
HAL Id: hal-02366668
https://hal.science/hal-02366668

Submitted on 16 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about reversal-bounded counter machines
Stephane Demri

To cite this version:
Stephane Demri. Reasoning about reversal-bounded counter machines. Ewa Orlowska on Relational
Methods in Logic and Computer Science, volume 17 of Outstanding Contributions to Logic, Springer,
2018., pp.441–479, 2018, �10.1007/978-3-319-97879-6_17�. �hal-02366668�

https://hal.science/hal-02366668
https://hal.archives-ouvertes.fr


Reasoning about
Reversal-Bounded Counter Machines

To the honor of Professor Ewa Orłowska

Stéphane Demri?

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, France

Abstract. In this paper, we present a short survey on reversal-bounded counter
machines. It focuses on the main techniques for model-checking such counter ma-
chines with specifications expressed with formulae from some linear-time tempo-
ral logic. All the decision procedures are designed by translation into Presburger
arithmetic. We provide a proof that is alternative to Ibarra’s original one for show-
ing that reachability sets are effectively definable in Presburger arithmetic. Exten-
sions to repeated control state reachability and to additional temporal properties
are discussed in the paper. The article is written to the honor of Professor Ewa
Orłowska and focuses on several topics that are developped in her works.

1 Introduction

Reversal-bounded counter machines. Counter machines are well-known infinite-state
systems that have many applications in formal verification. Their ubiquity stems from
their use as operational models for several purposes, including for instance for broadcast
protocols [FL02] and for logics for data words, see e.g. [BL10,DFP16]. However, nu-
merous model-checking problems for counter machines, such as reachability, are known
to be undecidable. Nevertheless, many subclasses of counter machines admit a decid-
able reachability problem, such as reversal-bounded counter machines [Iba78] and flat
counter machines [CJ98,Boi99,FL02]. These two classes of machines admit reachabil-
ity sets effectively definable in Presburger arithmetic [Pre29] (assuming some additional
conditions, unspecified herein). This has also significant consequences for other classes
of machines, for instance the reachability relation for a discrete timed automaton can be
accepted by a reversal-bounded counter machine [DIB+00], leading to the translation
of reachability problem into Presburger arithmetic. The use of Presburger arithmetic for
formal verification has been advocated in [SJ80], see also [Fri00]. Moreover, another
standard way to overcome undecidability is to consider subclasses of runs by bound-
ing some features and to search for ’bounded runs’ that may satisfy a desirable or an
undesirable property. Here are standard examples for boundedness.

– Reversal-bounded counter machines have effectively semilinear reachability sets
(bound on the number of reversals), see e.g. [Iba78] and this is the main subject of
the paper.

? demri@lsv.fr



– Bounding the number of context switches is done for multi-pushdown systems in
order to perform context-bounded model-checking, see e.g. [QR05,EG11], see also
the weak multi-pushdown automata in [CHL13] that require a partial ordering on
the control states.

– Bounding the distance of the reachable configurations has lead to bounded model-
checking (BMC) and its decidability, see e.g. [BCC+03].

Temporal reasoning and Presburger arithmetic. Reachability questions are not the only
interesting ones and the verification of properties expressed in dedicated temporal logics
is often desirable.

Temporal logics on vector addition systems with states (VASS) often lead to unde-
cidable model-checking problems, see e.g. [HR89,Esp94,Esp98]. There are still excep-
tions for decidability. For instance, the control state repeated reachability problem for
VASS is shown to be decidable in [Jan90] and this is generalised to full LTL [Hab97].
Another example for which temporal reasoning is possible concerns flat counter ma-
chines that are counter machines in which each control state belongs to at most one
simple cycle (i.e., a cycle without any repetition of edges). Several classes of such flat
operational devices have been identified and reachability sets have been shown effec-
tively Presburger-definable for many of them, see e.g. [FO97,CJ98,Boi99,FL02]. This
provides a decision procedure for the reachability problem, given a solver dedicated to
Presburger arithmetic. Decidability results for verifying safety and reachability proper-
ties on flat counter machines have been obtained in [CJ98,FL02,BIK09]. For the veri-
fication of temporal properties, it is much more difficult to get sharp complexity char-
acterisation. For instance, it is known that verifying flat counter machines with LTL
enriched with arithmetical constraints is only NP-complete [DDS15]. In [DDS13], we
characterised the computational complexity of model-checking problems on flat counter
machines for several prominent linear-time specification languages.

Our contribution. In this paper, we present a short survey on reversal-bounded counter
machines by providing several results related to model-checking and reachability. Even
though in full generality these problems lead to undecidability, this is precisely the
assumption on reversal-boundedness that allows to regain decidability, see e.g. the key
results from [Iba78]. We focus on the main techniques for model-checking such counter
machines with specifications expressed with formulae from some linear-time temporal
logic. All the decision procedures are designed by translation into Presburger arith-
metic [Pre29]. We provide a proof, partly based on [GI81], that is alternative to Ibarra’s
original one for showing that reachability sets are effectively definable in Presburger
arithmetic [Iba78]. Extensions to repeated control state reachability and to additional
temporal properties are discussed in the paper. So, we aim at providing a document that
provides several key results for reversal-bounded counter machines and gives many
bibliographical references to related works for further study.

Content of the paper. The paper is structured as follows. Section 2 is dedicated to pre-
liminaries on counter machines and to related decision problems. Section 2.2 presents a
short introduction to Presburger arithmetic, which shall be much useful when synthetis-
ing formulae from reversal-bounded counter machines. Section 3 presents the main

2



result due to Ibarra: the reachability sets for reversal-bounded counter machines are
effectively definable in Presburger arithmetic (and extensions related to control state
repeated reachability). Section 4 lifts some of previous results to temporal reasoning.

The article is written to the honor of Professor Ewa Orłowska and focuses on several
topics developped in her works and strongly influencial for many of us, such as logics
for computer science (see e.g. [Orło85,FdCO85,Orło89]), automated deduction (see
e.g. [Orło73]), reasoning about programs (see e.g. [Orło93]), temporal reasoning (see
e.g. [Orło95,BGO06]), combination of logics (see e.g. [BO99]), faithful translations
(see e.g. [Orło88]), to mention a few topics.

2 Preliminaries

2.1 Counter machines

We write N [resp. Z] to denote the set of natural numbers [resp. integers] and [i, j] to
denote the set {k ∈ Z : i ≤ k and k ≤ j} (i, j ∈ Z). In the sequel, integers are encoded
with a binary representation. For each x ∈ Zn, x(i) denotes the ith element of x for
every i ∈ [1, n]. For a finite alphabet Σ, Σ∗ represents the set of finite words over Σ, Σ+

the set of finite non-empty words over Σ and Σω the set of infinite words or ω-words
over Σ.

The counter machines introduced below are finite-state automata augmented with
counters (variables interpreted as natural numbers). Transitions are labelled by arith-
metical constraints on counters (more specifically by pairs 〈g,a〉 where g is a guard
and a is an update vector). The developments in the paper about reversal-boundedness
are performed for this class of counter machines, unless otherwise stated. We consider
counter machinesM = 〈Q,T,C〉 such that

– Q is a finite set of control states,
– C is a finite set of counters {x1, . . . , xd} for some d ≥ 1,
– T is a finite set of transitions from Q × Σ × Q where the operations in Σ are

defined as follows. Each operation in Σ is defined as a pair 〈g,a〉 where a ∈ Zd is
an update vector and g is a guard built over the following grammar:

g ::= > | ⊥ | x ∼ k | g ∧ g | g ∨ g | ¬g

with x ∈ C, ∼∈ {≤,≥,=} and k ∈ N.

Below, we write C to denote this class of counter machines.
Figure 1 contains a counter machine M such that xi++ [resp. xi- -] stands for

the pair 〈g,a〉 that increments [resp. decrements if possible] the counter xi and keeps
unchanged the other counters. The formula xi = 0? tests if counter xi is equal to zero
but it has no effect on the counters.

The elements t = 〈q, 〈g,a〉, q′〉 ∈ T are often represented by q
〈g,a〉−−→ q′. A configu-

ration is a pair 〈q,x〉 ∈ Q × Nd. Given two configurations 〈q,x〉, 〈q′,x′〉 ∈ Q × Nd

and a transition t = q
〈g,a〉−−→ q′, we write 〈q,x〉 t−→ 〈q′,x′〉 whenever x satisfies g (in the

most natural way) and x′ = x + a.

3



q1

q2

q3

q4

q5

q6

q7

q8 q9q11q10

x1++

x2++

x2++ x1 = 0?

x1++ x2 = 0?

x1++ x1- - x2++

x2++ x2- - x1++

x1++

x2++

x1- -

x1++

x2 = 0? x1++

x1 = 0?

x2++

Fig. 1. A counter machine

Given a counter machineM = 〈Q,T,C〉, its transition system T(M) = 〈S,−→〉
is a graph with S = Q × Nd and −→⊆ S × S such that 〈〈q,x〉, 〈q′,x′〉〉 ∈−→ def⇔
there exists a transition t ∈ T such that 〈q,x〉 t−→ 〈q′,x′〉. As usual, ∗−→ denotes the
reflexive and transitive closure of the binary relation −→. Figure 2 presents a simple
counter machine (one counter and three control states) with its transition system.

q1

q2

q3

x- - x= 0?

x++

x- -

〈q1, 0〉 〈q1, 1〉 〈q1, 2〉 〈q1, 3〉 〈q1, 4〉

〈q2, 0〉 〈q2, 1〉 〈q2, 2〉 〈q2, 3〉

〈q3, 0〉

Fig. 2. A counter machine and its transition system

A run ρ is a non-empty (possibly infinite) sequence ρ = 〈q0,x0〉, . . . , 〈qk,xk〉, . . .
of configurations such that two consecutive configurations are in the relation −→ from
T(M).

4



Most verification problems on counter machines are known to be undecidable since
they include Minsky machines [Min67, Chapter 11] (see also [Min61, Section 3]) that
are Turing-complete, even if restricted to two counters [Min67, Chapter 14].

In this section, we recall several standard decision problems about counter ma-
chines. They are mainly related to reachability questions (problems related to temporal
logics are introduced in Section 4).

REACHABILITY PROBLEM:

Input: a counter machineM and configurations 〈q0,x0〉 and 〈qf ,xf 〉.
Question: is there a finite run from 〈q0,x0〉 to 〈qf ,xf 〉?

CONTROL STATE REACHABILITY PROBLEM:

Input: a counter machineM, a configuration 〈q0,x0〉 and a state qf .
Question: is there a finite run with initial configuration 〈q0,x0〉 and whose final con-

figuration has control state qf?

CONTROL STATE REPEATED REACHABILITY PROBLEM:

Input: a counter machineM, a configuration 〈q0,x0〉 and a state qf .
Question: is there an infinite run with initial configuration 〈q0,x0〉 such that the con-

trol state qf is repeated infinitely often?

A vector addition system with states [KM69] (VASS for short) is a counter machine

such that all the transitions are of the form q
〈>,a〉−−→ q′. So, a VASS can be represented

by a tuple M = 〈Q,T,C〉 where T is a finite subset of Q × Zd × Q. A famous
result states that the reachability problem for VASS is decidable [May84,Kos82,Ler09].
It has been the subject of the book [Reu90] and its proof requires many non-trivial
steps involving graph theory, logic and theory of well-quasi-orderings. Nevertheless,
the exact complexity of the reachability problem is open: we know it is EXPSPACE-
hard [Lip76] and the only known upper bound has been established recently in [LS15]
(see also [Sch17]).

2.2 Presburger arithmetic

The arithmetic of the natural numbers with addition, nowadays known as Presburger
arithmetic (PA), has been shown decidable in Presburger’s master thesis supervised by
A. Tarski, Warsaw University. The proof uses the approach by quantifier elimination
(see e.g. [Pre29]) and this decidability result is regarded today as a key result in theo-
retical computer science.

