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Abstract – Queen reproductive potential (=quality) impacts the health and productivity of honey bee colonies. To
determine the factors that affect reproductive quality during development, we tested queens produced under larval
treatments by supplementing the diet with juvenile hormone (JH), additional sugars, or both, compared to untreated
control. Furthermore, we varied the age of the larvae that were grafted (1 and 3 days old). We analyzed newly
emerged virgin queens for their morphological characters as proxies for their reproductive potential. We found that
the application of a sugar-enriched diet in combination with JH application onto 1st instar queen larvae produced
higher-quality queens, while for 3rd instar larvae only the JH treatment resulted in increasing queen quality. For
mated queens, those treated with JH plus supplemented sugars showed a significantly higher sperm count and sperm
viability. Our findings demonstrate that honey bee queen reproductive potential can be increased through diet
supplementation.

honeybee queens / queen quality / geometricmorphometry / queen larval diet / juvenile hormone

1. INTRODUCTION

In honey bees (Apis mellifera L.), the repro-
ductive capacity of a colony’s queen is critical for
worker production and colony growth, which re-
sults in higher colony fitness and successful
swarms. However, there are major differences in
how queens are produced and selected for the

purpose of swarming and colony fitness, as well
as how queens are produced in a managed context
by beekeepers. During reproductive swarming of
a wild or unmanaged colony, the colony’s queen
exhibits a reduction in her reproductive output
through decreased oviposition. Her pheromones,
which usually would inhibit the production of
new queens (Pankiw et al. 2004), are less circu-
lated among nestmates. Thereby, the colony is
stimulated to produce new queen cells, enabling
the old queen to leave the colony with a swarm
just prior to the emergence of her daughter queens
(reviewed by Winston 1987 and Seeley 2010). In
contrast, beekeepers require large numbers of
queens to restock their colonies, especially in
countries that rely on packaged bees to raise new
colonies, which are commonly produced by arti-
ficial queen rearing (see Laidlaw and Page 1997).
During artificial queen rearing, eggs or, more
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frequently, young worker larvae are Bgrafted^ into
queen cells that are then introduced into a
queenless hive environment, stimulating the
queen-rearing behavior of nurse bees that feed
the worker larvae royal jelly (Dedej et al. 1998;
Tarpy et al. 2000). Because female larvae are
totipotent until their third day of larval develop-
ment, they are equally capable of developing into
workers or queens. Those fed constantly with
royal jelly are effectively raised as queens
(Weaver 1957; He et al. 2017). Whether queens
are reared naturally or artificially, they are none-
theless a critical component to colony fitness and
productivity. Thus, maximizing their reproductive
potential is of fundamental importance to both
colonies and beekeepers (Amiri et al. 2017).

The quality of newly emerged queens is usually
quantified by various external morphological fea-
tures including thoracic width, wing length, and
wet weight (Woyke 1971; Dedej et al. 1998;
Hatch et al. 1999; Tarpy et al. 2000, 2011;
Delaney et al. 2011; De Souza et al. 2013). Such
morphological measures are convenient proxies
for overall body size, which is highly associated
with mating success (Delaney et al. 2011; Tarpy
et al. 2011) and queen attractiveness to drones at
mating flights (Nelson and Gary 1983; Gilley
et al. 2003; Rangel et al. 2016). Queen size, and
its associated phenotypes, is dictated almost en-
tirely by the larval rearing environment, most
notably the diet of royal jelly that the larvae re-
ceive throughout their development (Haydak
1970; Hartfelder et al. 2015) and temperature
(deGrandi-Hoffman et al. 1993). The develop-
mental trajectory toward high fertility is best
quantified by measuring the capacity of the
queen’s ovaries and the spermatheca, the sperm
storage organ. The size of these two organs is
strongly associated with increased body weight
at emergence, which has been used to score repro-
ductive fitness among queens (Hoopingarner and
Farrar 1959; Woyke 1967, 1971; Corbella and
Gonçalves 1982; Dedej et al. 1998; Kahya et al.
2008; Tarpy et al. 2011).

