sequence (117) has the special form

\[0 \to A^{1 \times \ell_1}/U_1 \xrightarrow{(\sigma^{0, id_{\ell_1}})_{id_{\ell_1}}} A^{1 \times \ell_2}/U_2 \xrightarrow{(id_{\ell_3}, 0)} A^{1 \times \ell_3}/U_3 \to 0 \]

where \(U_i = A^{1 \times p_i} R_i \), \(R_i \in A^{p_i \times \ell_1} \), \(i = 1, 2, 3 \),
\[\ell_2 := \ell_3 + \ell_1, \quad p_2 := p_3 + p_1, \quad R_2 = \left(\begin{array}{c} R_3 \\ 0 \\ R_1 \end{array} \right) . \]

The corresponding exact sequences of behaviors are given by

\[0 \leftarrow B(U_1) \xrightarrow{(0, id_{\ell_1})} B(U_2) \xrightarrow{(id_{\ell_3})} B(U_3) \leftarrow 0 \]

and for sufficiently large \(n_0 \) and \(n \geq n_0 \)

\[0 \leftarrow \left(\begin{array}{c} (C_n)^{t_1} \otimes (C_n)^{\ell_1} \\ (C_n)^{t_2 + t_1} \otimes (C_n)^{\ell_3} \\ (C_n)^{t_3} \otimes (C_n)^{\ell_3} \end{array} \right) \]

\[\begin{array}{ccc} \subseteq & \subseteq & \subseteq \\ B(R_1, n) = & B(R_2, n) = & B(R_3, n) = \left\{ w_i \in (C_n)^{t_i} \mid R_i \circ w_i = 0 \right\} \end{array} \]

\[B(R_i, n) = \left\{ \left(\begin{array}{c} w_1 \\ w_2 \\ w_3 \end{array} \right) \in (C_n)^{t_1 + t_2 + t_3} \mid R_i \circ w_3 + R \circ w_1 = 0, \quad R_1 \circ w_1 = 0 \right\} . \]

Moreover we always assume w.l.o.g. that the matrices \(R_1 \) and \(R_3 \) have the state space form from Thm. 3.6:

\[R_i = q \text{id}_{t_i} - A_i, \quad A_i \in \mathbb{C}(t)^{t_i \times \ell_i}, \quad i = 1, 3; \]
\[\forall n \geq n_0 : B(R_i, n) = \left\{ w_i \in (C_n)^{t_i} \mid w_i(t + 1) = A_i(t)w_i(t) \right\} . \]

For \(B(R_2, n) \) this implies

\[B(R_2, n) = \left\{ \left(\begin{array}{c} w_3 \\ w_1 \\ w_2 \end{array} \right) \in (C_n)^{t_3 + t_1} \mid (\ast) \right\} \]

where \(\ast \)
\[w_3(t + 1) = A_3(t)w_3(t) - (R \circ w_1)(t), \quad w_1(t + 1) = A_1(t)w_1(t) \].

The behaviors \(B(R_i, n) \) are \(\ell_i \)-dimensional over \(\mathbb{C} \) and indeed

\[B(R_1, n) \cong \mathbb{C}^{t_1}, \quad w_1 \mapsto w_1(n), \quad B(R_2, n) \cong \mathbb{C}^{t_3}, \quad w_3 \mapsto w_3(n), \]
\[B(R_2, n) \cong \mathbb{C}^{t_3 + t_1}, \quad \left(\begin{array}{c} w_3 \\ w_1 \\ w_3 \end{array} \right) \mapsto \left(\begin{array}{c} w_3(n) \\ w_1(n) \end{array} \right) \]

with \(w_1(t) = \Phi_1(t, n)w_1(n), \quad \Phi_1(t, n) = A_1(t - 1) \cdots A_3(n) \) and
\[w_3(t + 1) = A_3(t)w_3(t) - (R \circ w_1)(t) . \]

3.4 The proof of Thm. 1.8

More generally than in (132) consider an inhomogeneous equation

\[w(t + 1) = A(t)w(t) + u(t), \quad A(t) \in \mathbb{C}(t)^{t \times \ell}, \quad t \geq n \geq n_0, \quad w, u \in (C_n)^{t} \]
Theorem 3.11. Exponentially stable behaviors form a Serre subcategory of the abelian category of all LTV-behaviors. For the data from (117), (118) or, w.l.o.g., from (127) - (132) this means that \mathcal{B}_2 is e.s. if and only if \mathcal{B}_1 and \mathcal{B}_3 are.

Lemma 3.10. Assume in (133) that $\mathcal{B} := \mathcal{B} \left(A^{1 \times t} (q \text{id} - A) \right)$ is e.s. and that also the sequence u is e.s. in the sense that there are $n_1 \geq n_0$, a p.g.s. $\varphi > 0$ in \mathbb{C}^{n_1+N} and a positive sequence $a \in \mathbb{C}^{n_1+N}$ and ρ with $0 < \rho < 1$ such that

$$\forall t \geq n \geq n_1 : \|u(t)\| \leq \rho^{t-n} \varphi(n) a(n).$$

Then every solution w of (133) is e.s. in the sense that there are $n_2 \geq n_1$, a p.g.s. $\varphi_2 > 0$ in \mathbb{C}^{n_2+N} and $\rho_2 (0 < \rho_2 < 1)$ such that

$$\forall t \geq n \geq n_2 : \|w(t)\| \leq \rho_2^{t-n} \varphi_2(n) \max\{|w(n)|, a(n)\}. \quad (135)$$

Proof. By enlarging n_1, $\varphi > 0$ and ρ, $0 < \rho < 1$, we may assume w.l.o.g. that

$$\forall t \geq n \geq n_1 : \|w(t)\| \leq \rho^{t-n} \varphi(n), \|u(t)\| \leq \rho^{t-n} \varphi(n) a(n). \quad (136)$$

Define $n_2 := n_1$ and $b(n) := \max\{|w(n)|, a(n)\}$. We insert the inequalities from (136) into (134) and obtain

$$\forall t \geq n \geq n_1 : \|w(t)\| \leq \rho^{t-n} \varphi(n) |w(n)| + \sum_{i=n}^{t-1} \rho^{t-i-1} \varphi(i+1) \rho^{t-n} \varphi(n) a(n). \quad (137)$$

Since φ is p.g. there are $c_1 \geq 1$ and $m \in \mathbb{N}$ such that $|\varphi(t)| \leq c_1 t^m$ and hence also $|\varphi(i+1)| \leq c_1 t^m$ for $i \leq t-1$. For $t > n \geq n_1$ equation (137) implies

$$\|w(t)\| \leq \varphi(n) \rho^{t-n} \left(1 + (t-n) \rho^{-1} c_1 t^m \right) b(n) \leq (t-n)^{m+1} \rho^{t-n} \varphi(n) \left(1 + c_1 \rho^{-1} \left(\frac{t}{t-n}\right)^m \right) b(n). \quad (138)$$

Now choose ρ_2 with $0 < \rho_2 < 1$ and $c_2 \geq 1$ such that $t^{m+1} \rho^t \leq c_2 \rho_2^t$. Moreover $t/(t-n) = 1 + n/(t-n) \leq 1 + n$ for $t > n$ and hence for $t > n \geq n_1$

$$\|w(t)\| \leq \rho_2^{t-n} (1 + c_1 \rho^{-1} (1 + n)^m) c_2 \varphi(n) b(n) = \rho_2^{t-n} \varphi_2(n) b(n) \quad \text{where } \varphi_2(n) = (1 + c_1 \rho^{-1} (1 + n)^m) c_2 \varphi(n) \geq 1 \text{ is a p.g.s.} \quad (139)$$

Since $\varphi_2(n) \geq 1$ and $\|w(n)\| \leq b(n)$ (139) also holds for $t = n$. □

The next theorem coincides with Thm. 1.8 and is the main result of this paper.