Let VAR = {x, y, z, . . .} be a countably infinite set of variables. Terms are expres-
sions of the form a1x1 + · · · + anxn + k where a1, . . . , an are constant coefficients
in N, k is in N and the xi’s are variables. Variables and terms come with their inter-
pretations when the variables are interpreted by natural numbers. A valuation v is a
map VAR → N and it can be extended to the set of all terms as follows: v(k) = k,
v(ax) = a × v(x) and v(t + t′) = v(t) + v(t′) for all terms t and t′. Formulae are
defined by the grammar below:

ϕ ::= t ≤ t′ | ¬ϕ | ϕ ∧ ϕ | ∃ x ϕ,

5



where t and t′ are terms and x ∈ VAR. A formula ϕ is in the linear fragment def⇔ ϕ
is a Boolean combination of atomic formulae of the form t ≤ t′. The semantics for
formulae in (PA) is defined with the help of the satisfaction relation |= that determines
the conditions for the satisfaction of a formula under a given valuation (we omit the
obvious Boolean clauses):

– v |= t ≤ t′
def⇔ v(t) ≤ v(t′),

– v |= ∃ x ϕ def⇔ there is n ∈ N such that v[x 7→ n] |= ϕ where v[x 7→ n] is equal to
v except that x is mapped to n.

Any formula ϕ(x1, . . . , xn) whose free variables are among x1, . . . , xn, with n ≥ 1,
defines a set of n-tuples

Jϕ(x1, . . . , xn)K def
= {〈v(x1), . . . , v(xn)〉 ∈ Nn : v |= ϕ},

which contains all the tuples that make true the formula ϕ by ignoring the irrelevant
interpretation of the bound variables and by fixing an arbitrary ordering between the
variables. For instance, Jx1 < x2K = {〈n, n′〉 ∈ N2 : n < n′}. Let ϕ be a formula
ϕ(x1, . . . , xn) with n ≥ 1 free variables x1, . . . , xn. We say that JϕK is a Presburger
set. A major result established in [GS66] states that the Presburger sets are precisely
the semilinear sets, that can be defined as the finite unions of linear sets of Nd. Each
linear set is defined from a base vector and a finite set of periods. The satisfiability
problem for (PA) is a decision problem that takes as input a formula ϕ and asks whether
there is a valuation v such that v |= ϕ. If such a valuation exists, we say that ϕ is
satisfiable. Observe that given a formula ϕ whose free variables are among x1, . . . , xn,
the propositions below are equivalent: (1) ϕ is satisfiable, (2) ∃ x1, . . . , xn ϕ is valid,
(3) ∃ x1, . . . , xn ϕ is equivalent to >.

Theorem 1 (Decidability). The satisfiability problem for (PA) is decidable.

The decidability of Presburger arithmetic is due to [Pre29]. The restriction to quan-
tifier-free formulae is NP-complete [Pap81] (see also [BT76,Sch86]) whereas an exact
complexity charaterisation for the full logic is provided in [Ber80] (double exponential
time on alternating Turing machines with linear amounts of alternations). Many other
complexity results exist for fragments; for instance for any i > 0, the Σi+1 fragment of
(PA) isΣEXP

i -complete [Haa14] where theΣi+1 fragment of (PA) consists of formulae
with i + 1 quantifier alternations beginning with an existential quantifier and ΣEXP

i is
the ith level of the weak EXP hierarchy.

2.3 What is reversal-boundedness ?

As it is well-known, most reachability problems for counter machines are undecidable
since counter machines are Turing-complete devices. A way to overcome this negative
result is to restrict the class of runs for such machines so that decidability can be re-
gained. An obvious way to restrict the runs is to require that the length of the runs is
bounded by a value b. Other types of bound exist and in the class of reversal-bounded
counter machines considered in the paper, the runs are restricted differently so that the

6



number of reversals in a run is bounded by a value r. A reversal for a counter occurs in
a run when there is an alternation from a nonincreasing mode to a nondecreasing mode
and vice-versa.

For instance, in the sequence below, there are three reversals identified by an upper
line:

00112233344443332223334444555554.

Similarly, the sequence 00111222223333334444 has no reversal. A counter machine
is reversal-bounded whenever there is r ≥ 0 such that for all the runs from a given
initial configuration, every counter makes no more than r reversals. A formal definition
will follow, but before going any further, it is worth pointing out a few peculiarities of
this subclass. Firstly, reversal-boundedness is defined for initialised counter machines
(a counter machine augmented with an initial configuration) and the bound r usually
depends on the initial configuration. Secondly, this class is not defined from the full
class of counter machines by imposing syntactic restrictions but rather semantically.
For example, in flat counter machines [DDS15], the syntactic restriction consists in
requiring that the control graph of the counter machine is flat, i.e., every control state
belongs to at most one simple cycle. Similarly, VASS are counter machines for which
the guards are equal to the truth constant.

A major property of such reversal-bounded counter machines is that reachability
sets are computable Presburger sets (Theorem 11). We present a proof of this result in
the paper that is different from the proof in [Iba78] and that partly relies on develop-
ments from [GI81]. Apart from presenting this essential property, the paper investigates
other decidability/complexity issues summarised as follows.

1. The reachability problem for counter machines with a given bounded number of
reversals is NEXPTIME-complete. Note that the decidability was already a conse-
quence of the fact that reachability sets of reversal-bounded counter machines can
be effectively represented by Presburger formulae.

2. The control state repeated reachability problem with bounded number of reversals
and the ∃-Presburger infinitely often problem are shown decidable (and NEXP-
TIME-complete), see e.g. [DIP01].

3. All above-mentioned decidability problems are obtained with counter machines in
which a counter value can only be compared to a constant and guards are closed
under Boolean connectives. We also explain why the reachability problem with
bounded number of reversals becomes undecidable if equalities and inequalities
between counters are allowed in guards.

4. We present a sufficient condition for the decidability of model-checking reversal-
bounded counter machines with specifications expressed in the linear-time temporal
logic CLTL. The condition deals with reversal-boundedness for terms occurring in
the input. NEXPTIME-completeness is actually stated.

The class of reversal-bounded counter machines has been introduced and studied
in [Iba78], partly inspired by similar restrictions on multistack machines [BB74]. The-
orem 11 that states that every reachability set of an initialised reversal-bounded counter
machine is a Presburger set, is shown in [Iba78]. Reversal-bounded multipushdown ma-
chines that extend reversal-bounded counter machines with stacks have been also stud-
ied in [BB74,Iba78]. For instance, developments about multihead pushdown machines

7



recognizing bounded languages [Iba74] can lead to semilinearity of reachability sets for
initialised reversal-bounded counter machines. In terms of language acceptance, Parikh
automata recognize the same languages as the languages accepted by reversal-bounded
counter machines, see e.g. [KR02,CFM11] but herein we mainly focus on reachability-
like properties.

The proof of Theorem 11 presented in the paper relies on developments from [GI81]
and it uses a proof à la Rackoff [Rac78] (see Theorem 17). Even though the main inten-
tions in [GI81] are related to optimal complexity upper bounds, semilinearity of reach-
ability sets can be derived too. It is worth noting that the class of counter machines
considered in the paper is a bit larger than the class considered in [Iba78]. Indeed, we
allow comparisons between a counter value and any constant as well as any Boolean
combination and the updates are those from VASS instead of being restricted to updates
in {−1, 0,+1}.

The notion of reversal-boundedness from [Iba78] has been also relaxed, for exam-
ple by allowing a free counter [Iba78,HR87] (i.e., one counter has no constraints on the
number of reversals) or by counting the reversals only above a given bound [FS08,San08].
In both cases, semilinearity of the reachability sets is still preserved [Iba78,FS08].
The results in [GI81] are extended to the case with a single free counter in [HR87].
Reversal-bounded counter machines have been also studied as computational devices,
see e.g. [Cha81]. Moreover, decidable reachability problems for parameterised reversal-
bounded initialised counter machines can be found in [ISD+02, Section 4].

2.4 A formal definition for reversal-boundedness

Let M = 〈Q,T,C〉 be a counter machine in C. We recall that a run ρ is defined as
a sequence of configurations c0 = 〈q0,x0〉, . . . , ck, . . . respecting the transitions in T
(each ci is inQ×Nd). We allow runs made of a unique configuration; similarly we may
also add the transitions between the configurations to emphasize which transitions have
been fired, as in the enriched run c0

t1−→ c1
t2−→ c2 · · · . The length of the run ρ, written

| ρ |, is defined as the number of steps, typically | c0 · · · ck |= k and | c0 |= 0. From a
run

ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉, . . .

of M, in order to describe the behavior of counters varying along ρ, we define a se-
quence of mode vectors md0,md1, . . . such that each mdi belongs to {↑, ↓}d. Intuitively,
each value in a mode vector records whether a counter is currently in an increasing
phase or in a decreasing phase. We are now ready to define the sequence md0,md1, . . .
associated with ρ.

– By convention, md0 is the unique vector in {↑}d.
– For all j ≥ 0 and for all i ∈ [1, d], we have

1. mdj+1(i)
def
= mdj(i) when xj(i) = xj+1(i),

2. mdj+1(i)
def
= ↑ when xj+1(i)− xj(i) > 0,

3. mdj+1(i)
def
= ↓ when xj+1(i)− xj(i) < 0.

Now, let Revi
def
= {j ∈ [0, | ρ | −1] : mdj(i) 6= mdj+1(i)}.

8



Definition 2. Let M = 〈Q,T,C〉 be a counter machine with d ≥ 1 counters, i ∈
[1, d] and r ∈ N. The run ρ is r-reversal-bounded def⇔ for every i ∈ [1, d], we have
card(Revi) ≤ r. An initialised counter machine 〈M, 〈q,x〉〉 is r-reversal-bounded def⇔
every run from 〈q,x〉 is r-reversal-bounded. An initialised counter machine 〈M, 〈q,x〉〉
is reversal-bounded def⇔ there is some r ≥ 0 such that every run from 〈q,x〉 is r-
reversal-bounded.

Let us consider the counter machineM from Figure 1. The initialised counter ma-
chine 〈M, 〈q1,0〉〉 is reversal-bounded. Actually, one can show that for all y ∈ N2,
〈M, 〈q1,y〉〉 is reversal-bounded too. Interestingly, let ϕ be the formula below:

ϕ = (x1 ≥ 2 ∧ x2 ≥ 1 ∧ x2 + 1 ≥ x1) ∨ (x2 ≥ 2 ∧ x1 ≥ 1 ∧ x1 + 1 ≥ x2).

One can prove that the set of reachable configurations with control state q9 from the
initial configuration 〈q1,0〉 can be characterised by the formula ϕ as far as the counter
values are concerned, i.e.

JϕK = {y ∈ N2 : 〈q1,0〉
∗−→ 〈q9,y〉}.

The purpose of Section 3 is to provide a method for computing the formula ϕ in the
general case. Reversal-boundedness for counter machines is indeed very appealing be-
cause reachability sets are semilinear. Given an initialised counter machine 〈M, 〈q,x〉〉
that is r-reversal-bounded for some r ≥ 0, for each state q′, {y ∈ Nd : 〈q,x〉 ∗−→
〈q′,y〉} is a computable Presburger set, see Theorem 11. This means that one can com-
pute effectively a Presburger formula that characterises precisely the reachable config-
urations whose state is q′.

A counter machine M is uniformly reversal-bounded iff there is r ≥ 0 such that
for every initial configuration, the initialised counter machine is r-reversal-bounded.
One can check that the counter machine in Figure 1 is not uniformly reversal-bounded.
Indeed, any configuration that reaches the control state q11 leads to non-reversal-boun-
dedness because of the cycle between the control states q10 and q11 that increments and
decrements the first counter. Similarly, any configuration with control state q6 and such
that the second counter is equal to zero leads to non-reversal-boundedness.

In the sequel, when we consider a uniformly reversal-bounded counter machine or
a reversal-bounded initialised counter machine, it comes with a maximal number of
reversals r ≥ 0. Alternatively, given an arbitrary counter machine and a bound r ≥ 0,
it is possible to restrict it appropriately and to build a new counter machine such that
each counter has at most r reversals on each run, possibly at the cost of increasing
exponentially the cardinality of the set of control states (see the proof of Theorem 14).
It is sufficient to take the product betweenM and a finite-state automaton with a number
of control states in O(rd) where d is the number of counters, the details are omitted.