The larval nutritional state, which is linked to
the age of the larva selected for queen rearing, is
directly related to the queens weight at emergence
(Weaver 1957; Woyke 1971; Sagili et al. 2018).
Older worker larvae shunted toward queen

development emerge with fewer ovarioles and
smaller spermathecae, resulting in a reduction in
the number of sperm stored after their mating
flights (Weaver 1957; Woyke 1971; Dedej et al.
1998; Tarpy et al. 2011). The importance of this
variation in queen reproductive potential (=quali-
ty) is reflected in the productivity of their colonies.
Some field studies have found that high-quality
queens produced from newly hatched larvae and
weighing more than 200 mg at adult emergence
headed significantly larger colonies than low-
quality queens produced from old larvae and
weighing less than 180 mg at emergence. Queens
weighing over 200 mg headed colonies with
higher brood populations, more stored pollen,
and population growth (De Souza et al. 2013;
Rangel et al. 2013).

The interaction between genetic background
and rearing environment (the treatment provided
by the nurses during the ontogenic development)
is a crucial factor in the development of the fe-
male’s fertility (Page and Fondrk 1995; Nijhout
2003; Kucharski et al. 2008; Leimar et al. 2012).
The mechanisms underlying this interaction have
attracted the attention of researchers for well over
a century (reviewed by Hartfelder et al. 2015).
The effects of differential feeding at the larval
stage on fertility at adulthood and the intrinsic
physiological and signaling pathways that drive
this process have long been a focus of honey bee
research. The role of juvenile hormone (JH) as an
inducer of ovarian development at the beginning
of the larval phase is well established (Hartfelder
and Engels 1998; Hartfelder and Emlen 2012).
However, considerable progress on models of
caste development has brought back into focus
the role of sugar concentrations in larval food,
which regulates the JH titers in the natural caste
determination process (Leimar et al. 2012).

The commercialization and increased accessi-
bility of synthetic JH (Staal 1971) enabled further
advances in studies on the pleiotropic role of this
hormone in insect metamorphosis and caste deter-
mination in general, particularly in honey bee
queen development (Weaver 1974; Rembold
et al. 1974a, b; Wirtz and Beetsma 1972). Specif-
ically, the topical application of JH on worker
larvae enabled the classic discovery of JH regula-
tion of ovary development. High levels of JH in
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queen larvae during the last larval instar inhibit
apoptosis in the ovary germ-cell clusters, preserv-
ing the development of ovarian filaments and
resulting in highly fecund queens (Rachinsky
and Hartfelder 1998; Rachinsky et al. 1990;
Hartfelder and Steinbrück 1997; Schmidt
Capella and Hartfelder 1998).

The role of JH during ovary development is not
exclusive. Older inquiries have demonstrated the
important role of sugars as phagostimulants,
which results in increased JH synthesis in the
corpora allata (Dogra et al. 1977; Rachinsky
and Hartfelder 1998). The levels of different
sugars (e.g., glucose and fructose) in the diet
provided to honey bee female larvae change over
the course of the first three larval instars when the
larvae are totipotent (Asencot and Lensky 1985,
1988). While newly hatched worker larvae re-
ceive glandular secretions (worker jelly) with
low levels of sugars that gradually rise through
the larval instars, queen larvae receive a diet com-
posed of higher sugar levels throughout the larval
stage (Wang et al. 2016). Moreover, regulatory
factors of physiological pathways in caste deter-
mination have been described through the integra-
tion of nutrient-sensing systems, in which the
insulin–insulin-like signaling (IIS) and target-of-
rapamycin (TOR) pathways play key roles in
translating external nutritional signals to internal
signals, biasing a larva’s fate to the queen or
worker adult phenotype (Patel et al. 2007; Mutti
et al. 2011).

Despite these well-documented studies on
caste development and their implications on re-
productive potential, it is yet unknown if queen
quality is already maximized in naturally reared
queens (Sagili et al. 2018) or if there are any
constraints during ontogenic development that
can be artificially overridden to further improve
reproductive quality. We hypothesized that the
supplementation of the sugar levels in the diet
provided to the larva at queen rearing and/or treat-
ment of young larva with JH analogues could
provide benefits to the reproductive quality of
adult honey bee queens produced by grafting.
Here, we demonstrate how these manipulations
affect adult queen morphology and reproductive
quality. Specifically, we show that queen quality
can be increased in vivo by supplementing the

royal jelly diet within queen cells with JH analog,
additional sugars, or both. Our findings provide
significant insights into reproductive development
and fertility potential of honey bee queens.

