Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity

Martin van Driel, Savas Ceylan, John Francis Clinton, Domenico Giardini, Hector Alemany, Amir Allam, David Ambrois, Julien Balestra, Bruce Banerdt, Dirk Becker, et al.

To cite this version:

HAL Id: hal-02365912
https://hal.archives-ouvertes.fr/hal-02365912

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Open Archive Toulouse Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of some Toulouse researchers and makes it freely available over the web where possible.

This is an author's version published in: https://oatao.univ-toulouse.fr/25972

Official URL: https://doi.org/10.1785/0220180379

To cite this version:

Any correspondence concerning this service should be sent to the repository administrator:
tech-oatao@listes-diff.inp-toulouse.fr
Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity

Martin van Driel1, Savas Ceylan1, John Francis Clinton2, Domenico Giardini1, Hector Alemany12, Amir Allam19, David Ambrois12, Julien Balestra12, Bruce Banerdt6, Dirk Becker13, Maren Böse1,2, Marc S. Boxberg10, Nienke Brinkman1, Titus Casademont13, Jérôme Chêze12, Ingrid Daubar6, Anne Deschamps12, Fabian Dethof13, Manuel Ditz10, Melanie Drilleau5, David Essing13, Fabian Euchner2, Benjamin Fernando18, Raphael Garcia7, Thomas Garth18, Harriet Godwin18, Matthew P. Golombek6, Katharina Grunert13, Celine Hadzioannou13, Claudia Haindl18, Conny Hammer2, Isabell Hochfeld13, Kasra Hosseini18, Hao Hu14, Sharon Kedar6, Balthasar Kenda5, Amir Khan1, Tabea Kilchling13, Brigitte Knapmeyer-Endrun16,17, Andre Lamert10, Jiaxuan Li14, Philippe Lognonné5, Sarah Mader13,20, Lorenz Marten13, Franziska Mehrkens13, Diego Mercerat4, David Mimoun7, Thomas Möller10, Naomi Murdoch7, Paul Neumann13, Robert Neurath13, Marcel Paffrath10, Mark P. Panning6, Fabrice Peix12, Ludovic Perrin8, Lucie Rolland12, Martin Schimmel15, Christoph Schröer13, Aymeric Spiga9, Simon Christian Stähler1, René Steinmann13, Eleonore Stutzmann15, Alexandre Szenicer18, Noah Trumpik13, Maria Tsekhmistrenko18, Cédric Twardzik12, Renee Weber3, Philipp Werdenbach-Jarklowski13, Shane Zhang11, and Yingcai Zheng14

1Institute of Geophysics, ETH Zürich Sonneggstrasse 5, 8092 Zürich, Switzerland
2Swiss Seismological Service, ETH Zürich Sonneggstrasse 5, 8092 Zürich, Switzerland
3NASA Marshall Space Flight Center, ST13/NSSTC 2047, Huntsville, Alabama 35805 U.S.A.
4CEREMA Méditerranée, project team MOUVGS, 500 route des Lucioles, 06903, Sophia Antipolis, France
5Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
6Jet Propulsion Laboratory, California Institute of Technology Pasadena, California 91109 U.S.A.
7ISAE-SUPAERO, Université de Toulouse, DEOS/ SSPA, 10 av E. Belin, 31400 Toulouse, France
8Centre National d’Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse, France
Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique, École Polytechnique, École Normale Supérieure, Paris, France

Ruhr University Bochum, Faculty of Geosciences, Institute of Geology, Mineralogy and Geophysics, 44780 Bochum, Germany

Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, U.S.A.

Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRD, Géoaazur, France

Institute of Geophysics, University of Hamburg, Bundesstrasse 55, 20146 Hamburg, Germany

Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, U.S.A.

Institut de Physique du Globe de Paris, 1 rue Jussieu, 75252 Paris, Cedex 5, France

Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany

now at: Institute of Geology and Mineralogy, University of Cologne, Vinzenz-Pallotti-Str. 26, 51429 Bergisch Gladbach, Germany

Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

Department of Geology & Geophysics, University of Utah, Salt Lake City, Utah, U.S.A.