3 Synthesis of Presburger formulae

In this section, we show that reachability sets in (initialised) reversal-bounded counter
machines are computable Presburger sets. Moreover, when uniform reversal-bounded-
ness is satisfied, one can show that the reachability relation is also computable and

9



semilinear. Effectiveness refers here to the possibility to construct Presburger formu-
lae defining exactly those sets or binary relations. We believe that the proof below is
conceptually simple, which is the motivation to include it in the document.

Let M = 〈Q,T,C〉 be a counter machine with d counters. Without any loss of
generality, we can assume that the guards inM are negation-free. Indeed, ¬(x ≥ k) is
equivalent to x ≤ k − 1 when k > 0 (otherwise if k = 0, then it is equivalent to ⊥).
Similarly, ¬(x ≤ k) is equivalent to x ≥ k + 1.

3.1 Paths, simple loops and effects

A path π is a finite sequence of transitions from T of the form

q1
〈g1,a1〉−−−→ q′1, . . . , qn

〈gn,an〉−−−−→ q′n

so that for every i ∈ [1, n− 1], we have q′i = qi+1. Let π = t1 · · · tn be a path such that
each transition tj has the update aj ∈ Zd. The effect of π is the tuple ef(π)

def
=

∑
j aj ∈

Zd. A simple loop sl is a non-empty path that starts and ends by the same state and these
are the only states that are repeated in sl. We say that sl loops on its first state (equal to
its last state). The number of simple loops is therefore bounded by card(T )card(Q). We
assume an arbitrary total linear ordering ≺ on simple loops.

We write sc(M) to denote the maximal absolute value among the updates a inM.
The value sc(M) is called the scale ofM. Assuming that the size ofM is N , we have
sc(M) ≤ 2N (all the integers inM are encoded with a binary representation).

Lemma 3. The effect ef(sl) of a simple loop sl is in

[−card(Q)sc(M), card(Q)sc(M)]d.

This means also that the number of effects from simple loops in M is bounded by
(1 + 2× card(Q)sc(M))d.

3.2 Intervals

For defining reversal-bounded runs, we have seen that mode vectors play an important
role since in such runs, the number of changes for mode vectors is bounded by defini-
tion. However, this has another consequence for the satisfaction of the guards. Indeed,
assuming that the constants occurring in guards are k1 < k2 < · · · < kK , this defines
a finite amount of intervals with these extremal values and the number of changes for
intervals for each counter is bounded in reversal-bounded runs. Below, we introduce
several notions about such intervals.

We write AG to denote the (finite) set of atomic guards of the form x ∼ k occurring
inM and CST = {k1, . . . , kK} to denote the set of distinct constants k occurring in
atomic guards of the form x ∼ k in AG, possibly augmented with the value zero. We
pose that K = card(CST). Below, we assume that 0 = k1 < k2 < · · · < kK and we
write I to denote the set of intervals below:

I def
= {[k1, k1], [k1 + 1, k2 − 1], [k2, k2], [k2 + 1, k3 − 1], [k3, k3], . . . ,

10



[kK , kK ], [kK + 1,+∞)} \ {∅}.

The empty set is possibly removed since [kj + 1, kj+1 − 1] is empty when kj+1 =
kj + 1. So, I contains at most 2K intervals and at least K + 1 intervals. Furthermore,
we consider a natural discrete linear ordering ≤ on the intervals in I so that

[k1, k1] ≤ [k1 + 1, k2 − 1] ≤ [k2, k2] ≤ [k2 + 1, k3 − 1] ≤ [k2, k2] ≤ . . . ≤

≤ [kK , kK ] ≤ [kK + 1,+∞)}.

The above relationships should be understood to hold only if the intervals are non-
empty. An interval map im is a map of the form im : C → I understood as a symbolic
way to represent counter values. This abstracts a map C → N by only taking into
account to which elements of I each counter value belongs to, which is sufficient to
compare counter values against constants from CST.

Given a guard g built from AG and an interval map im, we write im ` g with the
following inductive definition:

im ` g1 ∨ g2
def⇔ im ` g1 or im ` g2

im ` g1 ∧ g2
def⇔ im ` g1 and im ` g2

im ` x = k
def⇔ im(x) = [k, k]

im ` x ≥ k def⇔ im(x) ⊆ [k,+∞)

im ` x ≤ k def⇔ im(x) ⊆ [0, k]

There is no clause for negated guards because we have seen that negation can be dis-
carded without causing any harm.

The relation ` is simply a symbolic satisfaction relation between interval maps and
guards. Since interval maps and guards are built over the same set CST of constants,
completeness is obtained as stated in the properties below:

(P1) im ` g can be checked in polynomial time in the sum of the respective sizes of
im and g (for some reasonably succinct encoding in which natural numbers can be
encoded in binary).

(P2) im ` g iff (for all f : C → N and for all x ∈ C, we have f(x) ∈ im(x)) implies
f |= g (in Presburger arithmetic).

A guarded mode gmd is a pair 〈im,md〉 where im is an interval map and md ∈ {↑
, ↓}d. A transition t = q

〈g,a〉−−→ q′ is compatible with gmd = 〈im,md〉 def⇔

1. im ` g,
2. for every i ∈ [1, d],

– md(i) = ↑ implies a(i) ≥ 0,
– md(i) = ↓ implies a(i) ≤ 0.

11



3.3 Extended paths: a schema to denote a class of paths

A path π = t1 · · · tn is a finite sequence of transitions that can be fired or not from a
given configuration. It is often useful to describe a (possibly infinite) family of paths
and a natural choice consists in using regular expressions on the finite alphabet of tran-
sitions. For instance, semilinear regular expressions (SLRE) are quite convenient to
perform accelerations on labelled transition systems, see e.g. [FIS03]. Below, we intro-
duce the notion of extended path, so that a finite number of such structures is quite close
to SLREs. An extended path is basically a finite repetition of a path followed by a set of
simple loops or a set of simple loops followed by a path so that the control states match
between paths and simple loops. A formal definition is provided below. An extended
path (or a path schema) P is an expression of the form below:

π0 S1 π1 · · · Sα πα

where the Si’s are (finite) non-empty sets of simple loops, the πi’s are non-empty paths
and

1. if S occurs just before a path π, then all the simple loops in S loop on the first state
of π,

2. similarly, if S occurs just after a path π, then all the simple loops in S loop on the
last state of π.

An extended path generalises the notion of path in which simple loops in the sets Si’s
can be visited an arbitrary non-zero number of times while respecting the arbitrary
linear ordering on simple loops. A guarded mode induces a restriction of a counter
machine by considering only a subset of transitions from M, namely those that are
compatible with the guarded mode. We say that a path [resp. simple loop, extended
path] is compatible with the guarded mode gmd = 〈im,md〉 def⇔ all its transitions are
compatible with gmd.

Given an extended path P, we introduce a few more notions.

– The skeleton of P is the path π0 · · ·πα.
– Given a set of simple loops S = {sl1, . . . , slm} with sl1 ≺ · · · ≺ slm, we write
e(S) to denote the regular expression

(sl1)+ · · · (slm)+.

So, each simple loop is taken at least once. Indeed, we want to make explicit that
each simple loop sl is used in S, otherwise it is always possible to exclude sl
from S, leading to another legitimate extended path (assuming that S \ {sl} is
non-empty). We write e(P) to denote the regular expression defined as follows:

π0 · e(S1) · · · e(Sα) · πα.

Furthermore, we write L(e) to denote the language (with alphabet T ) generated by
the regular expression e. One can observe that L(e(P)) is a regular language for any
extended path P. For the sake of simplicity, we write L(P) instead of L(e(P)).

12



Example 1. Let us consider the counter machine in Figure 3. From the five transitions
(we have omitted to specify what are the guards and update vectors since this is irrele-
vant), we can build the following extended path

P
def
= t0 · t1 · {t1, t2} · t3 · {t4, t5} · t4 · t5 · t5.

Indeed, t1, t2, t4 and t5 are simple loops, and t0t1, t3 and t4t5t5 are paths. Assuming

q0 q qf
t0 t3

t1

t2

t4

t5

Fig. 3. A three-state counter machine

that t1 ≺ t2 and t5 ≺ t4, we get that

e(P) = t0 · t1 · t+1 t
+
2 · t3 · t

+
5 t

+
4 · t4 · t5 · t5.

Let P be an extended path compatible with a guarded mode gmd and ρ = 〈q0,x0〉
t1−→

· · · t`−→ 〈q`,x`〉 be a finite run. The run ρ respects the extended path P
def⇔ π =

t1 · · · t` ∈ L(P) and for all i ∈ [0, ` − 1] and all j ∈ [1, d], we have xi(j) ∈ im(xj).
Note that it may happen that for some j ∈ [1, d], x`(j) may not belong to im(xj).

3.4 Runs in normal form

Given a non-empty r-reversal-bounded run ρ = 〈q0,x0〉
t1−→ · · · t`−→ 〈q`,x`〉, we aim at

showing that the path π = t1 · · · t` can be transformed into π′ leading to the run ρ′, and
π′ belongs to a bounded regular language (the initial and last configurations of ρ are
preserved too). To do so, we divide the run ρ into several subruns such that the number
of reversals on each subrun is zero (i.e., a reversal can only occur when passing from
one subrun to a next one) and moreover, all the counter values of each subrun satisfy
exactly the same atomic guards. That is why we have introduced the notion of guarded
mode since it contains an interval map and a mode for each counter in C.

A global phase is a finite sequence of transitions such that there is a mode vector
md ∈ {↑, ↓}d for which each transition in it is compatible with 〈im,md〉, for some
interval map im. So, in a run respecting a global phase, the number of reversals is zero
for all the counters and a global phase depends only on a single mode vector.

Lemma 4. Any r-reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉 can be divided as a
sequence of subruns ρ = ρ1 · ρ2 · · · ρL such that each ρi respects a global phase and
L ≤ (d× r) + 1.

13



The proof is by an easy verification. Note that ρ · ρ′ is a run, assuming that the last
configuration of ρ is equal to the first configuration of ρ′ and the concatenation merges
these two occurrences. A local phase is a finite sequence of transitions such that there
is a guarded mode 〈im,md〉 for which each transition in it is compatible with 〈im,md〉.
Hence, in a run respecting a local phase, not only the number of reversals is zero for all
the counters but also the counter values satisfy the same atomic guards.

Lemma 5. Any r-reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉 can be divided as a
sequence of subruns ρ = ρ1 · ρ2 · · · ρL′ such that each ρi respects a local phase and
L′ ≤ ((d× r) + 1)× 2Kd.

Proof. By Lemma 4, we have seen that ρ can be divided in at most (d× r) + 1 subruns
respecting a global phase. It remains to show that each such subrun can be divided in
at most 2Kd subruns respecting a local phase. Actually, this is due to the following
property.

Let a ∈ Zd be an update vector. We define the binary relation �a on the set of
interval maps so that im �a im′

def⇔ for every i ∈ [1, d], we have

– im(xi) ≤ im′(xi) if a(i) ≥ 0,
– im′(xi) ≤ im(xi) if a(i) ≤ 0,
– im′(xi) = im(xi) if a(i) = 0.

We write im ≺a im′ when im �a im′ and im 6= im′. The property (P3) below states
that sequences of strictly increasing interval maps have polynomially bounded length,
even though the number of interval maps is in O(Kd).

(P3) Let a ∈ Zd and im1 ≺a im2 ≺a · · · ≺a imβ . Then, β ≤ 2Kd.

Indeed, in a subrun respecting a global phase, each counter is compared against at most
K constants and all the counters have a monotone behaviour (in increasing mode or in
decreasing mode). Hence, each counter during the global phase can visit at most 2K
distinct intervals in I, whence the bound 2Kd for the maximal number of local phases.

Below, a sequence of extended paths is understood as being of the form P1 · · ·PL′
with the proviso that each Pi is an extended path compatible with some guarded mode
and the expression P1 · · ·PL′ can be also viewed as an extended path by itself (possibly
by concatenating paths), i.e. it is compatible with the control graph ofM.

Lemma 6. Any r-reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉 respects a sequence
of extended paths P1 · · ·PL′ with L′ ≤ ((d× r) + 1)× 2Kd.