Theorem 3.11. Exponentially stable behaviors form a Serre subcategory of the abelian category of all LTV-behaviors. For the data from (117), (118) or, w.l.o.g., from (127) - (132) this means that \mathcal{B}_2 is e.s. if and only if \mathcal{B}_1 and \mathcal{B}_3 are.
3 EXPONENTIALLY STABLE (E.S.) BEHAVIORS

Proof. We assume (127)-(133). The time n_0 below is always chosen sufficiently large.

1. B_2 e.s. \Rightarrow B_3 e.s.: There are a p.g.s. φ and ρ as usual such that

$$\forall t \geq n \geq n_0 \forall w_2 = (\omega^n_2) \in \mathcal{B}(R_2, n) :$$

$$\|w_2(t)\| = \max(\|w_3(t)\|, \|w_1(t)\|) \leq \rho^{t-n}\varphi(n)\|w_3(n)\|. \quad (140)$$

For $w_3 \in \mathcal{B}(R_1, n)$ define $w_2 := (\omega^n_2) \in \mathcal{B}(R_2, n)$

$$\Rightarrow \|w_3(t)\| = \|w_2(t)\|, \|w_3(n)\| = \|w_2(n)\| \Rightarrow \|w_3(t)\| \leq \rho^{t-n}\varphi(n)\|w_3(n)\|.$$

This means that B_3 is e.s.

2. B_2 e.s. \Rightarrow B_1 e.s.: Again (140) is assumed. Let $w_3 \in \mathcal{B}(R_1, n)$ and let $w_2 := (\omega^n_2) \in \mathcal{B}(R_2, n)$ with $w_3(n) = 0$ (cf. (132)) or

$$w_3(t+1) = A_3(t)w_3(t) - (R \circ w_1)(t), \quad w_2(n) = 0$$

$$\Rightarrow \|w_1(n)\| = \max(0, \|w_3(n)\|) = \max(\|w_3(n)\|, \|w_1(n)\|) = \|w_2(n)\| \quad \text{and}$$

$$\|w_1(t)\| \leq \max(\|w_2(t)\|, \|w_1(t)\|) \leq \rho^{t-n}\varphi(n)\|w_2(n)\| \Rightarrow \|w_1(t)\| \leq \rho^{t-n}\varphi(n)\|w_1(n)\| \Rightarrow \mathcal{B}(U_1) \text{ e.s..}$$

3. B_1, B_3 e.s. \Rightarrow B_2 e.s.: For $i = 1, 3$ there are, as usual, p.g.s. $\varphi_i, \rho_i = 1, 3$, and ρ_i such that

$$\forall t, n \geq n_0 \forall w_i \in \mathcal{B}(R_i, n) : \|w_i(t)\| \leq \rho_i^{t-n}\varphi_i(n)\|w_i(n)\|. \quad (141)$$

Let

$$w_2 = (\omega^n_2) \in \mathcal{B}(R_2, n), \quad R = \begin{pmatrix} R_3 & R \\ 0 & R_1 \end{pmatrix}$$

$$\Rightarrow w_1 \in \mathcal{B}(R_1, n) \quad \text{and} \quad \|w_1(t)\| \leq \rho_1^{t-n}\varphi_1(n)\|w_1(n)\| \quad \text{and}$$

$$\forall t \geq n : \quad w_3(t+1) = A_3(t)w_3(t) + u(t), \quad u := -R \circ w_1.$$

Let $R = \sum_{i=0}^d B_i(t)q^i, \quad B_i \in \mathcal{C}(t)^{p_i \times n}$ and assume that no $B_i(t)$ has a pole $t \geq n_0$. The $B_i(t)$ are rational and therefore of at most polynomial growth. Hence there are $c_1 \geq 1$ and $m \in \mathbb{N}$ such that $\|B_i(t)\| \leq c_1 t^m$ for all $t \geq n_0$. We conclude

$$\forall t, n \geq n_0 : \quad u(t) = (R \circ w_1)(t) = \sum_{i=0}^d B_i(t)w_1(t+i)$$

$$\Rightarrow \|u(t)\| = \|(R \circ w_1)(t)\| \leq \sum_{i=0}^d \|B_i(t)\||\|w_1(t+i)\|$$

$$\leq (d+1)c_1 t^m \rho_1^{t-n}\varphi_1(n)\|w_1(n)\|. \quad (143)$$

We choose ρ_1' with $\rho_1 < \rho_1' < 1$ and $c_2 \geq 1$ such that $t^m \rho_1 \leq c_2 \rho_1'^m$. Moreover

$$\text{for } t > n : \quad t^m < (t-n)^m(1+n)^m \Rightarrow \|u(t)\| \leq \rho_1^{t-n}\varphi_1(n)\|w_1(n)\|$$

$$\quad \text{with } \varphi_1(n) := (d+1)c_1 c_2(n+1)^m \rho_1 \quad (144)$$

This also holds for $t = n$ due to (143). Obviously $\varphi_1'(n)$ is a p.g.s. Thus $u = -R \circ w_1$ is e.s. in the sense of Lemma 3.10 with $a(n) = \|w_1(n)\|$ and the lemma therefore implies that there are a p.g.s. φ_2 and ρ_2 as usual such that for all $t \geq n \geq n_0$

$$\|w_3(t)\| \leq \rho_2^{t-n}\varphi_2(n) \max(\|w_3(n)\|, \|w_1(n)\|)$$

$$\Rightarrow \|w_2(t)\| = \max(\|w_3(t)\|, \|w_1(t)\|) \leq \varphi_4(n)\rho_4^{t-n}\|w_2(n)\| \quad (145)$$

where $\varphi_4 = \max(\varphi_2, \varphi_1), \quad \rho_4 := \max(\rho_2, \rho_1)$. Hence B_2 is e.s.$$ \square$$
Corollary 3.12. Let \(f = f_1 f_2 \) be a nonzero product in \(A \), hence \(0 \neq Af \subseteq A f_2 \). Then \(f \) is exponentially stable if and only if \(f_1 \) and \(f_2 \) are.

Proof. The application of Thm. 3.11 to the exact sequences
\[
0 \to A/Af_1 \xrightarrow{(\phi f_2)_{\text{red}}} A/Af \xrightarrow{\text{can}} A/Af_2 \to 0
\]
\[
a + Af_1 \to af_2 + Af, \quad b + Af \to b + Af_2
\]
(146)

furnishes the result.

