O. Bayer, Das Di-lsocyanat-Poluadditionsverfahren (Polyurethane), Angew. Chemie, vol.59, pp.257-272, 1947.

B. Nohra, L. Candy, C. Guerin, and Y. Raoul, From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes, 2013.

G. Rokicki, P. G. Parzuchowski, and M. Mazurek, Non-isocyanate polyurethanes: Synthesis, properties, and applications, Polymers for Advanced Technologies, vol.26, pp.707-761, 2015.

P. Marion, Sustainable chemistry: How to produce better and more from less?, Green Chem, vol.19, pp.4973-4989, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02128953

F. Kayode, A Review of Vegetable Oil-Based Polymers: Synthesis and Applications, Open J. Polym. Chem, vol.5, pp.34-40, 2015.

M. Rose and R. Palkovits, Isosorbide as a renewable platform chemical for versatile applications-quo vadis?, ChemSusChem, vol.5, pp.167-176, 2012.

J. A. Galbis, M. D. García-martín, M. V. De-paz, and E. Galbis, Synthetic Polymers from Sugar-Based Monomers, Chem. Rev, vol.116, pp.1600-1636, 2016.

P. A. Wilbon, F. Chu, and C. Tang, Progress in Renewable Polymers from Natural, Macromol. Rapid Commun, vol.34, pp.32-43, 2013.

H. Wang, Y. Pu, A. Ragauskas, and B. Yang, From lignin to valuable products-strategies, challenges, and prospects, Bioresour. Technol, vol.271, pp.449-461, 2019.

C. Mokhtari, F. Malek, A. Manseri, S. Caillol, and C. Negrell, Reactive jojoba and castor oils-based cyclic carbonates for biobased polyhydroxyurethanes, Eur. Polym. J, vol.113, pp.18-28, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01999957

C. Carré, L. Bonnet, and L. Avérous, Original biobased nonisocyanate polyurethanes: Solvent-and catalyst-free synthesis, thermal properties and rheological behaviour, RSC Adv, vol.4, pp.54018-54025, 2014.

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-Free Routes to Polyurethanes and Poly ( hydroxy Urethane ) s, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365096

O. Lamarzelle, Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis, Polym. Chem, vol.7, pp.1439-1451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01364916

A. Steblyanko, W. Choi, F. Sanda, and T. Endo, Addition of Five-Membered Cyclic Carbonate with Amine and Its Application to Polymer Synthesis, vol.38, pp.2375-2380, 2000.

L. Maisonneuve, Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Adv, vol.4, pp.25795-25803, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366356

S. Bigot, Undecylenic acid : A tunable bio-based synthon for materials applications, Eur. Polym. J, vol.74, pp.26-37, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01399385

F. Camara, Reactivity of secondary amines for the synthesis of non-isocyanate polyurethanes, Eur. Polym. J, vol.55, pp.17-26, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00974426

M. Janvier, . Paul-henri, and F. A. Ducrot, Isocyanate-Free Synthesis and Characterization of Renewable Poly(hydroxy)urethanes from Syringaresinol, 2017.

L. Maisonneuve, A. L. Wirotius, C. Alfos, E. Grau, and H. Cramail, Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors, Polym. Chem, vol.5, pp.6142-6147, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366250

M. Sayed, Multi-steps Green Process for Synthesis of Six-Membered Functional Cyclic Carbonate from Trimethylolpropane by Lipase Catalyzed Methacrylation and Carbonation , and Thermal Cyclization, pp.12-14, 2015.

D. J. Fortman, J. P. Brutman, C. J. Cramer, M. A. Hillmyer, and W. R. Dichtel, Mechanically Activated, Catalyst-Free Polyhydroxyurethane Vitrimers, J. Am. Chem. Soc, vol.137, pp.14019-14022, 2015.

M. Tryznowski, Z. Zo?ek-tryznowska, A. Widerska, and P. G. Parzuchowski, Synthesis, characterization and reactivity of a six-membered cyclic glycerol carbonate bearing a free hydroxyl group, Green Chem, vol.18, pp.802-807, 2016.

D. P. Sanders, Synthesis of functionalized cyclic carbonate monomers using a versatile pentafluorophenyl carbonate intermediate, Polym. Chem, vol.5, pp.327-329, 2014.

H. Tomita, F. Sanda, and T. Endo, Polyaddition of bis(seven-membered cyclic carbonate) with diamines: A novel and efficient synthetic method for polyhydroxyurethanes, J. Polym. Sci. Part A Polym. Chem, vol.39, pp.4091-4100, 2001.

H. Tomita, F. Sanda, and T. Endo, Polyaddition Behavior of bis ( Five-and Six-Membered Cyclic Carbonate ) s with Diamine, pp.860-867, 2000.