A small extended path π0 S1 π1 · · · πα−1 Sα πα, with α ≥ 1, is an extended path
such that

1. πα have at most card(Q) + 2 transitions,
2. π0, . . . , πα−1 have at most card(Q) transitions,
3. for each state q ∈ Q, there is at most one set S containing simple loops on q.

14



So, the length of the skeleton is bounded by card(Q)2 + card(Q) + 2. Note that the set
of small extended paths is finite, even though its cardinality can be exponential in the
size ofM. We also consider degenerated small extended paths made of paths of length
at most 2card(Q)+2 (i.e. without any set Sγ). Usually, this case is omitted in the proofs
since it can be easily obtained from the non-degenerated case (i.e. when α ≥ 1).

Lemma 7. Let ρ = 〈q0,x0〉 · · · 〈q`,x`〉 be a run respecting an extended path P com-
patible with some guarded mode gmd. Then, there is small extended path P′ compatible
with gmd and a run ρ′ with the same initial and final configurations such that ρ′ respects
P′.

The proof provides an algorithm to transform P to P′ by replacing sequences of
transitions by simple loops and termination is guaranteed because a given simple loop
can be used more than once.

Proof. Let ρ = 〈q0,x0〉
t1−→ · · · t`−→ 〈q`,x`〉 be a run ofM respecting an extended path

P compatible with some guarded mode gmd. So, this means that π = t1 · · · t` ∈ L(P)
and for all i ∈ [0, ` − 1] and all j ∈ [1, d], we have xi(j) ∈ im(xj). We shall build
a small extended path P′ such that P′ is compatible with gmd and there is a run ρ′

respecting P′ that starts and ends by the same configurations as ρ.
To do so, we define a sequence of extended paths P0, P1, . . . , Pβ (iteratively) such

that

– all the Pi’s are extended paths compatible with gmd and there is a run ρi respecting
Pi that starts and ends by the same configurations,

– P0 is equal to t1 · · · t` viewed as an extended path,
– Pβ is a small extended path,
– Pi+1 is obtained from Pi by removing a simple loop on a control state, say q, and

possibly adding it to a set of simple loops S already in Pi or by creating one if
none exists.

At the end of this process, the extended path Pβ is small and there is a run ρβ respecting
Pβ that starts by 〈q0,x0〉 and ends by 〈q`,x`〉.

It remains to explain how to build Pi+1 from Pi. We assume that Pi has the form
below

π0 S1 π1 · · · Sα πα
where

(1.) α ≤ card(Q),
(2.) π0, . . . , πα−1 have at most card(Q) transitions,
(3.) for each state q ∈ Q, there is at most one set Sγ , γ ∈ [1, α], containing simple

loops on q.

Obviously, P0 verifies these conditions since it is degenerated. The extended path Pi+1

shall satisfy the same condition except that we require that the length of the final path
of Pi+1 strictly decreases. Now, let us define Pi+1 from Pi.

Case 1: Pi is a small extended path. We are done and Pi is the final extended path of
the sequence.

15



Case 2: πα = π · sl · π′ where sl is a simple loop on q, π 6= ε, π′ 6= ε and Sγ already
contains simple loops on q (γ ≤ α). Then, Pi+1 is equal to the extended path
below:

π0 · · · Sγ−1 πγ−1 (Sγ ∪ {sl}) · · · πα−1 Sα (ππ′).

Case 3: πα = π · sl · π′ where sl is a simple loop on q and the first one occurring in
π · sl, π 6= ε, π′ 6= ε and no Sγ already contains simple loops on q. Then, Pi+1 is
equal to the extended path below:

π0 · · · Sα π {sl} π′.

In that case, we create a new set of simple loop(s).

It remains to show that there is a run ρi+1 respecting Pi+1 that starts by 〈q0,x0〉 and
ends by 〈q`,x`〉. Satisfaction of the conditions (1.)–(3.) above is by an easy verification.
In order to show the former property, we use the fact that all the transitions in Pi+1 are
compatible with gmd (by construction), the counter values have a monotone behaviour
(increasing mode or decreasing mode) and the atomic guards are convex (by definition).

We deal with the Case 2 below, Case 3 admits a similar analysis, which is left as
an exercise. Let ρi be a run respecting Pi, starting by the configuration 〈q0,x0〉 and
ending by the configuration 〈q`,x`〉. The extended path Pi is of the form

π0 S1 π1 · · · Sα (π · sl · π′).

Suppose that Sγ = S1
γ ] S2

γ , and for all sl′ ∈ S1
γ [resp. sl′ ∈ S2

γ], we have sl′ ≺ sl
[resp. sl ≺ sl′] (we have assumed an arbitrary total ordering on the set of simple loops).
Since Pi is compatible with the guarded mode gmd = 〈im,md〉, for every j ∈ [1, d],
we have:

– md(j) = ↑ implies that for all counter values x ∈ Nd occurring in the run ρi, we
get that x0(j) ≤ x(j) ≤ x`(j),

– md(j) = ↓ implies that for all counter values x ∈ Nd occurring in the run ρi, we
get that x`(j) ≤ x(j) ≤ x0(j).

Moreover, assuming that y ∈ Nd is the penultimate vector of counter values in ρi, we
know that for all counter values x ∈ Nd occurring in the run ρi until that occurrence
of y, for every atomic guard xj ∼ k in AG, we have im ` xj ∼ k iff x(j) ∼ k iff
x0(j) ∼ k iff y(j) ∼ k (partly thanks to the property (P2)).

In order to build a run ρi+1 similar to ρi that respects Pi+1, that starts by 〈q0,x0〉
and ends by 〈q`,x`〉, we decompose the run ρi in the following way so that ρi+1 can be
then easily defined.

The run ρi can be divided as follows. Each subrun ρ?i respects a factor of Pi (we
are a bit liberal here with the notion of respect):

ρi =

π0 ··· Sγ−1 πγ−1 S
1
γ︷ ︸︸ ︷

ρ?1 ·

S2
γ πγ ···πα−1 Sα π︷ ︸︸ ︷

ρ?2 ·
sl︷︸︸︷
ρ?3 ·

π′︷︸︸︷
ρ?4

For each subrun ρ?j , we write 〈qj0,x
j
0〉 [resp. 〈qjf ,x

j
f 〉] to denote its first [resp. last]

configuration. In order to build ρ′i, we introduce two sequences of configurations ρ??3

16



and ρ+ef(sl)
2 that will happen to be runs too. ρ??3 is the sequence of configurations ob-

tained from the final configuration 〈q1f ,x1
f 〉 by firing the transitions of the simple loop

sl. Similarly, ρ+ef(sl)
2 is the sequence of configurations obtained from the last config-

uration of ρ??3 by firing the sequence of transitions used for ρ?2. Observe that ρ?2 and
ρ
+ef(sl)
2 have the same length and for any configuration 〈q,x〉 in ρ?2, say at position h,

the configuration at position h in ρ+ef(sl)
2 is exactly 〈q,x + ef(sl)〉.

Let us consider the sequence of configurations ρi+1 as defined below:

ρi+1 =

π0 ··· Sγ−1 πγ−1 S
1
γ︷ ︸︸ ︷

ρ?1 ·
sl︷︸︸︷
ρ??3 ·

S2
γ πγ ···πα−1 Sα π︷ ︸︸ ︷

ρ
+ef(sl)
2 ·

π′︷︸︸︷
ρ?4

Note that the sequence of configurations respects the updates on the transitions. In order
to check that ρi+1 is a run, it remains to show that transitions in ρ??3 and in ρ+ef(sl)

2 can
be fired by respecting the guards. Suppose that md(j) = ↑ for some j ∈ [1, d] (the case
md(j) = ↓ admits a similar development). Every tuple y ∈ Nd from a configuration in
ρ??3 satisfies the following inequations:

x0(j) = x1
0(j) ≤ x1

f (j) ≤ y(j) ≤ x4
0(j) ≤ x4

f (j) = x`(j).

By convexity of the atomic guards xj ∼ k in AG, y(j) ∼ k iff y′(j) ∼ k where y′

is the corresponding vector of counter values in the run ρ?3 (at the same position). So,
ρ??3 is indeed a run of M respecting sl. Similary, one can show that ρ+ef(sl)

2 is a run
respecting S2

γπγ · · ·πα−1 Sα π, which concludes the proof. ut

Example 2. Let us consider the counter machine described in Example 1. Below, we
present a path where, as usual, (t)i represents i successive copies of t.

t0 · (t1)7 · (t2)7(t1)8 · t3 · (t4)7 · (t5)7 · (t4)8.

Following the steps in the proof of Lemma 7, we present below the extended path ob-
tained at the 22nd step and the one at the 38th step that corresponds to a small extended
path.

– P22 = t0 · {t1, t2} · t3 · (t4)7 · (t5)7 · (t4)8.
– P38 = t0 · {t1, t2} · t3 · {t4, t5} · (t4)6.

A small sequence of extended paths is a sequence of small extended paths P1 · · ·PL′
such that L′ ≤ ((d × r) + 1) × 2Kd. Not only each extended path of the sequence is
compatible with a unique guarded mode but also the extended path is itself small.

Theorem 8. For any r-reversal-bounded run ρ = 〈q0,x0〉 · · · 〈q`,x`〉, there is an r-
reversal-bounded run ρ′ between the same configurations that respects a small se-
quence of extended paths.

Let P be a small extended path compatible with the guarded mode gmd = 〈im,md〉,
say P is of the form below:

π0 {sl11, . . . , sl
n1
1 } π1 · · · {sl1α, . . . , slnαα } πα,

where q0 is the first control state in π0 and qf is the last control state in πα.

17



Lemma 9. There is a Presburger formula ϕ(x1, . . . , xd, y1, . . . , yd) of exponential size
in size(M) such that JϕK = {〈x0,y〉 : there is a run 〈q0,x0〉

∗−→ 〈qf ,y〉 respecting P}.

The size ofM, written size(M), is defined with an unspecified succinct encoding
in which the integers are encoded with a binary representation.

Proof. Let πα = π′α · t, so that t is the last transition of πα. The formula ϕ states the
following properties:

1. the initial counter values belong to the appropriate intervals induced by im,
2. the counter values for the penultimate configuration 〈q′f ,y′〉 belong to the right

intervals induced by im,
3. the values for ȳ are obtained from x̄ by considering the effects of the paths πi plus

a finite amount of times the effects of each simple loop occurring in P.

Note that (1) and (2) are sufficient to guarantee that every other configuration x in the
run 〈q0,x0〉

∗−→ 〈qf ,y〉, possibly except y, belong to the right intervals induced by im.
Indeed, if md(i) = ↑, then x0(i) ≤ x(i) ≤ y′(i) and by convexity of the guards inAG,
we get that x(i) satisfies the same atomic guards. A similar analysis can be made when
md(i) = ↓.

So, the formula ϕ is of the form below:

∃ z11, . . . , z
n1
1 , . . . , z1α, . . . , z

nα
α

(z11 ≥ 1) ∧ · · · ∧ (zn1
1 ≥ 1) ∧ · · · ∧ (z1α ≥ 1) ∧ · · · ∧ (znαα ≥ 1)∧

(ȳ = x̄ + ef(π0) + · · ·+ ef(πα) +
∑
i,j

zji ef(sl
j
i ))∧

(
∧

im`xc∼k

xc ∼ k) ∧ (
∧

not im`xc∼k

¬(xc ∼ k))∧

(
∧

im`xc∼k

(xc + ef(π0)(c) + · · ·+ ef(πα−1)(c) + ef(π′α)(c) +
∑
i,j

zji ef(sl
j
i )(c)) ∼ k)∧

(
∧

not im`xc∼k

¬(xc+ef(π0)(c)+· · ·+ef(πα−1)(c)+ef(π′α)(c)+
∑
i,j

zji ef(sl
j
i )(c) ∼ k)).

ut

The formula ϕ in Lemma 9 has size polynomial in size(M) and in the size of P.
The size of P is itself exponential in size(M). This is the best we can hope for since the
number of simple loops can be obviously exponential in the size of the control graph of
M.