Consider any torsion module \(M = A^{1 \times \ell}/U \) with \(U = A^{1 \times p} R \). The module \(M \) is of finite length, i.e., artinian and noetherian, and admits a composition series
\[
M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{\ell-1} \supseteq M_\ell = 0
\]
with simple factors \(S_i := M_{i-1}/M_i \cong A/Ap_i, \, 0 \subseteq Ap_i \subseteq A, \, p_i \) irreducible,
\[
d(i) := \deg_A(p_i) = \dim_{\mathbb{C}(t)}(M_{i-1}/M_i).
\]
(147)

An element \(p \in A \) is irreducible if and only if \(Ap \) is a maximal left ideal or if and only if \(A/Ap \) is a simple module. By the Jordan-Hölder theorem the simple factors are unique up to their numbering and up to isomorphism. Hence the \(p_i \) are unique up to their numbering and up to similarity where \(f \) and \(g \) in \(A \) are called similar if \(A/Ag \cong A/Af \).

Corollary 3.13. With the data from (147) the behavior \(B(U) \) is e.s. if and only if all behaviors \(B(Ap_i), \, i = 1, \cdots, \ell, \) are e.s.

Proof. Induction and Thm. 3.11 furnish the result by means of the exact sequences
\[
0 \to M_i \xrightarrow{\subseteq} M_{i-1} \to S_i \to 0, \quad S_i \cong A/Ap_i.
\]
(148)

Modulo the Jacobson package of [7] for the algebra \(A_Q := \mathbb{Q}(t)[\alpha] \supset \mathbb{Q}[q] \)
and (72) the computation of a composition series of a f.g. module over \(A_Q \) reduces to the factorization of a nonzero \(f \in A_Q \) into irreducible factors. For \(\mathbb{C} \) instead of \(\mathbb{Q} \) such a factorization can only be approximated as is already the case for polynomials in \(\mathbb{C}[q] \supset \mathbb{Q}[q] \).

Call a f.g. module \(M \) e.s. if for one and then all (cf. Lemma 3.7) representations \(M = A^{1 \times \ell}/U \) the behavior \(B(U) \) is e.s.. Due to Thms. 1.8, 3.11 the e.s. modules form a Serre subcategory of the category of f.g. \(A \)-modules that are all noetherian.

Corollary 3.14. Every f.g. \(A \)-module \(M \) has a largest e.s. submodule \(Ra_{es}(M) \), and moreover \(Ra_{es}(M/Ra_{es}(M)) = 0 \).

3.5 Special stability results

In Sections 3.5 and 3.6 we describe cases where e.s. or lack of e.s. can be checked algebraically.
The proof of the following result in [13, Satz 11] on a disturbed state space system seems to contain an error and therefore we give a simple different proof similar to that of [25, Thm. 24.7].

Lemma 3.15. (cf. [13, Satz 11],[25, Thm. 24.7]) Consider the difference equation

\[w(t + 1) = A(t)w(t) + f(w(t), t), \quad t \geq n_0, \quad A \in (\mathbb{C}^{n_0+N})^{f \times t}, \quad f : \mathbb{C}^t \times \mathbb{N} \to \mathbb{C}^t. \]

(149)

Assume that \(w(t + 1) = A(t)w(t) \) is uniformly exponentially stable (u.e.s.), i.e., that there are \(\rho_1 \) with \(0 < \rho_1 < 1 \) and \(c_1 \geq 1 \) such that

\[\forall t \geq n \geq n_0 : \| \Phi(t,n) \| \leq c_1 \rho_1^{t-n} \text{ where } \Phi(t,n) := A(t-1) \cdots A(n). \]

(150)

Also assume that \(\|f(v,t)\| \leq \epsilon \|v\|, \epsilon > 0, \text{ for } v \in \mathbb{C}^t \text{ and } t \geq n_0. \)

If \(\epsilon \) is sufficiently small then also (149) is u.e.s., i.e. there are \(\rho, 0 < \rho < 1, \text{ and } c \geq 1 \) such that

\[\forall t \geq n \geq n_0 \forall w \in (\mathbb{C}^{n+N})^t \text{ with } w(t + 1) = A(t)w(t) + f(w(t), t) : \]

\[\|w(t)\| \leq c \rho^{t-n} \|w(n)\|. \]

(151)

Proof. The number \(\epsilon \) is suitably chosen below. With \(u(t) := f(w(t), t) \) we obtain

\[w(t + 1) = A(t)w(t) + u(t) \]

\[\implies (2) \forall t \geq n \geq n_0 : w(t) = \Phi(t,n)w(n) + \sum_{i=n}^{t-1} \Phi(t,i+1)u(i) \]

\[\implies (2) \forall t \geq n \geq n_0 : \|w(t)\| \leq \|\Phi(t,n)\| \|w(n)\| + \sum_{i=n}^{t-1} \|\Phi(t,i+1)\| \|u(i)\|. \]

(152)

We insert \(\|u(i)\| \leq \epsilon \|w(i)\| \) and (150) into (152) and obtain

\[\forall t \geq n \geq n_0 : \|w(t)\| \leq \rho_1 t-n \|w(n)\| + \sum_{i=n}^{t-1} \rho_1^{t-(i+1)} \epsilon \|w(i)\|. \]

(153)

With \(y(t) := \rho_1^{-t} \|w(t)\| \) and \(\lambda := c_1 \rho_1^{-1} \epsilon \) the preceding inequality implies

\[y(t) \leq c_1 y(n) + \sum_{i=n}^{t-1} c_1 \rho_1^{-i} \epsilon y(i) = c_1 y(n) + \lambda \sum_{i=n}^{t-1} y(i). \]

(154)

This suggests to define inductively

\[\forall t \geq n \geq n_0 : z(t) := c_1 y(n) + \lambda \sum_{i=n}^{t-1} z(i). \]

(155)

Since \(c_1 \geq 1 \) this gives \(y(n) \leq z(n) = c_1 y(n) \) and inductively, by (154), \(y(t) \leq z(t) \) for all \(t \geq n \). The sequence \(z(t), \ t \geq n, \) satisfies the difference equation

\[z(n) = c_1 y(n), \forall t \geq n : z(t + 1) = (1 + \lambda) z(t) \implies \]

\[z(t) = (1 + \lambda)^{t-n} z(n) = c_1 (1 + \lambda)^{t-n} y(n) \implies y(t) \leq z(t) = c_1 (1 + \lambda)^{t-n} y(n) \]

\[\implies \rho_1^{t-n} y(t) = \|w(t)\| \leq c_1 (\rho_1 (1 + \lambda)^{t-n} \|w(n)\|). \]

(156)
3 \ \textit{EXPONENTIALLY STABLE (E.S.) BEHAVIORS}

But $\rho_1 < 1$ and $\rho_1(1 + \lambda) = \rho_1 + c_1 \epsilon$. Choose $\epsilon > 0$ such that $\rho := \rho_1 + c_1 \epsilon < 1$, Equation (156) implies $\|w(t)\| \leq c_1 \rho^{-n} \|w(n)\|$ for all $t \geq n \geq n_0$, i.e., (151).