2. MATERIAL AND METHODS

2.1. Queen rearing and sample collection

This studywas conducted at the North Carolina
State University Lake Wheeler Honey Bee Re-
search Facility (Raleigh, North Carolina). We
reared queens by grafting worker larvae of differ-
ent age into queen cups to produce queens of
either high or low reproductive quality by
selecting younger and older larvae, respectively
(Tarpy et al. 2011). We collected all queen-
destined larvae from the same parent colony of
BItalian^ bees, presumably derived from Apis
mellifera ligustica . Thus, all experimental sub-
jects were sisters to each other. For each of two
rounds of queen rearing, the colonies’ queens
were caged for 8h and the single age cohort of
larvae was identified by marking their position at
the brood comb on an acetate sheet. For the high-
quality queens (HQ), we grafted newly emerged
larvae (1 day old) into queenless queen-rearing
colonies and returned the brood frame to the par-
ent colony. For the low-quality queens (LQ), we
grafted a second set of larvae from the same brood
source frame 2 days later (now 3 days old). Older
larvae are not well accepted in queen-rearing col-
onies that already contain higher-quality queen
larvae; thus, separate queen-rearing colonies were
used for the LQ queens to ensure acceptance of
the LQ queen larvae. This standard procedure
resulted in two aged matched sets of queens, one
of high reproductive quality (HQ) and the other of
lower reproductive quality (LQ) (reviewed in
Büchler et al. 2013).

We established four cell-builder colonies by
removing their queen, ensuring adequate worker
populations and supplementing their diet with
50% sucrose solution and pollen. Two cell-
builder colonies were designated for testing on
HQ larvae and two colonies were designated for
LQ larvae. When the queen larvae were in the 4th
instar, approximately 3 and 1 days after grafting,
we supplemented the naturally provisioned royal
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jelly with acetone only (control), JH only, addi-
tional sugars only, or both JH and additional
sugars (Table I). Treatment positions were alter-
nated within each queen-rearing colony to mini-
mize any possible confounding effects of their
localization in the colony. We applied juvenile
hormone (SIGMA-ALDRICH #J2000-50MG),
diluted in acetone, by pipetting 1 μL directly onto
the surface cuticle of each larva at a dose of 2 μg
JHIII/μL of stock solution. An acetone control
group was included to account for any negative
effects of the acetone solvent used to dilute the
JHIII. For this acetone control group, 1 μL of pure
acetone was deposited onto the surface of the
larva cuticle. An untreated control group without
any acetone treatment was not required for the
following reasons. First, acetone is highly volatile
and evaporates from the surface of the larva rela-
tively quickly, especially when such a small vol-
ume is applied (1 μL). Second, the acetone never
persisted in the queen cells because the acetone
was applied on the larval cuticle and not into the
diet. For the sugar supplementation treatments, we
mixed a diet of 53% frozen royal jelly
(GloryBee®), 20% of glucose (SIGMA-AL-
DRICH #G7021-1kg), 20% of fructose (SIG-
MA-ALDRICH #F0127-1kg), and 7% of ddH2O.
This recipe for supplementing sugars in queen-
rearing diet was based on the basic components of
established artificial diets for rearing larvae
in vitro (Rembold and Lackner 1981). For this
study, we focused on maximizing the sugar and
royal jelly components. All increases in sugar and
royal jelly amounts were balanced with a decrease
in water content. Using trial and error (data not

reported), we determined that the maximum
amount of sugars that was dissolvable in the min-
imum amount of water was 20% glucose and 20%
fructose. These sugar and water amounts then
dictated the amount of royal jelly that we added.
We then used a 3-mL syringe (FISHER #14-826-
5D) with an 18-gauge needle (FISHER #14-817-
52) to dispense 100 μL of the viscous diet into the
royal jelly already present within each queen cell.
Each acetone control larva that did not receive any
additional sugar was given the same amount of
supplemented food diet consisting of royal jelly
and water but without the additional sugars. After
food supplementation, we waited 5 min after ap-
plication to allow any potentially noxious vola-
tiles to vaporize. We then returned the larvae to
their respective rearing colonies. We removed the
capped queen cells from each colony and allowed
the queens to emerge into individual glass vials
held inside of an incubator set at 34 °C (Laidlaw
and Page 1997). We checked the incubated
capped cells for queen emergence once a day,
and we noted the adult emergence success for
each experimental group (Table II).