Karlsruhe Institute of Technology (KIT), Geophysical Institute, Hertzstr. 16, 76187 Karlsruhe, Germany

April 15, 2019
Abstract

In December 2018, the NASA InSight mission deployed a seismometer on the surface of Mars. In preparation for the data analysis, in July 2017 the Mars Quake Service initiated a blind test, in which participants were asked to detect and characterize seismicity embedded in a one Earth year long synthetic dataset of continuous waveforms. Synthetic data were computed for a single station, mimicking the streams that will be available from InSight as well as the expected tectonic and impact seismicity, and noise conditions on Mars (Clinton et al. [2017]). In total, 84 teams from 20 countries registered for the blind test and 11 of them submitted their results in early 2018. The collection of documentations, methods, ideas and codes submitted by the participants exceeds 100 pages. The teams proposed well established as well as novel methods to tackle the challenging target of building a global seismicity catalogue using a single station. This paper summarizes the performance of the teams, and highlights the most successful contributions.

Introduction

The National Aeronautics and Space Administration (NASA) discovery-class mission InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport, Banerdt et al. [2013] http://insight.jpl.nasa.gov) to Mars was launched on May 5th, 2018 and landed successfully on November 26th. It is dedicated to determining the constitution and interior structure of Mars. For this purpose, InSight deployed a single seismic station with both broadband and short-period seismometers on the surface of Mars, together with a number of other geophysical (Folkner et al. [2018] Spohn et al. [2018]) and meteorological (Spiga et al. [2018]) sensors. The seismic instrument package (SEIS) is specifically designed for martian conditions to record marsquakes as well as meteoroid impacts, and transmit data back to Earth for analysis (Lognonné et al. [2019] www.seis-insight.eu).

The Marsquake Service (MQS, Clinton et al. [2018]) is tasked with the prompt review, detection and location of all martian seismicity recorded by InSight. It will also manage the seismicity catalogue, refining locations using the best available Mars models as they are developed during the project. To prepare the InSight science team and the wider seismological community for the data return, the MQS sent an open invitation to participate in a blind test to detect and locate seismic events hidden in a synthetic data set, which was published in SRL in July 2017 (Clinton et al. [2017]). The data set was made available at http://blindtest.mars.ethz.ch/ in August 2017 with mandatory registration. Following the submission deadline in February 2018, the true model and event catalogue together with the original waveform data are now openly available online.

Purpose of the Test

The blind test was initiated with the main purpose of improving and extending the set of methods for event location, discrimination and magnitude estimation as well as phase identification and source inversion to be applied in routine
analysis of the InSight data set by collecting ideas from outside the InSight science team. It also helped to raise the profile of the InSight mission and to familiarize interested scientists with the data set to be expected from Mars.

Beyond this, the test also initiated a major effort to generate a single, consistent, temporal, synthetic data set that collected all best pre-landing estimates of seismicity, impacts, synthetic seismograms, atmospheric pressure variations and related noise, instrument self-noise and 1D structure models. The data set was made available in the same formats, and using similar web services as are now available for the real data from Mars. For this reason, the data set was also used for various operational readiness tests as well as scientific testing purposes in preparation for data return.

Furthermore, the submitted catalogues allow to derive detection and location thresholds as a function of magnitude and distance, that are not based on simple signal to noise ratio assumptions, but include the whole complexity of identifying and locating events in the time series. It is important to note though, that this data set included randomly distributed events over the sphere. Compared to the global fault distribution (Knapmeyer et al. 2006), this model may have too many events near the landing site, so the total number of detectable events in this dataset may be higher than predicted by recent seismicity models of similar total activity (Plesa et al. 2018). This needs to be accounted for if the detection threshold determined in this test is used for constraining seismic activity rates.

In the invitation, we envisioned a quantitative scoring in different categories (event detection and localization accuracy in different magnitude classes, impact discrimination and focal mechanism), but this turned not to be feasible given the heterogeneity of the submissions and relatively small number of detectable events in the data. Instead, we decided to focus on visual comparisons of the performances and compare them to the level 1 (L1) requirements of the mission, i.e. the required accuracy to achieve InSight’s science objectives. The L1 requirements for quake location are 25% in distance and 20 degrees in azimuth (Banerdt et al. 2013).

Overview of the Test Data Set

The event catalogue included a total of 204 tectonic marsquakes as well as 36 impacts (Fig. 1), with only a fraction of them producing seismic signals above the noise level. The events were randomly distributed over the whole planet where the depth distribution of tectonic events followed a skewed Gaussian distribution with a maximum allowed depth of 80 km. The maximum event size was $M_w = 5$ and the magnitude-frequency distribution approximates a Gutenberg-Richter distribution with $a = 4.88, b = 1$; events with $M_w < 2.5$ were neglected (see Fig. 2 and Ceylan et al. 2017).