\[\square\]

\textbf{Example 3.16.} This example shows that Lemma 3.15 does not hold if $w(t + 1) = A(t)w(t)$ is only e.s. and not u.e.s. From Ex. 3.2 and Lemma 3.7 we know that for $0 < \rho_1 < \rho_2 < 1$ the system

\[w(t + 1) = B(t)w(t), \ t \geq 0, \ B(t) := \begin{pmatrix} \rho_1 & \rho_2 + (\rho_2 - \rho_1)t \\ 0 & \rho_2 \end{pmatrix} \in \mathbb{C}[t]^{2 \times 2} \subset \mathbb{C}(t)^{2 \times 2}\]

is e.s., but not u.e.s. Define

\[C(t) := \begin{pmatrix} 2(\rho_2 + (\rho_2 - \rho_1)t)^{-1} & 0 \\ 0 & 2(\rho_2 + (\rho_2 - \rho_1)t)^{-1} \end{pmatrix},\]

\[A(t) := B(t) + C(t) = \begin{pmatrix} \rho_1 & \rho_2 + (\rho_2 - \rho_1)t \\ 0 & \rho_2 \end{pmatrix},\]

\[\Phi_1(t, n) := A_1(t - 1) \ast \cdots \ast A_1(n).\]

We conclude

\[\det(A_1(t)) = \rho_1 \rho_2 - 2, \ |\det(\Phi_1(t, n))| = (2 - \rho_1 \rho_2)^{t-n} \]

\[\Rightarrow \lim_{t \to \infty} C(t) = 0, \ \lim_{t \to \infty} |\det(\Phi_1(t, n))| = \infty.\]

Hence the system $w(t + 1) = B(t)w(t)$ is e.s. and the disturbed system

\[w(t + 1) = (B(t) + C(t))w(t), \ t > 0, \ \text{is not although} \ \lim_{t \to \infty} C(t) = 0.\]

In the following corollary we consider a state space equation

\[w(t + 1) = A(t)w(t), \ A \in \mathbb{C}(t)^{f \times t}, \ n_0 + \mathbb{N} \subseteq \text{dom}(A), \ t \geq n_0.\]

Moreover we assume that the rational matrix $A(t)$ is proper, i.e., that

\[A(\infty) := \lim_{t \to \infty} A(t) \text{ exists} \iff \lim_{t \to \infty} (A(t) - A(\infty)) = 0 \text{ and } w(t + 1) = A(\infty)w(t) + (A(t) - A(\infty))w(t).\]

The matrices $A(t)$ resp. $A(\infty)$ give rise to an LTV- resp. LTI-state space system.

\textbf{Corollary 3.17.} If $A(t)$ in (160) is proper then $w(t + 1) = A(t)w(t)$ is u.e.s. if and only if $w(t + 1) = A(\infty)w(t)$ is (u.e.s. or, in other terms, spec($A(\infty)$)) $\subset \mathbb{D} = \{z \in \mathbb{C}; \ |z| < 1\}$.

\textbf{Proof.} Recall that u.e.s. and e.s. are equivalent for constant matrices. For any

\[\epsilon > 0 \exists n_1 \geq n_0 \forall t \geq n_1 : \|A(t) - A(\infty)\| \leq \epsilon \Rightarrow \|(A(t) - A(\infty))w(t)\| \leq \epsilon \|w(t)\|.

This and Lemma 3.15 now imply the corollary. \[\square\]

It is open whether the e.s. of $w(t + 1) = A(t)w(t)$ instead of its u.e.s. and the existence of $A(\infty)$ also imply spec($A(\infty)$) $\subset \mathbb{D}$.

\textbf{Corollary 3.18.} Let $f = q^d + a_{d-1}q^{d-1} + \cdots + a_0 \in \mathbb{A} = \mathbb{C}(t)[q, \alpha]$ and assume that all a_j, $j = 0, \cdots, d - 1$, are proper. Define

\[a_j(\infty) := \lim_{t \to \infty} a_j(t) \text{ and } f_\infty := q^d + a_{d-1}(\infty)q^{d-1} + \cdots + a_0(\infty) \in \mathbb{C}[q].\]

Then the behavior $\mathcal{B}(A_f)$ is u.e.s. if and only if all roots of f_∞ belong to \mathbb{D}.\[\square\]
If in \(f = q - b, \ b \in \mathbb{C}(t) \), the coefficient \(b \) is not proper then \(\lim_{t \to \infty} |b(t)| = \infty \) and \(B(A) \) is not e.s. If \(B(A) \) is e.s., \(w \in B(f, n) \) and hence \(w(t) = b(t - 1) \cdots b(n)w(n) \) the e.s. of \(w \) implies \(|b(\infty)| < 1 \) and hence the u.e.s. of \((q-b)\circ w = 0 \). Thus \(B(A(q-b)) \) is e.s. if and only \(|b(\infty)| < 1 \).

Corollary 3.19. (cf. [2, Thm. 1037]) Assume the data of (147) and in addition that all coefficients \(a_{ij}(t) \in \mathbb{C}(t) \) of the \(p_n = q^{d(i)} + \sum_{j=0}^{d(i)-1} a_{ij}q^j \in A \) with \(M_{i-1}/M_i \cong A/\mathbb{A}p_i \) are proper. If all roots of all polynomials \(p_n, \infty = q^{d(i)} + \sum_{j=0}^{d(i)-1} a_{ij}(\infty)q^j \in \mathbb{C}[q] \) belong to \(\mathbb{D} \) then the behavior \(B(U) \) is e.s. If all \(d(i) = 1 \) or \(p_i = q - b_i, b_i := -a_{i0}, \) then \(B(U) \) is e.s. if and only if \(|b_i(\infty)| < 1 \) for all \(i \).

Definition 3.20. If the \(b_i \) in Cor. 3.19 exist they are called quasi-poles of \(B(U) \).

3.6 Special instability results

The following theorem is an unstable counter-part of Cor. 3.17. Its proof is an adaption of that of [5, Thm. 2] where the authors prove an analogue for nonlinear difference equations of an instability result of Chetaev for differential equations; cf. also [25, Thm. 23.6]. In the following let \(\|y\| \) resp. \(\|y\|_2 \) denote the maximum norm resp. the 2-norm on \(\mathbb{C}^\ell \). They obviously satisfy \(\|y\| \leq \|y\|_2 \leq q^{1/2}\|y\| \).

Theorem 3.21. Consider the system (160) with proper \(A(t) \) and assume that \(A(\infty) \) has at least one eigenvalue \(\alpha \) with \(|\alpha| > 1 \). Then

\[
\exists n_1 \geq n_0, 1/n \geq n_1 \exists w(n) \in \mathbb{C}^\ell, w(n) \neq 0, \forall t \geq n : \|w(t)\|_2 \geq p_1^{1-n} \|w(n)\|_2, \text{ hence also } \|w(t)\| \geq q^{-1/2} p_1^{1-n} \|w(n)\|.
\]

(163)

In particular, the system \(w(t+1) = A(t)w(t) \) is not e.s.