2.2. Newly emerged virgin queen assessments

Virgin queens from each experimental
group were frozen immediately after emer-
gence and evaluated for their potential fecun-
dity. First, we recorded the wet body weight
(± 0.1 mg) of each virgin queen using a dig-
ital scale. Second, we measured their thorax
width and head width (± 0.1 mm) using digi-
tal calipers. Third, we removed one of the two
hind legs from each queen and mounted it on
a glass slide to determine their respective
basitarsus index (length—width ratio mea-
sured at × 40) using an ocular micrometer.
Fourth, we removed one of the two forewings
from each queen and mounted it on a glass
slide to measure wing length using an ocular
micrometer (measured at × 40).

2.3. Open-mated queen assessments

We produced a second subset of high-quality
queens that were all derived from larvae grafted at
1 day old. These larvae were treated with either JH

Table I. Experimental groups used in this study.

High-quality grafting
larvae (1st Instar)

Low-quality grafting
larvae (3rd instar)

(1) Control 1 = acetone
only

(5) Control 2 = acetone
only

(2) Sugar
supplementation (T1)

(6) Sugar
supplementation (T1)

(3) JH (T2) (7) JH (T2)

(4) JH plus sugar
supplementation (T3)

(8) JH plus sugar
supplementation (T3)
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plus additional sugars (treatment T3) or acetone
(control) to assess queen mating success. We de-
cided to choose the T3 group over the T1 (sugar
supplementation only) and T2 (JH only) group
because the T3 group had the highest potential
to produce high-quality queens based on the mor-
phometric data on virgin queens, thus testing the
extremes as a priority over intermediate groups.
We established 10 mating nucleus colonies from
unrelated hive sources for rearing queen cells for
each of the two experimental groups. We recorded
each virgin queen’s body weight immediately af-
ter emergence before introducing her to her re-
spective mating nucleus. After each queen suc-
cessfully mated and initiated oviposition, we
sacrificed her to measure her ovary weight, sper-
matheca diameter, total sperm count, number of
sperm, and sperm viability. We quantified all
spermmeasurements by dissecting the spermathe-
ca from each queen and placing it into 1000 mL of
saline buffer (0.9% NaCl) and rupturing it with

forceps to mix. The solution was pipetted into an
amber chromatography vial containing 10 mL of
Syber 14 (Invitrogen Live/Dead sperm staining kit
#L7011; 1mM in DMSO) diluted 1:500 into
dimethylsulfoxide (99.8%) and 10 mL propidium
iodide solution (2.4 mM in water). We vortexed
each vial for 2 s at 2000 rpm to homogenize the
mix but avoid shearing of sperm (which increases
mortality). We allowed the homogenized mix to
sit a minimum of 5 min to ensure an adequate
uptake of the dyes into the cells. We quantified the
samples using a Nexcelom Cellometer® Vision
Cell Counter with settings for the fluorescence at
1200 ms for the Syber 14 (which binds to the
acrosome of live sperm cells) and 7000 ms for
the propidium iodide (which binds to the acro-
some of dead sperm cells). We counted each sam-
ple three times in different locations to mitigate
clumping, taking the average sperm count and
viability for each queen. After dissection, we also
measured the queen’s head width, thorax width,

Table II. Grafting replicates and emergence success of different experimental groups: high-quality (HQ) grafting
larvae (1-day old), reared at QR2 and QR4 colonies and low-quality (Q) grafting larvae (3-day old), reared at QR1
and QR3 colonies.

Experimental
groups

Rearing
colony

Experimental
group

Number grafted
and treated
larvae

Number
emerged*

% successful
emergence

Acetone only QR2 HQ 13 11 84.6

QR4 HQ 23 19 82.6

QR1 LQ 48 22 45.8

QR3 LQ 48 18 37.5

Sugar
augmentation

QR2 HQ 22 13 59.1

QR4 HQ 34 23 67.7

QR1 LQ 80 9 11.3

QR3 LQ 80 2 2.5

JH QR2 HQ 23 23 100

QR4 HQ 34 27 79.4

QR1 LQ 48 21 43.8

QR3 LQ 48 16 33.3

JH plus sugar
augmentation

QR2 HQ 23 18 78.3

QR4 HQ 35 19 54.3

QR1 LQ 80 10 12.5

QR3 LQ 80 7 8.8

*All newly emerged queens with extremely deformed wings were considered as Bnot fit^ and were not counted in the BNumber
Emerged.^
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wing length, and basitarsus index as outlined
above.