Lemma 10. Let P1 · · ·PL′ be a sequence of small extended paths. There is a Pres-
burger formula ϕ(x̄, ȳ) such that

JϕK = {〈x,y〉 : there is a run 〈q0,x〉
∗−→ 〈qf ,y〉 respecting P1 · · ·PL′}.

18



Proof. The proof is by an easy verification by using the formulae from Lemma 9 (typ-
ically L′ times) and by taking advantage of existential first-order quantifications for
(L′ − 1) intermediary configurations. Indeed, for each small extended path Pi, let
ϕi(x̄, ȳ) be the formula constructed in the proof of Lemma 9. The formula ϕ is then
defined as follows:

∃ z̄0, . . . , z̄L′ (x̄ = z̄0) ∧ (ȳ = z̄L′) ∧
L′−1∧
i=0

ϕi+1(z̄i, z̄i+1).

ut

The formula ϕ in Lemma 10 is of exponential size in log(r)+size(M) since count-
ing untilL′ ≤ ((d×r)+1)×2Kd requiresO(log(r)+size(M)2) bits and each formula
ϕj is of exponential size in size(M). Since the number of small sequences of extended
paths is finite and actually double exponential in log(r)+size(M), we get the following
theorem.

Theorem 11. [Iba78] Let 〈M, 〈q0,x〉〉 be an initialised counter machine that is r-
reversal-bounded for some r ≥ 0. For each state qf ∈ Q, the set {y ∈ Nd : 〈q0,x〉

∗−→
〈qf ,y〉} is a computable Presburger set.

Theorem 11 is clearly a consequence of Theorem 8 and of its corollaries.

Proof. Let us consider the formula ϕ(ȳ) below:

∃ x (
∧

i∈[1,d]

x(i) = xi) ∧
∨

small seq. σ=P1···PL′

ϕσ(x̄, ȳ),

where ϕσ(x̄, ȳ) is the Presburger formula for the small sequence of extended paths σ =
P1 · · ·PL′ obtained from Lemma 10. Moreover, in the disjunction, we assume that
P1 · · ·PL′ starts by the state q0 and ends by the state qf . Moreover, if qf = q0, we add
the disjunct (

∧
i∈[1,d] x(i) = yi).

Finally, note that the generalised disjunction is finite since the number of small
sequences of extended paths is finite and bounded by 22

p(log(r),size(M))

for some polyno-
mial p(·, ·). Indeed, a small sequence has length at most ((d × r) + 1) × 2Kd and the
number of small extended paths is double exponential in the size ofM. Remember that
in an extended path, each set S may contain an exponential amount of simple loops. ut

Theorem 12. Let M be a counter machine that is uniformly r-reversal-bounded for
some r ≥ 0. For all the states q0, qf , one can compute a Presburger formula ϕ(x̄, ȳ)

such that JϕK = {〈x,y〉 ∈ N2d : 〈q0,x〉
∗−→ 〈qf ,y〉}.

Indeed, it is sufficient to consider the formula
∨

small seq. σ=P1···PL′
ϕσ(x̄, ȳ) from

the proof of Theorem 11.
As a corollary of the previous developments, we can obtain the following classical

result. Let Σ = {a1, . . . , ak} be a finite alphabet equipped with an arbitrary linear or-
dering on the letters, say a1 < · · · < ak. Given a word w ∈ Σ∗, its Parikh image is

19



defined as a tuple Π(w) ∈ Nk such that for every i ∈ [1, k], Π(w)(i) is the number
of occurrences of the letter ai in the word w. Naturally, the Parikh image of the lan-
guage L ⊆ Σ∗ is the set {Π(w) ∈ Nk : w ∈ L}. Parikh’s remarkable result states that
the Parikh image of any context-free language is semilinear [Par66] and that its repre-
sentation is effectively computable from a pushdown automaton or from a context-free
grammar. The above technique provides a proof for this result for the restricted class of
regular languages.

Theorem 13. [BL81, Theorem 2] For every regular language L, there is a regular lan-
guage L′ defined as a finite union of regular languages obtained from regular expres-
sions of the form u0v

∗
0u1v

∗
1 · · ·umv∗mum+1 (the ui’s and vi’s are finite words) such that

L′ ⊆ L and Π(L′) = Π(L).

Consequently, Π(L) is a Presburger set since it is quite easy to define a Presburger
formula defining Π(u0v

∗
0u1v

∗
1 · · ·umv∗mum+1). In order to build L′ from L, it is suf-

ficient to take a finite-state automaton A accepting L, to add a counter by letter and to
increment it whenever a letter is read. This provides a 0-reversal-bounded counter ma-
chine such that the union of the reachability sets for accepting states from A provides
Π(L). Moreover, the finite amount of small extended paths allows to define the finite
union of regular expressions of the form u0v

∗
0u1v

∗
1 · · ·umv∗mum+1, leading to L′.

3.5 Reachability problem with bounded number of reversals

Let us consider the following reachability problem that takes as input an arbitrary
counter machine and a bound r intended to enforce the maximal number of reversals
by counter, which corresponds to a perspective a bit different from what has been done
earlier.
REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVERSALS:

Input: a counter machineM, a bound r ∈ N, an initial configuration 〈q0,x0〉 and a
final configuration 〈qf ,xf 〉,

Question: Is there a finite run ofM with initial configuration 〈q0,x0〉 and final con-
figuration 〈qf ,xf 〉 such that each counter has at most r reversals?

Observe that when 〈M, 〈q0,x0〉〉 is r′-reversal-bounded for some r′ ≤ r, we get an
instance of the reachability problem with initial configuration 〈q0,x0〉.

In the input, we include the configurations 〈q0,x0〉 and 〈qf ,xf 〉 since we ask for
a reachability question between configurations. Remember that the counter machines
do not come with initial/final control states or even initial/final configurations. So, this
needs to be specified in the input.

Theorem 14 below is another consequence of Theorem 8. Its proof shows how to
transform a counter machine into an r-reversal-bounded counter machine whose runs
are exactly the r-reversal-bounded runs of the original counter machine.

Theorem 14. The reachability problem with bounded number of reversals is decidable.

20



Proof. Here is the decidability proof that uses Theorem 11. LetM = 〈Q,T,C〉, r ∈ N,
〈q0,x0〉 and 〈qf ,xf 〉 be an instance of the problem. First, we build a variant counter
machineM′ = 〈Q′, T ′, C〉 with Q′ = Q× {↑, ↓}d × [0, r]d.

By construction ofM′, we guarantee that 〈M′, 〈〈q0,↑,0〉,x0〉〉 is r-reversal-boun-
ded (↑ stands for the constant mode vector with the value ↑ only). Indeed, each counter
records the number of reversals and by construction ofM′ we enforce that it is bounded

by r on each run. The set of transitions T ′ is defined as follows: 〈q,md, ]alt〉 〈g,a〉−−→
〈q′,md′, ]alt′〉 ∈ T ′ def⇔ q

〈g,a〉−−→ q′ ∈ T and for every i ∈ [1, d], the relation described
by the following table is verified. The values of two first columns induce values for the
two last columns (when it is possible, see e.g. the condition ]alt(i) < r).

a md(i) md′(i) ]alt′(i)

a(i) < 0 ↓ ↓ ]alt(i)
a(i) < 0 ↑ ↓ ]alt(i) + 1 and ]alt(i) < r
a(i) > 0 ↑ ↑ ]alt(i)
a(i) > 0 ↓ ↑ ]alt(i) + 1 and ]alt(i) < r
a(i) = 0 ↓ ↓ ]alt(i)
a(i) = 0 ↑ ↑ ]alt(i)

By construction, M′ is uniformly r-reversal-bounded and the properties below are
equivalent:

1. there is a run ofMwith initial configuration 〈q0,x0〉 and final configuration 〈qf ,xf 〉
such that each counter has at most r reversals,

2. 〈〈qf ,md, ]alt〉,xf 〉 is reachable from 〈〈q0,↑,0〉,x0〉 inM′ for some md and ]alt.

The number of distinct pairs 〈md, ]alt〉 is bounded by 2d × (r + 1)d and therefore (1.)
is equivalent to the existence of 〈md, ]alt〉 among a finite set such that

3. 〈〈qf ,md, ]alt〉,xf 〉 is reachable from 〈〈q0,↑,0〉,x0〉 inM′.

By Theorem 11, the set

X〈md,]alt〉 = {x′ ∈ Nd : 〈〈q0,↑,0〉,x0〉
∗−→ 〈〈qf ,md, ]alt〉,x′〉}

is a computable Presburger set. This means that one can construct a Presburger formula
ϕ〈md,]alt〉 such that Jϕ〈md,]alt〉K = X〈md,]alt〉 and checking whether x ∈ X〈md,]alt〉
amounts to verify the satisfiability of the formula

(

d∧
i=1

xi = x(i)) ∧ ϕ〈md,]alt〉.

Since the satisfiability problem for Presburger arithmetic is decidable, we get an algo-
rithm to solve the reachability problem with a bounded number of reversals. Indeed, it
amounts to checking satisfiability of some Presburger formula made of a disjunction
with at most 2d(r + 1)d disjuncts. ut

21



The proof of Theorem 14 is interesting but does not help much to understand the
computational complexity of the reachability problem with bounded number of rever-
sals. However, the complexity can be nailed down thanks to the following develop-
ments. First, let us make use of Lemma 10.

Lemma 15. If there is a run from 〈q0,x0〉 to 〈qf ,xf 〉 such that each counter has at
most r reversals, then there is an r-reversal-bounded run between these configurations
respecting a small sequence of extended paths such that each simple loop is visited at
most a doubly-exponential number of times in log(r)+size(x0)+size(xf )+size(M).

The size of x ∈ Nd is defined so that size(x) ∈ O(d×log(m)) wherem is the maximal
value among the components of x. Similarly, the size of a counter machineM uses a
reasonably succinct encoding with integers encoded in binary.

Proof. Let ρ be an r-reversal-bounded run from 〈q0,x0〉 to 〈qf ,xf 〉. By Theorem 8,
there is an r-reversal-bounded run ρ′ between the same configurations that respects a
small sequence of extended paths P1 · · ·PL′ .

Let ϕ(x̄, ȳ) be the Presburger formula for that sequence. The formula ϕ(x̄, ȳ) is
equivalent to an existential formula (in prenex normal form, only the existential quan-
tifier occurs) and it is of size exponential in log(r) + size(M). Note that most of the
existentially quantified variables are related to the number of times simple loops are
visited. So, the formula

(
∧

j∈[1,d]

(xj = x0(j) ∧ yj = xf (j)) ∧ ϕ(x̄, ȳ)

is satisfiable, which is equivalent to the satisfiability of a quantifier-free formula ϕ′ by
removing the quantifications. The formula ϕ′ is satisfiable with values at most expo-
nential in its size (see Section 2.2). Consequently, each simple loop is visited at most a
doubly-exponential amount of times. ut

Since in a small sequence of extended paths, there are at most ((d× r) + 1)× 2Kd
extended paths, and each extended path has at most card(T )card(Q) simple loops and at
most card(Q)2 + card(Q) + 2 transitions, that do not occur in simple loops, if there is
an r-reversal-bounded run from 〈q0,x0〉 to 〈qf ,xf 〉, then there is such a run of length
at most double exponential in log(r)+size(M)+size(x0)+size(xf ). This means that
a nondeterministic exponential space algorithm can guess such a run and therefore the
reachability problem with bounded number of reversals is in EXPSPACE by Savitch’s
Theorem [Sav70]. This can be improved: the runs are much more structured, which
allows us to show NEXPTIME-completeness.

Theorem 16. The reachability problem with bounded number of reversals is in NEX-
PTIME assuming that all natural numbers are encoded in binary.

Proof. Let M, r, 〈q0,x0〉 and 〈qf ,xf 〉 be an instance of size N for the reachabil-
ity problem with bounded number of reversals. We have N ∈ O(size(M) + log(r) +
size(x0)+size(xf )). We have seen that there is an r-reversal-bounded run from 〈q0,x0〉
to 〈qf ,xf 〉 iff there is an r-reversal-bounded run ρ between these configurations that

22



respects a small sequence of extended paths, that is of length at most double exponen-
tial in N and each simple loop on that sequence is taken at most a double exponential
number of times.