The impact catalogue is based on Teanby (2015) and the size distribution of observed newly dated craters (Daubar et al. 2018), again assuming a globally random distribution. To restrict amplitudes to levels similar to $M_w 2.5$ events, we only include impacts with impactor mass larger than 100 kg and assume an impact velocity of 10 km/s.

The seismic signals were computed using AxiSEM (Nissen-Meyer et al. 2014) and Instaseis (van Driel et al. 2015) as solutions to the elastic-wave equation in radially symmetric planet models. Continuous time series were then created by
superimposing the event based data with seismic noise that reflects the pre-landing estimates for the surface installed instruments at the landing site (Murdoch et al. 2017a; Murdoch et al. 2017b; Mimoun et al. 2017; Kenda et al. 2017). It includes noise generated by the sensors and systems themselves, as well as through sources in martian environment (such as fluctuating pressure-induced ground deformation, the magnetic field, and temperature-related noise) and nearby lander (such as wind-induced solar panel vibrations).

Synthetic data were generated from one of the 14 candidate models (Zharkov and Gudkova 2005; Rivoldini et al. 2011; Khan et al. 2016) which were published as part of the data set, but the model choice was not revealed to participants. The model used for creation of waveform data set is shown in Figure 3 which explains two prominent features observed by most participating teams: 1) Clear S-wave arrivals were absent in most events due to the low velocity region in the upper mantle, which made distance estimations based only on relative P and S travel times very difficult, and 2) at the same time, the bedrock layer at the surface acted as a wave guide and caused a prominent P-coda arrival, that could be used for estimating locations in this 1D setting (see Fig. 4 for an overview of the most visible events). Such a phase is observed over long distances in specific settings on Earth, such as oceanic crust of constant thickness (e.g. Kennett and Furumura 2013), but in this blind test, it should be considered an artifact from the simple 1D model. It is not expected to be observed as a global phenomenon on Mars due to attenuation from 3D scattering.

An overview of responsibilities for the generation of the data set can be found in Table 1; further details can be found in Clinton et al. (2017). Based on the experience gained and performance of the MQS in particular within this test, the MQS is currently refining the location strategies and running an ORT (operational readiness test) with synthetic data computed in a 3D model.

In the following sections, we first summarize the methods used by each team. Then, we compare the success of each submission in terms of event detection, as well as estimated event distance, back-azimuth and origin time against the true event parameters.

Participation and Methods

In order to ensure effective communication with participants or anyone who wanted to experiment, registration for the test was mandatory for accessing the dataset. On the other hand, participation was completely voluntary; but we strongly encouraged all registrants to submit their results, particularly with event catalogues. In total, 84 teams registered and 11 of them submitted their analysis. Due to the lack of feedback, we do not have a further overview on how test data was used by other teams that downloaded the data but chose not to participate.

The participating teams were composed of researchers both from inside (IPGP, MQS, Max Planck) and outside (Colorado, Geoazur, Houston, Utah) the InSight science team. Participant profiles were rather diverse including senior researchers as well as PhD (Bochum, Oxford), masters (Hamburg) and even high school students (SEISonMars@school).
See Table 2 for a list of the teams and their members. In Table 3, we summarize the wealth of methods used by the participants with references to previous publications as much as possible, but a significant fraction of the methods applied by participants appears to have been developed specifically for this test.

Most teams inspected the waveforms visually or used spectrograms for event detection, while four teams (Bochum, Geoazur, Hamburg, Utah) also utilized STA/LTA algorithms with manual review for this purpose. In the case of a single station, event distance can be estimated using relative travel times between different body- and surface waves, and multi-orbit surface waves for the larger events. While the latter is independent of the model (Panning et al. 2017), body and minor arc surface wave travel times need a reference model for distance estimation. Hence, most teams tried to first determine the model from the 14 candidate models and then computed locations for that model. Three teams (Bochum, Colorado, MQS), however, used probabilistic methods to account for the inherent trade off between model and distance. Combining the distance estimate with the back-azimuths of the event and the known station location, an absolute location can be derived. The participants used a large variety of both P and Rayleigh polarization analysis methods for this purpose. Only two teams (Houston and MQS) attempted to determine depth, which was difficult as most events did not show clear depth-phases.