2.4. Statistical analysis

A factorial ANOVA was used to compare the
pre-copulatory morphometric measures among
the different treatments such as wet weight at
emergence, developmental time, wing length,
basitarsus index, head width, and thorax width.
The morphological features were also analyzed
using principal component analysis (PCA). Be-
cause all morphological and reproductive mea-
sures were positively correlated, this enabled us
to reduce the total set of partly inter-correlated
variables to two uncorrelated principal compo-
nents (PC1 and PC2). This analysis was per-
formed using the average values of weight at
emergence, developmental time, wing length,
basitarsus index, head width, and thorax width
from samples of each treatment groups (De Souza
et al. 2015). Then, factorial ANOVA was per-
formed based on the factor coordinates calculated
by the PCA to determine the impact of the treat-
ments on the morphology as a whole. For the
open-mating test, one-way ANOVA, followed by
Bonferroni post hoc tests, was used to compare
the pre-copulatory measures (weight at emer-
gence, head width, thorax width, basitarsus index,
and days to emergence) and post-copulatory mea-
sures (age to start laying eggs, colony establish-
ment time, ovary weight, spermatheca diameter,
total sperm count, and sperm viability). The anal-
yses were performed with the software
STATISTICA 7.0.

3. RESULTS

3.1. Newly emerged virgin queen assessments

The successful emergence at adult stage was
statistically affected by the age at which the larvae
were grafted (F (1,7) = 212.1, p < 0.00001) across
all treatments (Table II), with the highest success
among high-quality queens compared to low-
quality queens. The JH application did not affect
the emergence rates of the high- and low-quality
queens (F (1,3) = 0.10, p = 0.76) Table S3.

The findings demonstrate that the larval age
when grafted had a significant impact on all mor-
phological features classically associated with
queen quality (Figure 1 and Table S1). Newly
emerged queens raised from younger larvae ex-
hibited shorter developmental time, higher weight
at emergence, and greater head, thorax, basitarsus,
andwing size than queens raised from older larvae
(Figure 1 and Table S1). The supplemented sugar-
only treatment (T1) significantly increased the
development time (especially among the low-
quality queens) and reduced the size of the wings
when compared to the control group. For the JH
III-only treatment (T2), head and thorax widths
were significantly increased in both the high- and
low-quality groups (Figure 1 and Table S1). The
combination of sugar supplementation with the
JH III treatment (T3) affected almost all analyzed
morphological features, including a decreased av-
erage development time and increased weight,
head width, thorax width, and wing length. The
only morphological feature not affected by the T3
treatment was basitarsus index (Figure 1 and
Table S1).

The PCA showed that the two main compo-
nents accounted for approximately 72% of the
variance among the newly emerged queens raised
from larvae of different ages (HQ and LQ queens)
and treated with different supplementations (sugar
only = T1; JH III only = T2; sugar + JH III = T3)
(Figure 2b and Table S2). The correlations of the
treatments applied with the two first components
are given as vectors in the biplot (Figure 2a). It is
important to note that PC1, which accounted for
54.9% of the variance, was negatively correlated
with almost all features evaluated except for the
time of development (age at emergence). The PC2
axis, which accounted for 16.7% of the variance,
is positively correlated with developmental time,
and head and thorax width (Figure 2a). By ana-
lyzing PC1, we observe a significant difference
between queens raised from larvae of different
ages (Figure 2c). The HQ queens cluster on the
left of the graph and LQ queens cluster on the
right, confirming that this factor effectively dis-
criminates the morphological characteristics ana-
lyzed. The sugar supplementation treatments (T1
and T3) were also significantly different for PC1
(Figure 2d), and this divergence was confirmed by
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the factorial ANOVAwhere T1 and T3 were sta-
tistically different from the control (F (1,27) = 7.91,
p = 0.009 and F (1,27) = 11.78, p = 0.001, respec-
tively). In contrast, only T2 significantly diverged