Such a sequence has at most ((d × r) + 1) × 2Kd small extended paths. Each
extended path is compatible with a guarded mode and it has at most card(T )card(Q)

simple loops and at most 1 + card(Q) paths of length at most 3× card(Q). These are
rough bounds that also take into account the degenerated small extended paths.

The NEXPTIME algorithm below guesses on-the-fly the small sequence of extended
paths and computes the effect of taking a path of length at most 3×card(Q) or a simple
loop compatible with a guarded mode a double exponential number of times. Comput-
ing the effect of taking such an amount of times a simple loop can be computed in
exponential time because the natural numbers are encoded in binary. We do not com-
pute the full run but only the intermediate configurations after firing a path or a simple
loop.

The number of paths of length at most 3× card(Q) or the number of simple loops
visited along the small sequence of extended paths is bounded by:

G = ((d× r) + 1)× 2Kd× (card(T )card(Q) + card(Q) + 1).

Here is the algorithm:

1. 〈qcur,xcur〉 := 〈q0,x0〉; Guess α ≤ G; β := 1;
2. While β ≤ α do

(a) Guess either a path π of length at most 3× card(Q) or, a simple loop sl and a
guarded mode gmd = 〈im,md〉 and γ of double exponential value in N such
that sl is compatible with gmd;

(b) If a simple loop is guessed in (a), then check that xcur and xcur+(γ−1)ef(sl)+
ef(sl\last) are in the right intervals: for every i ∈ [1, d], xcur(i) and (xcur +
(γ − 1)ef(sl) + ef(sl\last))(i) belong to im(xi) where sl\last equals sl minus
its last transition.

(c) If a path π is guessed in (a), then check that the sequence of transitions in π
can be fired from 〈qcur,xcur〉 and set 〈qcur,xcur〉 := 〈qcur,xcur〉+ ef(π).

(d) β := β + 1;
3. Return (〈qcur,xcur〉 = 〈qf ,xf 〉).

Checking that the algorithm runs in nondeterministic exponential-time is then by an
easy verification. What is missing above, is a means to check that the number of re-
versals is indeed bounded by r and this can be done similarly to what is presented in
the proof of Theorem 14. So strictly speaking, the above algorithm should be com-
pleted and additional variables should be introduced to count the number of reversals
per counter. ut

Theorem 17. The reachability problem with bounded number of reversals is NEXPTIME-
complete.

Even though the reachability problem with bounded number of reversals is not
explicitly considered in [GI81,HR87], the proof for the complexity lower bound in

23



Theorem 17 is due to [HR87] whereas the proof for the complexity upper bound in
Theorem 17 is due to [GI81] (and it uses small solutions of inequation systems as
in [Rac78]). The lower bound is obtained by encoding computations of a Turing ma-
chine running in nondeterministic exponential time by a counter machine, by using
ideas similar to [Min67]. The reachability problem with bounded number of reversals
is in NP when the number of reversals r is encoded in unary [GI81]. As for the reach-
ability problem for integer VASS, see e.g. [HH14], the NP upper bound follows from
the fact that satisfiability of existential Presburger formulae can be witnessed by small
solutions of polynomial size in the size of the input formula.

3.6 Decidable repeated reachability problems

In this section, we show how to reduce the control state repeated reachability problem
to the reachability problem when reversal-bounded counter machines are involved. Let
us consider the following problem.
CONTROL STATE REPEATED REACHABILITY PROBLEM WITH BOUNDED NUMBER OF
REVERSALS:

Input: a counter machineM, a bound r ∈ N, an initial configuration 〈q0,x0〉 and an
accepting control state qf ,

Question: Is there an infinite run of M with initial configuration 〈q0,x0〉 such that
each counter has at most r reversals and qf is repeated infinitely often?

Before explaining how to solve the above problem, let us introduce a simple variant
for which we already have decidability.
CONTROL STATE REACHABILITY PROBLEM WITH BOUNDED NUMBER OF REVER-
SALS:

Input: a counter machineM, a bound r ∈ N, an initial configuration 〈q0,x0〉 and an
accepting control state qf ,

Question: Is there a finite run ofM with initial configuration 〈q0,x0〉 such that each
counter has at most r reversals and the final control state is qf?

As a consequence of Theorem 11 and Theorem 14, we get the following result.

Lemma 18. Control state reachability problem with bounded number of reversals is
decidable.

Indeed, reachability sets are computable Presburger sets. Let us take advantage of
this to establish Lemma 19.

Lemma 19. [DIP01] Control state repeated reachability problem with bounded num-
ber of reversals is decidable.

The proof of Lemma 19 reduces repeated reachability to reachability by observing
that on an infinite r-reversal-bounded run, after some position `, each counter remains
constant or increases. Since the control state qf is repeated infinitely often, one can find
two positions ` ≤ `1 < `2 that visit qf and so the subrun between the positions `1 and
`2 can be repeated infinitely often, assuming that the counters that increase after the
position ` have a value greater than any constant occurring in guards in the machine.
The details are provided in the proof below.

24



Proof. Let 〈M, 〈q0,x0〉〉 be an initialised counter machine, r ≥ 0, withM = 〈Q,T,C〉
and qf ∈ Q.

We propose an algorithm to answer the following question: is there an infinite r-
reversal-bounded run starting at 〈q0,x0〉 such that the control state qf is repeated in-
finitely often? We reduce it to an instance of the control state reachability problem with
bounded number of reversals, which is decidable by Lemma 18. Let kmax ∈ N denote
the maximal constant k occurring in an atomic guard of the form x ∼ k inM.

Let (?) be the desired property:

(?) There is an r-reversal-bounded infinite run from 〈q0,x0〉 such that qf is repeated
infinitely often.

Let (??) be the property specified below:

(??) There exist an r-reversal-bounded finite run ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉 · · ·

t`−→
〈ql,x`〉, `′ ∈ [0, `− 1] and C= ⊆ C such that
(a) q` = q`′ = qf ,
(b) for all xi ∈ C= and j ∈ [`′ + 1, `], xj−1(i) = xj(i),
(c) for all xi ∈ (C \ C=) and j ∈ [`′ + 1, `], xj−1(i) ≤ xj(i),
(d) for all xi ∈ (C \ C=), we have kmax < x`′(i),
(e) for all xi ∈ C=, have x`′(i) ≤ kmax.

Below, we show that (?) and (??) are equivalent, which allows us to reduce control
state repeated reachability to control state reachability. Indeed, checking (??) amounts
to introduce 2d copies ofM (one for each subset of C).

First, let us show that (?) and (??) are equivalent. Suppose (?). There exists an
infinite r-reversal-bounded run ρ = 〈q0,x0〉

t1−→ 〈q1,x1〉
t2−→ 〈q2,x2〉 · · · such that qf is

repeated infinitely often. Let Cρ= be the subset of C that contains exactly the counters
whose values are less or equal to kmax, apart from a finite prefix. Since ρ is r-reversal-
bounded, there exists I ≥ 0 such that for some n ≥ I , no counters in C \ Cρ= is
decremented and their values are strictly greater than kmax and all the counters in Cρ=
have a constant value less or equal to kmax. Since qf is repeated infinitely often, there
are I ≤ `′ < ` such that q` = q`′ = qf and (b)-(e) hold.

Now suppose that there exist an r-reversal-bounded finite run

ρ = 〈q0,x0〉
t1−→ 〈q1,x1〉 · · ·

t`−→ 〈q`,x`〉,

`′ ∈ [0, ` − 1] and C= ⊆ C witnessing the satisfaction of (??). It is then easy to
show that the ω-sequence of transitions t1 · · · t`′(t`′+1 · · · t`)ω allows us to define an
infinite r-reversal-bounded run ρ′ that extends ρ. It is clear that in the run ρ′ the control
state qf is repeated infinitely often. Guards on transitions are satisfied by the counter
values because of conditions (c), (d) and (e) and values for counters in (C \ C=) are
non-negative thanks to (c) and (d).

We construct a reversal-bounded counter machineM′ = 〈Q′, T ′, C〉 such that (??)
iff there is a finite r-reversal-bounded run from 〈q0,x0〉 that reaches the control state
qnew. It remains to define the counter machineM′. It is made of the original version
ofM (called below the original copy) augmented with 2d copies ofM; each copyMi

with i ∈ [0, 2d − 1] corresponds to the set of counters Ci=
def
= {xj | jth bit of i is 1}

that plays the role of C= in (??). ByMi, we mean the restriction ofM such that:

25



– no transition modifies a counter from Ci=,
– no transition decrements a counter in (C \ Ci=).

For each i ∈ [0, 2d − 1], the control states ofMi are pairs in (Q ] {qinf }) × {i}.
The second component simply indicates to which copy belongs the control state.

In order to simulate the subrun 〈q`′ ,x`′〉 · · · 〈q`,x`〉 for the satisfaction of (??) in
M, we nondeterministically move from the original copy to some copyMi inM′ (and
therefore we choose which counters remain constant below kmax forever). To do so, for
every i ∈ [0, 2d − 1], we consider inM′ a transition from the control state qf in the
original copy to 〈qinf , i〉 whose task is to check that

1. all counters in Ci= have values less or equal to kmax,
2. all counters in (C \ Ci=) have values strictly greater than kmax (and the transition

has no effect). Of course, the guard of such a transition is the following one:

(
∧

x∈(C\Ci=)

x ≥ (kmax + 1)) ∧ (
∧

x∈Ci=

x ≤ kmax).

Such a transition has also no effect on the number of reversals.

As soon as inMi, we reach again a control state whose first component is qf , we
may jump to the final control state qnew. So, in the counter machine Mi, the control
state 〈qinf , i〉 has a unique incoming transition (from qf ) and 〈qinf , i〉 and 〈qf , i〉 have
identical outgoing transitions. Moreover, from the control state 〈qf , i〉, there is a final
transition to qnew.

Note that inM′, it is sufficient to look for a r-reversal-bounded run. Figure 4 illus-
trates the construction ofM′. ut

qfMq0 qinf Mi

•
•
•
•
•

qf

qinf M0

•
•
•
•
•

qf

qinf M2d−1 qf

qnew

•
•
•
•

•
•
•
•

x1 > kmax ∧ · · · ∧ xd > kmax,0

x1 ≤ kmax ∧ · · · ∧ xd ≤ kmax,0

>,0

>,0

>,0

(
∧

x∈Ci=

x ≤ kmax) ∧ (
∧

x6∈Ci=

x > kmax), ,0

Fig. 4. MachineM′ with 2d copies ofM

26



Theorem 20. The control state repeated reachability problem with bounded number of
reversals is NEXPTIME-complete.

Proof. NEXPTIME-hardness follows from the NEXPTIME-hardness of the reachabil-
ity problem with bounded number of reversals (Theorem 17). In order to obtain the
NEXPTIME upper bound, it is sufficient to consider the proof of Lemma 19. FromM,
〈q0,x0〉, qf and r ≥ 0 (instance of size N ), we construct a counter machine M′ =
〈Q′, T ′, C〉 such that the control state qnew can be reached from 〈q0,x0〉 for some r-
reversal-bounded run iff there is an infinite r-reversal-bounded run from 〈q0,x0〉 such
that qf is repeated infinitely often. SinceM′ essentially restricts the behaviours ofM
(by guessing at some stage a set of counters C=), qnew can be reached from 〈q0,x0〉
with an r-reversal-bounded run sharing the structural properties of small runs from the
proof of Theorem 17, whence the NEXPTIME upper bound. ut

Lemma 19 can be extended so that, instead of repeating infinitely often control
states, properties on counters definable in Presburger arithmetic are repeated infinitely
often. Let us introduce the following problem.
∃-PRESBURGER INFINITELY OFTEN PROBLEM

Input: Initialised counter machine 〈M, 〈q0,x0〉〉 with d counters, r ≥ 0 and a Pres-
burger formula ϕ(x1, . . . , xd).

Question: Is there an infinite r-reversal-bounded run from 〈q0,x0〉 such that infinitely
often ϕ(x1, . . . , xd) holds?

Theorem 21. [DPK03] The ∃-Presburger infinitely often problem is decidable.