Proof. 1. The proof needs several steps and uses ideas from Lyapunov’s stability theory. For a matrix \(H = (H_{ij})_{\ell, \ell} \in \mathbb{C}^{\ell \times \ell} \) let \(H^* \) with \((H^*)_{ij} := H_{ji}^* \) be its adjoint. For \(y \in \mathbb{C}^\ell \) this implies \(y^*y = \|y\|^2_2 \). The matrix \(H \) is hermitian if \(H = H^* \). We choose \(\rho > 0 \) such that

\[
|\alpha|^{-1} < \rho < 1 \text{ and } \forall \lambda, \mu \in \text{spec}(A(\infty)) : \rho^2 \overline{\lambda} \mu \neq 1
\]

and define \(A_1(t) := \rho A(t), B := A_1(\infty) = \rho A(\infty). \) (164)

Then \(\text{spec}(B) = \rho \text{spec}(A(\infty)) \) contains \(\rho \alpha \) with \(|\rho \alpha| > 1 \) and thus \(A_1(t) \) satisfies the same hypotheses as \(A(t) \). Moreover \(\lambda \mu \neq 1 \) for all \(\lambda, \mu \in \text{spec}(B) \). By [18, Thm. 5.2.3] we infer the existence of a hermitian matrix \(P \) with

\[
B^*PB - P + I = 0, \quad I := \text{id}_\ell, \quad P = P^*.
\]

Define

\[
V(y) = -y^*Py \in \mathbb{R} \quad \text{for } y \in \mathbb{C}^\ell \implies V(By) = V(y) + \|y\|^2_2.
\]

The function \(V \) is a quadratic form. Choose an \(\epsilon > 0 \) such that \(I + \epsilon(I - B^*B) \) is positive definite. Then

\[
B^*(P + \epsilon I)B - (P + \epsilon I) + I + \epsilon(I - B^*B) = 0.
\]

(166)

Since \(B \) has the eigenvalue \(\rho \alpha \) with \(|\rho \alpha| > 1 \) the Lyapunov criterion implies that \(P + \epsilon I \) is not positive definite and hence

\[
\exists y \in \mathbb{C}^\ell, \ y \neq 0, \text{ with } y^*(P + \epsilon I)y = -V(y) + \epsilon \|y\|^2_2 \leq 0 \implies V(y) > 0.
\]

(167)
2. Consider any hermitian matrix $H = H^* \in \mathbb{C}^{\ell \times \ell}$. A standard matrix result says that

$$
\lambda_{\text{max}} := \max(\text{spec}(H)) = \max_{\forall y \neq 0 \in \mathbb{C}^\ell} \| y \|_2^2 (y^* H y) \quad \text{and} \quad |y^* H y| \leq \rho(H) \| y \|_2^2 \quad \text{with} \quad \rho(H) := \max \{ |\lambda| : \lambda \in \text{spec}(H) \}. \quad (168)
$$

For $H = -P$ from above equation (167) implies that $\lambda_{\text{max}} > 0$ and hence

$$\forall y \in \mathbb{C}^\ell : V(y) = y^* (-P) y \leq \lambda_{\text{max}} \| y \|_2^2. \quad \exists y_m \in \mathbb{C}^\ell : V(y_m) = \lambda_{\text{max}} \| y_m \|_2^2 > 0. \quad (169)$$

We now compute $V(A_1(t)y)$ for $t \geq n_0$. Since $A_1(t)$ is proper and $B = A_1(\infty)$ we write $A_1(t) = B + t^{-1}C(t)$ with proper and thus bounded $C(t)$ and conclude

$$V(A_1(t)y) = y^* (B + t^{-1}C(t))^*(-P)(B + t^{-1}C(t)) y = y^* B^*(-P) By + t^{-1}y^* H(t)y = V(By) + t^{-1}y^* H(t)y \quad (165)$$

where $H(t)$ is rational, proper, hermitian and bounded. Since $H(t)$ is bounded so is $\text{spec}(H(t))$. Define

$$\sigma := \sup \left\{ |\lambda| : \lambda \in \bigcup_{t \geq n_0} \text{spec}(H(t)) \right\} < \infty \quad \implies \quad \forall y \forall t \geq n_0 : |y^* H(t)y| \leq \sigma \| y \|_2^2 \implies V(A_1(t)y) \geq V(y) + (1 - t^{-1}\sigma) \| y \|_2^2. \quad (170)$$

Choose $n_1 \geq n_0$ such that

$$n_1 \geq \max(n_0, 2\sigma) \implies \forall t \geq n_1 : 1 - t^{-1}\sigma \geq 1/2 \implies \forall t \geq n_1 \forall y : V(A_1(t)y) \geq V(y) + 2^{-1} \| y \|_2^2 \geq (1 + 2^{-1}\lambda_{\text{max}}^{-1})V(y). \quad (172)$$

3. According to (169) choose a nonzero $y \in \mathbb{C}^\ell$ with $V(y) = \lambda_{\text{max}} \| y \|_2^2 > 0$. Let $n \geq n_1$ and consider the system $y(t+1) = A_1(t)y(t)$, $t \geq n$, $y(n) = y$. Equation (172) furnishes

$$\forall t \geq n : V(y(t+1)) \geq \left(1 + 2^{-1}\lambda_{\text{max}}^{-1}\right) V(y(t)), V(y(n)) = \lambda_{\text{max}} \| y(n) \|_2^2 > 0 \implies \text{induction} \quad V(y(t)) \geq \left(1 + 2^{-1}\lambda_{\text{max}}^{-1}\right)^{t-n} V(y(n)) \implies \lambda_{\text{max}} \| y(t) \|_2^2 \geq (1 + 2^{-1}\lambda_{\text{max}}^{-1})^{t-n} \lambda_{\text{max}} \| y(n) \|_2^2 \implies \forall t \geq n : \| y(t) \|_2 \geq \left(1 + 2^{-1}\lambda_{\text{max}}^{-1/2}\right)^{t-n} \| y(n) \|_2. \quad (173)$$

Finally consider the system

$$w(t+1) = A(t)w(t), \quad t \geq n, \quad \text{with} \quad V(w(n)) = \lambda_{\text{max}} \| w(n) \|_2^2 > 0 \quad (174)$$
and define \(y(t) := \rho^t w(t) \) with \(\rho \) from (164), especially \(y(n) = \rho^n w(n) \). Then
\[
y(t+1) = \rho^{t+1} w(t+1) = \rho A(t) \rho^t w(t) = A_1(t) y(t), \quad y(n) = \rho^n w(n) \text{ and}
\]
\[
V(y(n)) = \lambda_{\max} \| y(n) \|^2
\]
\[
\implies \forall n \geq 0 : \| y(t) \|_2 \geq \left(1 + 2^{-1} \lambda_{\max}^{-1/2}\right)^{t-n} \| y(n) \|_2
\]
\[
\implies \forall t \geq n : \| w(t) \|_2 \geq \rho_1^{t-n} \| w(n) \|_2 \text{ with } \rho_1 := (1 + 2^{-1} \lambda_{\max}^{-1/2})^{-1} \rho^{-1} > 1.
\]

Definition 3.22. Let \(R \in A^{p \times f}, U := A^{1 \times p}, B := B(U) \) and \(n_0 + N \subseteq \text{dom}(R) \).