morphologically from the control among LQ
queens (T1, F (1,9) = 2.38, p = 0.15; T2, F (1,34) =
5.53, p = 0.02; T3, F (1,15) = 0.46, p = 0.50;
Figure 2e).
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Figure 1Mean (±SD) morphological features of newly emerged queens raised with high- and low-quality grafting
larvae (1-day old and 3-day old) and different treatments: sugar supplementation, T1; JH III, T2; sugar supplemen-
tation + JH III, T3. a Weight at emergence. b Developmental time. c Head width. d Thorax width. e Basitarsus
index. f Wing length. *Significance p < 0.05.
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Figure 2 Results from PCA based on the average values of queens’ morphometric features (weight at emergence,
developmental time, head width, thorax width, basitarsus index, and wing length). a Projection of the characteristics of
the first two components, showing the correlations between the features values with PC1 and PC2. b Distribution of
newly emerged queens, reared from different larvae age HQ and LQ (1- and 3-day old larvae) and treatment (sugar
supplementation, T1; JH III, T2; sugar supplementation + JH III, T3), through the first two principal components. The
ellipse represents the grouping of the control high-quality queens (bold line) and low-quality queens (hatched line), based
on morphological similarity. c Projection of distribution of newly emerged queens, grouped only by different larval age
(HQ and LQ). d Projection of distribution of HQ newly emerged queens under with different treatments (sugar
supplementation, T1; JH III, T2; food supplementation + JH III, T3). e Projection of distribution of LQ newly emerged
queens treated with different treatment (sugar supplementation, T1; JH III, T2; sugar supplementation + JH III, T3).
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Fig. 2 (continued).
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3.2. Open-mated queen assessments

For the open-mated queens, two experimental
groups were used: HQ larvae treated with acetone
(control) and HQ larvae treated with JH plus sugar
supplementation (T3) (see Table S3). Regrettably,
only three of the ten emerged virgin queens in the
acetone control group, and four of ten emerged
virgin queens in the T3 group (JH plus sugar
supplementation) ultimately mated and successful-
ly established colonies. There was no noticeable
difference between the two groups in the number
of days until emergence (F (1,5) = 1.05, p = 0.35).
The same as was observed in latency to egg-laying
(F (1,5) = 0.76, p = 0.42) and colony establishment
(F (1,6) = 0.18, p = 0.68) (Table S3a). Pre-
copulatory morphometric measurements of body
weight, head width, thorax width, wing length, and
basitarsus index for T3 (JH plus sugar

supplementation) were consistent with the values
for high-quality queens found in the earlier repli-
cations (Table S3b). Two of the four post-mating
traits that were examined (Table S3c), despite be-
ing numerically greater in the T3 queens, were not
statistically significantly affected by the treatment:
ovary weight (F (1,5) = 2.53, p = 0.17; Figure 3a)
and spermatheca diameter (F (1,5) = 3.64, p = 0.11;
Figure 3b). However, the sperm count (F (1,5) =
12.90, p = 0.015; Figure 3c) and the number of
viable sperm (F (1,4) = 19.58, p = 0.011; Figure 3d)
were significantly greater in T3-treated queens
than the control queens. Despite this, the percent-
age of viable sperm was not significantly different
between control (avg. = 87.7 ± 20.0%) and T3
mated queens (avg. = 88.0 ± 13.1%) (F (1,4) =
0.01, p = 0.93; Table S3c). Note that there was
one sample from the treatment group that was
excluded from the analysis because it was an
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Figure 3. Post-copulation means (±SD) of a ovary weight, b spermatheca diameter, c total sperm count, and d
sperm viability of queens reared using young larvae under sugar supplementation treatment + JH III, T3.
*Significance p < 0.05.
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extreme outlier (total sperm count = 1.329,800;
sperm viability = 7.5%, number of live sperm =
99,735).

4. DISCUSSION

The search to improve honey bee queen re-
productive quality is one of the main goals of
apicultural research. Here, we took advantage
of the high developmental plasticity in the
queen ontogenic development (Tarpy et al.
2011; Rangel et al. 2013; De Souza et al.
2013) attributed to the already well-known
physiological pathways involved on this pro-
cess (Barchuk et al. 2007; Hartfelder et al.
2015) to investigate whether manipulating the
amount of sugars and/or JH in food during
honey bee queen larval development would
increase queen reproductive potential. First,
we wanted to test if these manipulations can
further improve the quality of queens reared
from optimal (young) female larvae that exceed
the reproductive capacity of queens reared by
usual grafting methods. Our findings confirmed
that raising virgin queens from younger-grafted
larvae produced significantly higher-quality
queens than grafting from older larvae. We also
showed that the application of a sugar-enriched
royal jelly in combination with JH application
into queen cells of young grafted larvae pro-
duce higher-quality virgin queens than using
younger larvae without this food supplementa-
tion. JH supplementation is known to be effec-
tive in inducing queen-like morphological char-
acters when topically applied to honey bee
worker larvae, even at lower doses than those
used here (Dietz et al. 1979; Rembold et al.
1974a, b). Thus, initially we expected JH ap-
plication to be a more significant driving force
in improving queen quali ty, especial ly
concerning the weight at emergence, since the
high level of this hormone in queen larva is
responsible for ovary development, which is
closely associated to the weight at emergence
(Schmidt Capella and Hartfelder 1998, 2002;
Reginato and Cruz-Landim 2001). Interesting-
ly, the application of juvenile hormone alone to
young larvae did not improve the reproductive
quality of virgin queens, at least with regard to