3.7 A simple undecidable extension

We conclude Section 3 by considering the class of counter machines C= that extends the
class C so that the atomic guards of the form x ∼ k (x ∈ C and k ∈ N) are augmented
with guards of the form either xi = xj and xi 6= xj .

Theorem 22. [ISD+02] The reachability problem with bounded number of reversals
for the class C= is undecidable.

Proof. (sketch) Undecidability can be shown even if r is restricted to zero (no reversal)
and the only guards in transitions are equalities or inequalities.

To prove this result, we sketch a reduction from the halting problem for Minsky
machines (similar to the control state reachability problem with the halting state as the
final control state). Indeed, assuming that guards of the form xi = xi′ and xi 6= xi′ are
allowed, each counter xi from the Minsky machineM provides two increasing counters
xinci and xdeci , that counts the number of increments on xi and the number of decrements,
respectively. Zero-test for counter xi is then simulated by a test xinci = xdeci . Similarly,
before incrementing xdeci (simulating a decrement inM), we test whether xinci 6= xdeci .

ut

27



As a conclusion, reversal-bounded counter machines from the class C admits de-
cidable control state reachability problem as well as control state repeated reachability
problem thanks to the fact that reachability sets are effective Presburger sets. By con-
trast, allowing equality/inequality guards in the counter machines leads to undecidabil-
ity. In Section 4 below, we show how to extend the set of guards and the set of temporal
properties while preserving decidability thanks to a notion of reversal-boundedness that
takes into account reversal-boundedness for terms introduced in [BD11].

4 A taste of temporal reasoning

Reachability problems ask for the existence of runs reaching some configuration or
reaching some control state in some specific way. Often, it is desirable to check how
events are temporally organised along a run and in order to specify such properties
temporal logics have been advocated since [Pnu77] (see also the recent book on tem-
poral logics [DGL16]). Furthermore, we wish to include in the logical language the
possibility to express directly constraints between variables of the program (typically
between counters), whence giving up the standard abstraction made with propositional
variables. So, a proposition like “x is greater than the next value of y” can be en-
coded in such extended temporal logics by x > Xy but this time the models are se-
quences of configurations. This means that each position comes with a control state and
a valuation for variables. Hence, the basic idea behind the design of the logic CLTL
below is to refine the language of atomic formulae and to allow the possibility to com-
pare counter values at successive positions of the run of the counter machines. Tem-
poral logics with Presburger constraints have been quite widely developped, see e.g.
in [Čer94,MP95,BEH95,Dem06,LMP10]. Results about reversal-bounded counter ma-
chines and Freeze LTL can be also found in [DS10].

4.1 The temporal logic CLTL

We define below a linear-time temporal logic CLTL in which atomic formulae are either
control states or arithmetical constraints about counter values at the current position and
next position. Counter variables in VAR = {x1, x2, . . .} are free variables, only inter-
preted by the counter values on configurations. As for defining quantifier-free fragment
of Presburger arithmetic, arithmetical terms are defined by the grammar below:

t ::= ax | aXx | t + t,

with x ∈ VAR and a ∈ Z. Intuitively, x refers to the current value for the counter x, Xx
refers to the counter value for x at the next position. Formulae of CLTL are defined as
follows:

ϕ ::= > | q | t ∼ k | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ,

with q ∈ Q, ∼∈ {<,≤, >,≥,=} and k ∈ Z. As usual, we pose Fϕ
def
= >Uϕ and

Gϕ
def
= ¬F¬ϕ. The formula GF(x1− x2 = 3) states that infinitely often the value for the

first counter is equal to the value for the second counter plus 3.

28



Models for CLTL are intended to be infinite runs of counter machines; hence they
are of the form ρ = 〈q0,x0〉, 〈q1,x1〉, 〈q2,x2〉, . . . with ρ ∈ (Q× Nd)ω . The satisfac-
tion relation |= is defined as follows:

– ρ, i |= q
def⇔ q = qi,

– In order to deal with arithmetical constraints, we need to introduce a few notations.
Given a term t from CLTL, we write t′ to denote the term in quantifier-free Pres-
burger arithmetic obtained from t by replacing Xxi by x′i. Then ρ, i |= t ∼ k

def⇔
v |= t′ ∼ k where for every j ∈ [1, n], v(xj)

def
= xi(j) and v(x′j)

def
= xi+1(j).

– ρ, i |= ϕ ∧ ϕ′ def⇔ ρ, i |= ϕ and ρ, i |= ϕ′,
– ρ, i |= ¬ϕ def⇔ ρ, i 6|= ϕ,
– ρ, i |= Xϕ

def⇔ ρ, i+ 1 |= ϕ,
– ρ, i |= ϕUϕ′

def⇔ there is j ≥ i such that ρ, j |= ϕ′ and for all h ∈ [i, j − 1], we
have ρ, h |= ϕ.

Semantics with finite runs instead of infinite runs can be defined similarly. Let us
turn to the definition of EXISTENTIAL MODEL-CHECKING PROBLEM for CLTL:

Input: A counter machine M = 〈Q,T,C〉, an initial configuration 〈q0,x0〉 and a
CLTL formula ϕ.

Question: Is there an infinite run ρ starting at 〈q0,x0〉 such that ρ, 0 |= ϕ?

Temporal logics with Presburger constraints have been widely developed, for in-
stance in the works [BEH95,CC00,BDR03]. Some of them have quite expressive de-
cidable fragments. Undecidability of the existential model-checking problem for CLTL
can be shown using the undecidability of the halting problem for Minsky machines,
see e.g., [CC00]. In the sequel, we provide an example of restriction in order to regain
decidability.

4.2 Bounding the number of reversals for terms

In this section, we consider counter machines for which the atomic formulae in guards
are of the form t ≤ k or t ≥ k with k ∈ Z and t is of the form

∑
i aixi with the

ai’s in Z. This defines the class of counter machines C+, strictly extending the class
C introduced in Section 2.1. We have seen that a reversal for a counter occurs in the
run of some counter machine when there is an alternation from a nonincreasing mode
to a nondecreasing mode and vice-versa. Below, we propose a slight generalisation
from [BD11] that captures the notion of reversal-boundedness from [Iba78]; reversal-
boundedness applies to counters but also to terms occurring in guards.

LetM = 〈Q,T,C〉 be a counter machine in C+ and T be a finite set of terms in-
cluding {x1, . . . , xd}. From a run ρ = 〈q0,x0〉, 〈q1,x1〉, . . . ofM, in order to describe
the behavior of counters and terms varying along ρ, we define a sequence of mode vec-
tors md0,md1, . . . such that each mdi has profile T→ {↑, ↓}. Intuitively, each value in
a mode vector records whether a term is currently in an increasing phase or in a decreas-
ing phase (this includes the counters themselves as in standard reversal-boundedness).
Given t =

∑
i aixi and a counter vector x ∈ Nd, we write x(t) to denote the integer∑

aix(i).

29



We are now ready to define the sequence md0,md1, . . . By convention, md0 is the
constant map ↑. For every j ≥ 0 and t ∈ T, we have

– mdj+1(t)
def
= mdj(t) when xj(t) = xj+1(t),

– mdj+1(t)
def
=↑ when xj+1(t)− xj(t) > 0 and,

– mdj+1(t)
def
=↓ when xj+1(t)− xj(t) < 0.

Let Revt = {j ∈ [0, | ρ | −1] : mdj(t) 6= mdj+1(t)}. We say that ρ is r-T-
reversal-bounded for some r ≥ 0

def⇔ for all t ∈ T, card(Revt) ≤ r. Given a counter
machineM, we write TM to denote the set of terms t occurring in atomic formulae of
the form t ∼ k with ∼∈ {≤,≥} augmented with the counters in {x1, . . . , xd}. An ini-
tialised counter machine 〈M, 〈q,x〉〉 is reversal-bounded def⇔ there is r ≥ 0 such that
every run from 〈q,x〉 is r-TM-reversal-bounded. When T is reduced to {x1, . . . , xd},
T-reversal-boundedness is equivalent to reversal-boundedness from [Iba78].

Theorem 23. [Iba78,BD11] Given a counter machine M in C+, r ≥ 0 and control
states q, q′, one can effectively compute a Presburger formula

ϕq,q′(x1, . . . , xd, y1, . . . , yd)

such that for all valuations v, we have v |= ϕ iff there is an r-TM-reversal-bounded
run from 〈q, 〈v(x1), . . . , v(xd)〉〉 to 〈q′, 〈v(y1), . . . , v(yd)〉〉.

Results about model-checking reversal-bounded counter machines with CLTL can
be found in [BD11,HL11]. Below, we recall the definition for the reversal-bounded
model-checking problem (RBMC). Its peculiarity is that the input initialised counter
machines are not necessarily reversal-bounded but the input contains an explicit bound
r about the maximal number of reversals within a run. Moreover, given a CLTL formula
ϕ, we write Tϕ to denote the finite set of terms of the form

∑
k(ak + bk)xk when

t = (
∑
k akXxk) + (

∑
k bkxk) is a term occurring in ϕ (modulo AC for the operator

+) in an atomic formula of the form t ∼ k with ∼∈ {≤,≥, <,>,=} and k ∈ Z. Since
the next value of the counter xk (denoted by Xxk) is equal to the current value of the
counter plus some b ∈ Z (depending on the update vectors of the transitions), the value
of the term (

∑
k akXxk) + (

∑
k bkxk) is equal to the current value of

∑
k(ak + bk)xk

plus some constant depending on the next transition. This explains the current definition
of Tϕ. The problem RBMC is defined as follows:

Input: a counter machine M, an initial configuration 〈q0,x0〉, a CLTL formula ϕ, a
bound r ∈ N (in binary),

Question: Is there an infinite run ρ from 〈q,x〉 such that ρ, 0 |= ϕ and ρ is r-T-reversal-
bounded with T = TM ∪ Tϕ?

The computational complexity for RBMC can be precisely characterised; the upper
bound can be obtained by a refined analysis on runs, see e.g. [GI81,BD11].

Theorem 24. [BD11,HL11]RBMC is NEXPTIME-complete.

30



Hence, the NEXPTIME upper bound established for the reachability problem with
bounded number of reversals (Theorem 17) can be extended to richer classes of counter
machines and to richer specification languages such as CLTL [BD11,HL11]. Note that
the decidability with both extensions is possible thanks to the introduction of a new con-
cept for reversal-boundedness that makes explicit the role of arithmetical terms [BD11]
and it captures previous notions on reversal-boundedness. In [HL11], operational mod-
els extending pushdown systems with counters and clocks are also considered; a version
of reversal-bounded LTL model-checking is shown to be co-NEXPTIME [HL11, The-
orem 2]. A prototypical implementation and experimental results are also presented
in [HL11]. Finally, in [KWT10, Theorem 22], EXPTIME upper bound for LTL model-
checking over reversal-bounded counter automata is shown but the logical language
has no arithmetical constraint and the number of reversals r is encoded in unary (see
also [WT10]).

5 Conclusion

In the paper, we have provided several developments about the verification of reversal-
bounded counter machines. All the decision procedures have been designed by trans-
lation into Presburger arithmetic, witnessing once more, the translation approach to
solve verification problems (more details can be found in [BD11,HL11] for instance).
The idea of having bounds in runs is quite rich and bounding the number of reversals
is not the only option. Moreover, multi-pushdown systems generalise the counter ma-
chines by having different stacks instead of different counters (while both models are
Turing-complete). Bounding the number of switches [resp. phases] have been studied
in [QR05] [resp. in [TMP07]]. A switch is an update from one stack to another whereas
a phase is understood as a sequence of steps in which pop actions are performed on one
stack only whereas push actions can occur on any stack. Other restrictions on multi-
pushdown systems can be found in [Ati10], followed by many other studies on richer
models in which runs are bounded in a way or another.

Acknowledgment. I would like to thank the anonymous reviewers for their suggestions
and remarks that help me to improve the quality of the document.

References

[Ati10] M.F. Atig. Global model checking of ordered multi-pushdown systems. In
FST&TCS’10, pages 216–227. LIPICS, 2010.

[BB74] B. Baker and R. Book. Reversal-bounded multipushdown machines. Journal of Com-
puter and System Sciences, 8:315–332, 1974.