The behavior \(B \) is called exponentially unstable (e.unst.) if
\[
\exists n_1 \geq n_0 \forall n \geq n_1 \exists w \in B(R, n) \exists d \in N \exists \rho > 1 \exists \varepsilon > 0 \forall t \geq n : c \rho^t \leq \| x(t) \|
\]
where \(x(t) := (w(t), \ldots, w(t+d)). \)

The trajectory \(w \) from (176) is also called e.unst..

Lemma 3.23. Exponential instability is preserved by isomorphisms.

Proof. We use the data from Lemma 3.7 and obtain for sufficiently large \(n_1 \geq n_0 \) and \(n \geq n_1 \) surjections \(P_1 \circ B(R_1, n) \to B(R_1, n) \). Assume that \(w_1 \in B(R_1, n) \) is an e.unst. trajectory, i.e.,
\[
\forall t \geq n : c_1 \rho_1^t \leq \| x_1(t) \|, \quad x_1(t) := (w_1(t), \ldots, w_1(t+d)), \quad d \in N, \quad c_1 > 0, \quad \rho_1 > 1.
\]

Let \(w_2 \in B(R_2, n) \) be an inverse image with \(w_1 = P_1 \circ w_2 \). As in the proof of Lemma 3.7 we derive the existence of \(c_2 > 0 \) and \(m \in N \) such that
\[
\forall t \geq n : \| w_1(t) \| \leq c_2 t^m \max(\| w_2(t) \|, \ldots, \| w_2(t+d) \|) \implies \\
\forall t \geq n : \| x_1(t) \| \leq c_2 t^m \| x_2(t) \|, \quad x_2(t) := (w_2(t), \ldots, w_2(t+d)), \quad d \in N
\]
\[
\forall t \geq n : \frac{c_1 \rho_1^t}{c_2 t^m} \leq \| x_2(t) \|.
\]

For any \(1 < \rho_2 < \rho_1 \) there is a \(c_3 > 0 \) such that
\[
c_2 t^m d \leq c_3 \rho_2^t, \quad t \geq 1 \implies \forall t \geq n : \frac{c_1 \rho_1^t}{c_3 \rho_2^t} \leq \| x_2(t) \| \implies \\
c_4 \rho_2^t \leq \| x_2(t) \|, \quad c_4 := c_1 c_3^{-1}, \quad \rho_3 := \rho_1 \rho_2^{-1} > 1.
\]

Corollary 3.24. If under the assumptions of (117) and (118) the behaviors \(B_1 \) or \(B_3 \) are exponentially unstable then so is \(B_2 \).

Proof. Due to Lemma 3.23 the proof proceeds like 1. and 2. of that of Thm. 3.11.

Corollary 3.25. If under the assumptions of (147) all \(p_i \) are proper and at least one \(p_{1,\infty} \) (cf. Cor. 3.19) has a root of absolute value \(> 1 \) then the behavior \(B(U) \) is exponentially unstable.
4 Standard consequences of the duality theorem

We show that the duality theorem Thm. 1.6 and especially the exactness of the duality functor imply various important results well-known from LTI-systems theory. The proofs are slight variants of those of the corresponding LTI-results.

1. Connection with the LTI-theory: The relevant LTI-theory is that with the signal module \(\mathbb{C}[q]^{\mathbb{C}^N}\) where \(\mathbb{C}[q]\) is the commutative polynomial algebra of difference operators with constant coefficients. The partial fraction decomposition furnishes

\[
\mathbb{C}(t) = \bigoplus_{i=0}^{\infty} C t^i + \bigoplus_{\omega \in \mathbb{C}} \sum_{i=1}^{\infty} \mathbb{C}(t - \omega)^{-1}, \quad \text{hence also}
\]

\[
\mathbb{A} = \bigoplus_{j=0}^{\infty} \mathbb{C}(t) q^j = \bigoplus_{i=0}^{\infty} \mathbb{C}[q] \bigoplus_{\omega \in \mathbb{C}} \sum_{i=1}^{\infty} (t - \omega)^{-1} \mathbb{C}[q].
\]

This implies that the right \(\mathbb{C}[q]\)-module \(\mathbb{A} \otimes \mathbb{C}[q]\) is free and therefore faithfully flat \([1, Prop. I.3.9]\), i.e. the functor

\[
\mathbb{C}[q] \text{Mod} \to \mathbb{A} \text{Mod}, \quad M \mapsto \mathbb{A} \otimes \mathbb{C}[q] \cdot M,
\]

preserves and reflects exact sequences. In particular, \([1, Prop. I.3.9]\), i.e., the functor

\[
\forall V \subseteq \mathbb{C}[q]^{1 \times \ell} : V = \mathbb{C}[q]^{1 \times \ell} \cap \mathbb{A} V \text{ where}
\]

\[
\mathbb{A} V = \mathbb{A} \otimes \mathbb{C}[q] V \subseteq \mathbb{A} \otimes \mathbb{C}[q] \cdot \mathbb{C}[q]^{1 \times \ell} = \mathbb{A}^{1 \times \ell}.
\]

If \(V = \mathbb{C}[q]^{1 \times k} \cdot R, \quad R \in \mathbb{C}[q]^{k \times \ell}\), then \(\mathbb{A} V = \mathbb{A}^{1 \times k} \cdot R\) and the associated LTI- resp. LTV-behaviors are

\[
V^\perp := \{ w \in (\mathbb{C}^N)^\ell : R \circ w = 0 \} = B(R, 0) \text{ resp. } B(\mathbb{A} V) = \text{cl} (\{(B(R, n))_{n>0} \}.
\]

If \(V_1, V_2 \subseteq \mathbb{C}[q]^{1 \times \ell}\) are two submodules the cogenerator property of \(\mathbb{C}[q]^{\mathbb{C}^N}\), Thm. 1.6, (3), and (179) imply

\[
V_1 \subseteq V_2 \iff V_1^\perp \subseteq V_2^\perp \iff \mathbb{A} V_1 \subseteq \mathbb{A} V_2 \iff B(\mathbb{A} V_2) \subseteq B(\mathbb{A} V_1).
\]

These equivalences also follow from the isomorphisms

\[
q^n : \mathbb{C}^{n+\mathbb{N}} \cong \mathbb{C}^n, \quad q^n : B(R, n) \cong B(R, 0).
\]

Hence the map

\[
\{\text{LTI-behaviors}\} \to \{\text{LTV-behaviors}\}, \quad V^\perp \mapsto B(\mathbb{A} V),
\]

is injective and preserves and reflects inclusions. Therefore we identify

\[
\forall R \in \mathbb{C}[q]^{k \times \ell}, \quad V = \mathbb{C}[q]^{1 \times k} \cdot R ; \quad B(R, 0) = V^\perp = B(\mathbb{A} V) = \text{cl} (\{(B(R, n))_{n>0}\}.
\]

Due to (178) and (184) the LTI-theory of \(\mathbb{C}[q]^{\mathbb{C}^N}\)-behaviors is fully embedded into the LTV-theory of this paper.