A. Yuen, Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates, Polym. Chem, vol.7, pp.2105-2111, 2016.

H. Tomita, F. Sanda, and T. Endo, Model reaction for the synthesis of polyhydroxyurethanes from cyclic carbonates with amines: Substituent effect on the reactivity and selectivity of ring-opening direction in the reaction of five-membered cyclic carbonates with amine, J. Polym. Sci. Part A Polym. Chem, vol.39, pp.3678-3685, 2001.

R. M. Garipov, Reactivity of Cyclocarbonate Groups in Modified Epoxy-Amine Compositions, Dokl. Phys. Chem, vol.393, pp.289-292, 2003.

O. Lamarzelle, Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis, Polym. Chem, vol.7, pp.1439-1451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01364916

Y. He, V. Goel, H. Keul, and M. Möller, Synthesis, characterization, and selectivity of bifunctional couplers, Macromol. Chem. Phys, vol.211, pp.2366-2381, 2010.

A. Cornille, A study of cyclic carbonate aminolysis at room temperature: Effect of cyclic carbonate structures and solvents on polyhydroxyurethane synthesis, Polym. Chem, vol.8, pp.592-604, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01438498

A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, A perspective approach to sustainable routes for non-isocyanate polyurethanes, vol.87, pp.535-552, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01464067

V. Besse, How to explain low molar masses in PolyHydroxyUrethanes (PHUs), Eur. Polym. J, vol.71, pp.1-11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01181343

S. Schmidt, Erythritol Dicarbonate as Intermediate for Solvent-and Isocyanate-Free Tailoring of Bio-Based Polyhydroxyurethane Thermoplastics and Thermoplastic Elastomers, Macromolecules, vol.50, pp.2296-2303, 2017.

V. Schimpf, J. B. Max, B. Stolz, B. Heck, and R. Mülhaupt, Semicrystalline Non-Isocyanate Polyhydroxyurethanes as Thermoplastics and Thermoplastic Elastomers and Their Use in 3D Printing by Fused Filament Fabrication, Macromolecules, vol.52, pp.320-331, 2019.

M. Tryznowski, A. Widerska, Z. Zo?ek-tryznowska, T. Go?ofit, and P. G. Parzuchowski, Facile route to multigram synthesis of environmentally friendly non-isocyanate polyurethanes, Polymer (Guildf), vol.80, pp.228-236, 2015.

B. M. Weckhuysen and P. C. Bruijnincx, , pp.1605-1618, 2016.

J. L. Van-velthoven, L. Gootjes, D. S. Van-es, B. A. Noordover, and J. Meuldijk, Poly(hydroxy urethane)s based on renewable diglycerol dicarbonate, Eur. Polym. J, vol.70, pp.125-135, 2015.

J. A. Stewart, B. M. Weckhuysen, and P. C. Bruijnincx, Reusable Mg -Al hydrotalcites for the catalytic synthesis of diglycerol dicarbonate from diglycerol and dimethyl carbonate, Catal. Today, vol.257, pp.274-280, 2015.

A. Bossion, Unexpected Synthesis of Segmented Poly(hydroxyurea-urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis, Macromolecules, vol.51, pp.5556-5566, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01917939

S. Benyahya, B. Boutevin, S. Caillol, V. Lapinte, and J. P. Habas, Optimization of the synthesis of polyhydroxyurethanes using dynamic rheometry, Polym. Int, vol.61, pp.918-925, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00708510

M. Blain, R. Auvergne, D. Benazet, S. Caillol, and B. Andrioletti, Rational investigations in the ring opening of cyclic carbonates by amines ?, pp.4286-4291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064226

M. Blain, Hydrogen bonds prevent obtaining high molar mass PHUs, J. Appl. Polym. Sci, vol.134, p.44958, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01577666

S. Podzimek, Molar mass distribution by size exclusion chromatography : Comparison of multi-angle light scattering and universal calibration, vol.47561, pp.1-10, 2019.

S. Benyahya, J. P. Habas, R. Auvergne, V. Lapinte, and S. Caillol, Structure-property relationships in polyhydroxyurethanes produced from terephthaloyl dicyclocarbonate with various polyamines, Polym. Int, vol.61, pp.1666-1674, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00747665

L. Maisonneuve, Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Adv, vol.4, pp.25795-25803, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01366356

K. Zhang, Non-isocyanate poly(amide-hydroxyurethane)s from sustainable resources, Green Chem, vol.18, pp.4667-4681, 2016.

E. Delebecq, J. Pascault, B. Boutevin, and F. Ganachaud, On the Versatility of Urethane / Urea Bonds : Reversibility , Blocked, Chem. Rev, vol.113, pp.80-118, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825156

G. Beyer-&-hopmann and C. R. Extrusion, Reactive Polymers: Fundamentals and Applications, 2018.