their external morphological features used to
estimate reproductive quality.

Second, we wanted to test if these same
manipulations can help Brescue^ the reduced
quality of queens reared from sub-optimal
(older) larvae, and we found that the JH treat-
ment applied on older larvae induced some
significant reproductive improvements among
virgin queen quality, unlike other treatments
(Figure 2). However, this improvement did
not reach the level of the high-quality queens.
For older larvae, the sugar supplementation-
only treatment consistently resulted in lower
queen quality traits. One possible explanation
for this effect is that older larvae begin to slow
down their food consumption in the natural
colony environment, where larval care is con-
tinuously monitored by adult nurse bees. The
concentration of fructose and glucose during
the first three instars is significantly lower in
the larval diet of workers but rise suddenly
during 4th feeding day to levels even higher
than those found in queens (Wang et al.
2016). Therefore, the combination of older lar-
vae and the sudden increase of sugar levels
could have had an inverse effect, thereby sim-
ulating worker bee development instead of
queen development. This possibility is support-
ed by the findings related to time of develop-
ment until adulthood, in which the LQ-T1
queens took significantly more time to emerge
as adults.

The LQ groups exhibited a very low accep-
tance rate among all treatment groups. This is
not a surprising result since the difficulties in
acceptance of older grafted larvae for rearing of
queens are well described (Tarpy et al. 2016).
During emergency queen rearing, nurse bees
occasionally prefer construction of queen cells
around older worker larvae since they are closer
in development to adult emergence. However,
more than half of these cells are torn down
before emergence (Hatch et al. 1999; Tarpy
et al. 2011; Long et al. 2017). Among the HQ
groups, acceptance was higher in the JH-only
treatment group than in the sugar supplementa-
tion treatment group, suggesting that sugar sup-
plementation affects acceptance of treated lar-
vae by the nurse bees within the colony,
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although our experiment was not designed to
test this directly.

During open mating, the queens treated with
JH plus supplemented sugars (T3) showed a
significantly greater number of viable sperm
and total sperm count than queens reared with-
out any larval treatment (Figure 3), consistent
with previous findings about high-quality
queens (Tarpy et al. 2011). Interestingly, the
T3 queens (high-quality queens) and the con-
trol queens shared a similar average percentage
of viable sperm (Table S3c). A likely reason for
this result is that the T3 queens may have an
ability to maintain more viable sperm, driven
by their ability to accumulate a greater total
sperm count. Previous studies demonstrated
that higher-quality queens tend to be larger in
body size, and presumably able to mate with
more males and physically store more sperm
(Woyke 1967, 1971; Corbella and Gonçalves
1982; Delaney et al. 2011; Tarpy et al. 2011). It
is also possible that the higher-quality queens
are better able to mitigate the mortality of
stored sperm compared to lower-quality queens
(Tarpy et al. 2011).

The common practice for commercial queen
rearing is to visually select the smallest
(youngest) larvae for grafting. Although this
practice already yields high-quality queens
(Tarpy et al. 2012; Rangel et al. 2013), we show
here that it is possible to achieve even higher-
quality queens by providing a sugar-rich royal
jelly supplement into the queen cells along with
JH application. The addition of this protocol
can be implemented at a relatively low mone-
tary and time cost. While we were not able to
Brescue^ diminished queen quality by adding
JH to 3rd instar larvae, hormone supplementa-
tion of 1st instar larvae has the potential to
improve reproductive quality as well. Further
research is needed to better understand the im-
pact of these treatments on queens, colony per-
formance, and commercial apiculture. The di-
rect implications of our findings has the poten-
tial for further improvement of queen quality
will not only benefit commercial queen
breeders but it may also help the commercial
pollination industry that rely on queen breeders
to supply replacement queens.
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