2. Exponential stability in the LTI- resp. LTV-theory: As in item 1. consider \(R \in \mathbb{C}[q]^{k \times \ell}\) and \(V = \mathbb{C}[q]^{1 \times k} \cdot R\). Assume that \(V^\perp = B(R, 0) \subseteq (\mathbb{C}^N)^\ell\) is autonomous, i.e., \(\text{rank}(R) = \ell\). The characteristic variety of the torsion module \(M = \mathbb{C}[q]^{1 \times \ell} \cdot V\) or of the behavior \(V^\perp\) is

\[
\text{char}(M) := \text{char}(V^\perp) = \{ \lambda \in \mathbb{C} : \text{rank}(R(\lambda)) < \text{rank}(R) = \ell \} = \{ \lambda \in \mathbb{C} : V^\perp \cap \mathbb{C}[t]^{\ell} \lambda^\ell \neq 0 \} \text{ where } \mathbb{C}[t]^{\ell} \lambda^\ell := \mathbb{C}[t^\ell]^\mathbb{N} \text{ for } \lambda = 0.
\]
The characteristic variety gives rise to the modal decomposition
\[
V^\perp = \bigoplus_{\lambda \in \text{char}(V^\perp)} \left(V^\perp \cap \mathbb{C}[t]^{\ell} \lambda^t \right).
\] (186)

It implies that \(V^\perp\) is asymptotically or exponentially stable if and only if \(\text{char}(V^\perp) \subset \mathbb{D} := \{z \in \mathbb{C}; |z| < 1\}\). The Smith form implies an isomorphism
\[
M \cong \prod_{i=1}^r \mathbb{C}[q]/\mathbb{C}[q]f_i, \ f_i \in \mathbb{C}[q], \ \deg_q(f_i) > 0 \implies
\text{char}(M) = \bigcup_{i=1}^r V_C(f_i), \ V_C(f_i) := \{\lambda \in \mathbb{C}; f_i(\lambda) = 0\}.
\] (187)

Hence \(V^\perp\) is asymptotically stable if and only if all roots of all \(f_i\) lie in \(\mathbb{D}\). The isomorphism in (187) also implies
\[
A^{1 \times \ell}/A \cong \mathbb{A} \otimes_{\mathbb{C}[q]} M \cong \prod_{i=1}^r A/Af_i, \implies B(AV) \cong \prod_{i=1}^r B(Af_i).
\] (188)

According to Cor. and Def. 3.19 \(B(AV)\) is e.s. in the sense of this paper if and only if all roots of all \(f_i\) lie in \(\mathbb{D}\). Hence asymptotic stability of the LTI-behavior \(V^\perp\) and the LTV-e.s. of \(B(AV)\) coincide.

3. Willems’ elimination: Let
\[
P \in A^{\ell_2 \times \ell_1}, \ U_1 \subset A^{1 \times \ell_1}, \ B_1 := B(U_1),
U_2 := (\circ P)^{-1}(U_1) := \{\eta \in A^{1 \times \ell_2}; \ \eta P \in U_1\}, \ B_2 := B(U_2).
\] (189)

The monomorphism \((\circ P)_{\text{ind}} : A^{1 \times \ell_2}/U_2 \to A^{1 \times \ell_1}/U_1, \ \eta + U_2 \mapsto \eta P + U_1, \) and Thm. 1.6,(1), imply the epimorphism
\[
P \circ : B(U_1) \to B(U_2) \text{ or } P \circ B(U_1) = B(U_2).
\] (190)

Hence the image of a behavior under a difference operator \(P \in A^{\ell_2 \times \ell_1}\) is again a behavior. In Willems’ language the behaviors of this paper admit elimination. Note that Willems considered projections of the form
\[
P = ([id_{\ell_2}, 0] \in A^{\ell_2 \times (\ell_2 + n)} \) and \(P \circ : (w \ x) \mapsto w
\] (191)

only and thus eliminated the \(n\) so-called latent variables \(x_i\), for instance the state \(x\).

4. Ehrenpreis’ fundamental principle: Consider the behavior \(\mathcal{W} = \text{cl} \{(\mathbb{C}^{n+N})_{n \geq 0}\} = \mathcal{B}(0)\) and an exact sequence of modules and its dual exact sequence of behaviors
\[
A^{1 \times \ell_3} \xrightarrow{\circ Q} A^{1 \times \ell_2} \xrightarrow{\circ P} A^{1 \times \ell_1}, \ \text{hence } A^{1 \times \ell_3}Q = \{\eta \in A^{1 \times \ell_2}; \ \eta P = 0\},
\mathcal{W}^{\ell_1} \xrightarrow{P \circ} \mathcal{W}^{\ell_2} \xrightarrow{Q \circ} \mathcal{W}^{\ell_3}, \ \text{hence } P \circ \mathcal{W}^{\ell_1} = \ker(Q \circ),
\implies \exists n_1 \forall n \geq n_1 : P \circ (\mathbb{C}^{n+N})^{\ell_1} = \{ u \in (\mathbb{C}^{n+N})^{\ell_2}; \ Q \circ u = 0 \}.
\] (192)

This implies that for \(n \geq n_1\) the equation \(P \circ w = u, \ u \in (\mathbb{C}^{n+N})^{\ell_2}\), has a solution \(w \in (\mathbb{C}^{n+N})^{\ell_1}\) if and only if \(Q \circ u = 0\) or \(\eta \circ u = 0\) if \(\eta P = 0\).

5. Input/output structures: Let \(R \in A^{k \times \ell} \subset K^{k \times \ell}\) of rank \(p := \text{rank}(R)\) where
\[K := \text{quot}(A) \text{ (cf. (80)-(82)). Then there are various choices of } p \text{ columns of } R \text{ that are a basis of the column space } RK^\ell \text{ of } R. \text{ After the standard column permutation one writes } R = (P, -Q) \in K^{k \times (p+m)}, \ell = p + m, \text{ and obtains } \text{rank}(R) = \text{rank}(P) = p \text{ and the unique transfer matrix } H \in K^{p \times m} \text{ with } PH = Q. \text{ Define } \]

\[U := A^{1 \times k}(P, -Q), U^0 := A^{1 \times k}P, M := A^{1 \times (p+m)}/U, M^0 := A^{1 \times p}/U^0, \]

\[\mathcal{B} := \mathcal{B}(U), \mathcal{B}^0 := \mathcal{B}(U^0). \]

Since \(P \in A^{k \times p} \text{ and rank}(P) = p \) the module \(M^0 \) is torsion and \(\mathcal{B}^0 \) is autonomous. In analogy to the LTI-case the sequence of \(A \)-modules

\[0 \to A^{1 \times m} \xrightarrow{(c(0, \text{id}_m))_{\text{ind}}} M = A^{1 \times (p+m)}/U \xrightarrow{(s \text{id}_p)} M^0 = A^{1 \times p}/U^0 \to 0 \]