[BCC+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.
Advances in Computers, 58:118–149, 2003.

[BD11] M. Bersani and S. Demri. The complexity of reversal-bounded model-checking. In
FROCOS’11, volume 6989 of LNAI, pages 71–86. Springer, 2011.

[BDR03] V. Bruyère, E. Dall’Olio, and J.F. Raskin. Durations, parametric model-checking in
timed automata with Presburger arithmetic. In STACS’03, volume 2607 of LNCS,
pages 687–698. Springer, 2003.

31



[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonreg-
ular properties for nonregular processes. In LICS’95, pages 123–133, 1995.

[Ber80] L. Berman. The complexity of logical theories. Theoretical Computer Science, 11:71–
78, 1980.

[BGO06] D. Bresolin, J. Golińska-Pilarek, and E. Orłowska. Relational dual tableaux for in-
terval temporal logics. Journal of Applied Non-Classical Logics, 16(3–4):251–278,
2006.

[BIK09] M. Bozga, R. Iosif, and F. Konecný. Fast acceleration of ultimately periodic relations.
In CAV’10, volume 6174 of LNCS, pages 227–242. Springer, 2009.

[BL81] M. Blattner and M. Latteux. Parikh-Bounded Languages. In ICALP’81, volume 115
of LNCS, pages 316–323. Springer, 1981.

[BL10] M. Bojańczyk and S. Lasota. An extension of data automata that captures XPath. In
LICS’10, pages 243–252. IEEE, 2010.

[BO99] Ph. Balbiani and E. Orłowska. A hierarchy of modal logics with relative accessibility
relations. Journal of Applied Non-Classical Logics, 9:303–328, 1999.

[Boi99] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis, Uni-
versité de Liège, 1999.

[BT76] I. Borosh and L. Treybig. Bounds on positive integral solutions of linear Diophantine
equations. American Mathematical Society, 55:299–304, 1976.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume 1862 of
LNCS, pages 262–276. Springer, 2000.

[Čer94] K. Čerans. Deciding properties of integral relational automata. In ICALP’94, volume
820 of LNCS, pages 35–46. Springer, 1994.

[CFM11] M. Cadilhac, A. Finkel, and P. McKenzie. On the expressiveness of Parikh automata
and related models. In Proceedings of the 3rd Workshop on Non-Classical Models
of Automata and Applications (NCMA’11), volume 282 of books@ocg.at, pages 103–
119. Austrian Computer Society, 2011.

[Cha81] T. Chan. Reversal complexity of counter machines. In STOC’81, pages 146–157.
ACM, 1981.

[CHL13] W. Czerwiński, P. Hofman, and S. Lasota. Reachability problem for weak multi-
pushdown automata. Logical Methods in Computer Science, 9(3), 2013.

[CJ98] H. Comon and Y. Jurski. Multiple counter automata, safety analysis and Presburger
Arithmetic. In CAV’98, volume 1427 of LNCS, pages 268–279. Springer, 1998.

[DDS13] S. Demri, A.K. Dhar, and A. Sangnier. On the complexity of verifying regular prop-
erties on flat counter systems. In ICALP’13, volume 7966 of LNCS, pages 162–173.
Springer, 2013.

[DDS15] S. Demri, A.K. Dhar, and A. Sangnier. Taming past LTL and flat counter systems.
Information & Computation, 242:306–339, 2015.

[Dem06] S. Demri. Linear-Time Temporal Logics with Presburger Constraints: An Overview.
Journal of Applied Non-Classical Logics, 16(3–4):311–347, 2006.

[DFP16] S. Demri, D. Figueira, and M. Praveen. Reasoning about data repetitions with counter
systems. Logical Methods in Computer Science, 12, 2016.

[DGL16] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science. Cam-
bridge University Press, 2016.

[DIB+00] Z. Dang, O.H. Ibarra, T. Bultan, R.A. Kemmerer, and J. Su. Binary reachability
analysis of discrete pushdown timed automata. In CAV’00, volume 1855 of LNCS,
pages 69–84. Springer, 2000.

[DIP01] Z. Dang, O. Ibarra, and P. San Pietro. Liveness verification of reversal-bounded multi-
counter machines with a free counter. In FST&TCS’01, volume 2245 of LNCS, pages
132–143. Springer, 2001.

32



[DPK03] Z. Dang, P. San Pietro, and R. Kemmerer. Presburger liveness verification of discrete
timed automata. Theoretical Computer Science, 299:413–438, 2003.

[DS10] S. Demri and A. Sangnier. When model checking freeze LTL over counter ma-
chines becomes decidable. In FOSSACS’10, volume 6014 of LNCS, pages 176–190.
Springer, 2010.

[EG11] J. Esparza and P. Ganty. Complexity of pattern-based verification for multithreaded
programs. In POPL’11, pages 499–510. ACM, 2011.

[Esp94] J. Esparza. On the decidability of model checking for several µ-calculi and Petri nets.
In ICALP’94, volume 787 of LNCS, pages 115–129. Springer, 1994.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an introduction. In
Advances in PN’98, volume 1491 of LNCS, pages 374–428. Springer, 1998.

[FdCO85] L. Fariñas del Cerro and E. Orłowska. DAL – A logic for data analysis. Theoretical
Computer Science, 36:251–264, 1985.

[FIS03] A. Finkel, S. Purushothaman Iyer, and G. Sutre. Well-abstracted transition systems:
Applications to FIFO automata. Information & Computation, 181(1):1–31, 2003.

[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Applications
to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS, pages 145–156.
Springer, 2002.

[FO97] L. Fribourg and H. Olsén. Proving safety properties of infinite state systems by com-
pilation into Presburger arithmetic. In CONCUR’97, volume 1243 of LNCS, pages
213–227. Springer, 1997.

[Fri00] L. Fribourg. Petri nets, flat languages and linear arithmetic. In 9th Workshop on
Functional and Logic Programming (WFLP), pages 344–365, 2000.

[FS08] A. Finkel and A. Sangnier. Reversal-bounded counter machines revisited. In
MFCS’08, volume 5162 of LNCS, pages 323–334. Springer, 2008.

[GI81] E. Gurari and O. Ibarra. The complexity of decision problems for finite-turn mul-
ticounter machines. In ICALP’81, volume 115 of LNCS, pages 495–505. Springer,
1981.

[GS66] S. Ginsburg and E. Spanier. Semigroups, Presburger formulas and languages. Pacific
Journal of Mathematics, 16(2):285–296, 1966.

[Haa14] Ch. Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In
LICS’14. ACM Press, 2014.

[Hab97] P. Habermehl. On the complexity of the linear-time mu-calculus for Petri nets. In
ICATPN’97, volume 1248 of LNCS, pages 102–116. Springer, 1997.

[HH14] Ch. Haase and S. Halfon. Integer vector addition systems with states. In RP’14,
volume 8762 of LNCS, pages 112–124. Springer, 2014.

[HL11] M. Hague and A. W. Lin. Model checking recursive programs numeric data types. In
CAV’11, volume 6806 of LNCS, pages 743–759. Springer, 2011.

[HR87] R. Howell and L. Rosier. An analysis of the nonemptiness problem for classes of
reversal-bounded multicounter machines. Journal of Computer and System Sciences,
34(1):55–74, 1987.

[HR89] R. Howell and L. Rosier. Problems concerning fairness and temporal logic for
conflict-free petri nets. Theoretical Computer Science, 64:305–329, 1989.

[Iba74] O. Ibarra. A note on semilinear sets and bounded-reversal multihead pushdown au-
tomata. Information Processing Letters, 3(1):25–28, 1974.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25(1):116–133, 1978.

[ISD+02] O. Ibarra, J. Su, Z. Dang, T. Bultan, and R. Kemmerer. Counter machines and verifi-
cation problems. Theoretical Computer Science, 289(1):165–189, 2002.

[Jan90] P. Jančar. Decidability of a temporal logic problem for Petri nets. Theoretical Com-
puter Science, 74(1):71–93, 1990.

33



[KM69] R. Karp and R. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147–195, 1969.

[Kos82] R. Kosaraju. Decidability of reachability in vector addition systems. In STOC’82,
pages 267–281, 1982.

[KR02] F. Klaedtke and H. Ruess. Parikh automata and monadic second-order logics with
linear cardinality constraints. Technical Report 177, Institute of Computer Science at
Freiburg University, 2002.

[KWT10] E. Kopczynski and A. Widjaja To. Parikh images of grammars: Complexity and ap-
plications. In LICS’10, pages 80–89. IEEE, 2010.

[Ler09] J. Leroux. The general vector addition system reachability problem by Presburger
inductive invariants. In LICS’09, pages 4–13. IEEE, 2009.

[Lip76] R.J. Lipton. The reachability problem requires exponential space. Technical Re-
port 62, Department of Computer Science, Yale University, 1976.

[LMP10] F. Laroussinie, A. Meyer, and E. Petonnet. Counting LTL. In TIME’10, pages 51–58.
IEEE, 2010.

[LS15] J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In
LICS’15, pages 56–67. IEEE, 2015.

[May84] E. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal
of Computing, 13(3):441–460, 1984.

[Min61] M. Minsky. Recursive unsolvability of Post’s problems of ‘tag’ and other topics in
theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961.

[Min67] M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
[MP95] Z. Manna and A. Pnueli. Temporal verification of reative systems: safety. Springer,

1995.
[Orło73] E. Orłowska. Theorem-proving systems. PhD thesis, Mathematical Department of the

Warsaw University, 1973. Published in the series Dissertationes Mathematicae from
the Polska Akademia Nauk, Instytut Matematyczny.

[Orło85] E. Orłowska. Logic of nondeterministic information. Studia Logica, 44:93–102, 1985.
[Orło88] E. Orłowska. Relational interpretation of modal logics. In H. Andréka, D. Monk, and

I. Németi, editors, Algebraic logic. Colloquia Mathematica Societatis Janos Bolyai
54, pages 443–471. North-Holland, Amsterdam, 1988.

[Orło89] E. Orłowska. Logic for reasoning about knowledge. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 35:559–568, 1989.

[Orło93] E. Orłowska. Dynamic logic with program specifications and its relational proof sys-
tem. Journal of Applied Non-Classical Logics, 3(2):147–171, 1993.

[Orło95] E Orłowska. Temporal logics in a relational framework. In L. Bolc and A. Szalas,
editors, Time and Logic- A Computational Approach, pages 249–277. UCL Press,
1995.

[Pap81] Chr. Papadimitriou. On the complexity of integer programming. Journal of the ACM,
28(4):765–768, 1981.

[Par66] R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
[Pnu77] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE, 1977.
[Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes
Rendus du Premier Congrès de Mathématiciens des Pays Slaves, Warszawa, pages
92–101, 1929.

[QR05] S. Qaader and J. Rehof. Context-bounded model checking of concurrent software. In
TACAS’05, volume 3440 of LNCS, pages 93–107. Springer, 2005.

[Rac78] C. Rackoff. The covering and boundedness problems for vector addition systems.
Theoretical Computer Science, 6(2):223–231, 1978.

34



[Reu90] C. Reutenauer. The mathematics of Petri nets. Masson and Prentice, 1990.
[San08] A. Sangnier. Vérification de systèmes avec compteurs et pointeurs. Thèse de doctorat,

LSV, ENS Cachan, France, 2008.
[Sav70] W.J. Savitch. Relationships between nondeterministic and deterministic tape com-

plexities. Journal of Computer and System Sciences, 4(2):177–192, 1970.
[Sch86] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, 1986.
[Sch17] S. Schmitz. Algorithmic Complexity of Well-Quasi-Orders. Mémoire d’habilitation,

École Normale Supérieure Paris-Saclay, France, 2017.
[SJ80] N. Suzuki and D. Jefferson. Verification Decidability of Presburger Array Programs.

Journal of the ACM, 27(1):191–205, 1980.
[TMP07] S. La Torre, P. Madhusudan, and G. Parlato. A robust class of context-sensitive lan-

guages. In LICS’07, pages 161–170. IEEE, 2007.
[WT10] A. Widjaja To. Model Checking Infinite-State Systems: Generic and Specific Ap-

proaches. PhD thesis, School of Informatics, University of Edinburgh, 2010.

35