(\((0, \text{id}_m) \) \(\text{ind} \text{ : } \eta \mapsto (0, \eta) + U, (\text{id}_p) \text{ ind} \text{ : } (\xi, \eta) + U \mapsto \xi + U^0 \)

is exact. Conversely, the exactness of this sequence and the torsion property of \(M^0 \)

imply \(\text{rank}(P, -Q) = \text{rank}(P) = p \). The decomposition \(R = (P, -Q) \) is called an input/output (IO) decomposition or structure of \(R \), \(M \) or \(\mathcal{B} \). The description by the exactness of (194) shows that the structure depends on \(M \), but not on the special choice of \(R \). The exactness of the module sequence (194) implies that of the behavior sequence \((\mathcal{W} = cl ((\mathbb{C}^{n+m})_{n \geq 0})) \)

\[0 \to \mathcal{B}^0 \xrightarrow{(0, \text{id}_m)_{\text{ind}}} \mathcal{B} \xrightarrow{(0, \text{id}_m)_{\text{ind}}} \mathcal{W}^m \xrightarrow{u} 0. \]

For sufficiently large \(n_1 \) and \(n \geq n_1 \) this implies the exactness of

\[0 \to \mathcal{B}(P, n) \xrightarrow{(u, p)_{\text{ind}}} \mathcal{B}((P, -Q), n) \xrightarrow{(0, \text{id}_m)_{\text{ind}}} (\mathbb{C}^{n+m})^m \xrightarrow{u} 0 \]

where \(\mathcal{B}(P, n) = \left\{ y \in (\mathbb{C}^{n+m})^P; P \circ y = 0 \right\} \) and \(\mathcal{B}((P, -Q), n) = \left\{ (u) \in (\mathbb{C}^{n+m})^{p+m}; P \circ y = Q \circ u \right\} \).

Hence the component \(u \) of a trajectory \((u) \) of \(\mathcal{B}((P, -Q), n) \), \(n \geq n_1 \), is free, i.e., can be freely chosen as input, but there is no larger component with this property. Up to the introduction of the initial time \(n_1 \) this is the standard LTI-result.

The e.s. of an IO-behavior \(\mathcal{B} \) is defined by that of its autonomous part \(\mathcal{B}^0 \). Using this we finally prove Cor. 1.9 with the help of [11, §2.4]. With the data from (129) and (130) consider, for sufficiently large \(n \), IO-behaviors

\[\mathcal{B}_1(n) := \left\{ \begin{array}{l} (u_1) \in (\mathbb{C}^{n+m})^k; R_1 \circ w_1 + Q \circ u_1 = 0 \end{array} \right\}, \]

\[\mathcal{B}_2(n) := \left\{ \begin{array}{l} (u_3) \in (\mathbb{C}^{n+m})^k; R_3 \circ w_3 + R \circ u_3 = 0 \end{array} \right\} \]

where \((R_1, Q) \in A^{k \times (k+1)} \). The conditions \(R_i \in A^{k \times k} \) and \(\text{rank}(R_i) = \ell_i \) for \(i = 1, 3 \) imply that these \(\mathcal{B}_i \) are indeed IO-behaviors. The series interconnection of first \(\mathcal{B}_1 \) and then \(\mathcal{B}_3 \) is given by

\[\mathcal{B}(n) := \left\{ \begin{array}{l} (u_1, u_3) \in (\mathbb{C}^{n+m})^{k+k}; R_3 \circ u_3 + R \circ w_1 + Q \circ u_1 = 0 \end{array} \right\} \]
and is itself an IO-behavior with input u_1. Its autonomous part is
\[
\mathcal{B}^0(n) := \left\{ \begin{pmatrix} w_3 \\ u_1 \end{pmatrix} \in \left(\mathbb{C}^{n+N} \right)^{f_3+f_1}; R_3 \circ w_3 + R \circ u_1 = 0, \quad R_1 \circ u_1 = 0 \right\} = \mathcal{B}_2(n).
\]
(199)

So Cor. 1.9 is indeed a simple consequence of Thm. 1.8.

6. Controllability: The behavior $\mathcal{B}(U), \; U \subseteq \mathbb{A}^{1 \times f}$, is called controllable if its module $M = \mathbb{A}^{1 \times f}/U$ is torsionfree and thus free, cf. (79). This is equivalent to the existence of an image representation (Willems) or parametrization (Pommaret), i.e., an epimorphism $P_0: W^m = \mathcal{B}(0)^m \to \mathcal{B}(U)$, i.e., of surjections $P_0: W(n)^m \to \mathcal{B}(R, n)$ for sufficiently large $n \geq n_1$. This also means that trajectories of $\mathcal{B}(U)$ can be concatenated as usual, but only after the time instant n_1. If $\text{tor}(M) = V/U$ then $\mathcal{B}_{\text{cont}}(U) := \mathcal{B}(V)$ is the largest controllable subbehavior of $\mathcal{B}(U)$. The isomorphisms (72), (79) imply $\text{tor}(M) \cong \prod_{i=1}^r \mathbb{A}/\mathbb{A} f_i$ and $M \cong \mathbb{A}^{f_2-r} \times \text{tor}(M)$ and thus the controllable-autonomous decomposition
\[
\mathcal{B}(U) \cong W^{f_2-r} \times \left(\prod_{i=1}^r \mathcal{B}(\mathbb{A} f_i) \right).
\]
(200)

7. A larger coefficient field than $\mathbb{C}(t)$, cf. [22, Ex. 1.2]: Consider $m \geq 1$ and the locally convergent Laurent series $a(z) = \sum_{i=k}^{\infty} a_i z^i, \; k \in \mathbb{Z}$, with $\sigma(a) := \lim \sup_{i \geq 0} \sqrt[i]{|a_i|} < \infty$. Standard complex variable theory shows that $a(z)$ is a holomorphic function in the annulus $\{ z \in \mathbb{C} ; 0 < |z| < \sigma(a)^{-1} \}$. Therefore the function $f(t) := a(t^{-1/m})$ of the real variable t is a smooth function in the interval $[\sigma(a)^m, \infty)$, in particular it has no poles for $t > \sigma(a)^m$. Also there is a $\tau > \sigma(a)^m$ such that $f(t)$ has no zeros for $t \geq \tau$. Like in the case of rational functions we identify $f = (f(t))_{t \in \mathbb{N}, t > \sigma(a)^m}$. These sequences form a field F that has the properties (i)-(iv) of Remark 1.1.(a). The field F is isomorphic to the algebraic closure of the field $\mathbb{C}(a(z))$ of locally convergent Laurent series and contains $\mathbb{C}(t) = \mathbb{C}(t^{-1})$. Examples for such sequences are $(t \cos(t^{-1/2}))_{t \geq 1}$ or $(\exp(t^{-1}))_{t \geq 0}$, but not $(\cos(t))_{t \geq 0}$.

8. Stabilization: In [20] the method of this paper and that of [3] are used for the construction and (Kučera-Youla)-parametrization of all stabilizing compensators for tracking, disturbance rejection and model matching of a stabilizable LTV-differential system. The differential analogue of Thm. 1.8 turns out to be a decisive tool.

Acknowledgement: We thank the three reviewers and the associate editor for their comprehensive reports, valuable criticism and various suggestions that essentially improved the paper’s presentation.

References

REFERENCES

REFERENCES