Only one team (Colorado) attempted to decorrelate the atmospheric pressure signals to reduce the noise; and one other team (Hamburg) classified pressure events automatically, while others relied on a visual check to exclude those from the catalogue. The Houston team was the only group to derive surface wave phase velocities. Two teams did not submit a catalogue but applied methods that facilitate event detection and phase recognition: IPGP focused on crustal structure and polarization analysis rather than event locations and Max Planck implemented an HMM (Hidden Markov Models) approach to detect events, which allowed them to provide only event detection times and no origin times.

None of the teams submitted information on the focal mechanisms within this test, but the method of Stähler and Sigloch (2014) has been applied successfully after the submission deadline by the MQS team for the largest 3 events (Clinton et al. 2018).

Performance

In the blind test announcement (Clinton et al. 2017), it was stated that it was mandatory to provide a location and origin time. A number of teams were only able to provide approximate detection times without locations and others only provided locations for parts of their catalogue. We decided to also show these results, though we understand that other teams that closely followed this rule may have left out detected events that they were not able to locate and hence the detection statistics needs to be interpreted with care.

Figure 5 gives an overview of the performance by different teams in detecting and locating events:

- The blue bars represent the total number of events in each catalogue, that besides true and false detections, may also
include multiple detections for a single event. This was in particular the case for the fully automatic Hidden Markov Model (HMM) approach from the Max Planck team, since HMM is fundamentally a pattern matching approach operating on certain statistics that heavily relies on proper classification and representation of training events. In this application, only a single training event was used.

- The orange bars represent the number of events that could be associated with an event in the true catalogue solely based on the origin time and with duplicate detections removed. As we prevented event waveforms from overlapping in the seismicity catalogue, the association is straightforward. We assume any event time submitted that occurs within a window from 750 seconds before and 1500 seconds after the true origin time as correct. The three teams that performed best in detection (MQS, Hamburg, Bochum) all relied on a high degree of visual data inspection, while two of them (Hamburg, Bochum) assisted by STA/LTA triggering. Comparing seismic and pressure data visually allowed these teams to exclude most non-seismic events. MQS produced daily spectrograms that were visually scanned by different members of the team, which proved a very effective way to maximize event detection.

- The green bars represent the number of events for which full location information was provided (origin time, distance and azimuth).

- Finally, the red bars represents events that were located within the InSight mission L1 requirements for location accuracy.

Figure 6 shows a more detailed view of the 10 submitted catalogues, highlighting false detections (blue vertical lines) as well as detection and location of quakes (circles) impacts (star symbols). The rate of correct detection and location as well as false detections varies significantly over the time span of the dataset. This may be related to sharing of the workload between multiple operators; for example MQS split the initial detection on a monthly bases between team members.

In the following, we focus on the six teams that provided the most complete results in terms of the number of events correctly located within L1 requirements: Bochum, Geoazur, Hamburg, Houston, MQS and Oxford. MQS submitted two catalogues (focusing on absolute and relative distances, respectively), but as they are of very similar quality and were built iteratively using information from both approaches, we treat them as one for the purpose of this paper.

Distance Magnitude Trade-off

Figure 7 provides an overview of the six most complete catalogues with respect to distance and magnitude. It also reveals that although MQS had the highest number of correct detections, a handful of events were missed that other teams were able to detect, and some detected events were located more precisely by other teams. MQS carefully analyzed each of these events again to identify the root cause of these mislocations and unidentified events. Besides mislabeled seismic phases, several issues in the MQS workflow were recognized and resolved, with the most important improvement being the increase of the overlap in the daily plots used for visual screening.
Most of the six teams detected all events above magnitude 4, globally. Between magnitude 3 and 4, several teams detected all events until approximately 40 degree distance, even though they could not locate them within the L1 requirements. MQS detected all events above magnitude 3.5 and all events above magnitude 2.5 within 30 degree distance, which suggests that the detection threshold may be even lower than 2.5 for regional events. The detection curve for MQS is only distance/magnitude dependent, without an indication of an effect of different focal mechanisms.

Distance Estimation

Distance estimation (Fig. 8) was complicated by the low velocity layers in the upper mantle, which made S-waves very hard to identify in the data with the given noise. An easy estimate based only on the traveltime difference between P and S phase could hence not be applied to most events. On the other hand, Rayleigh wave group arrival times could be used with unrealistically high accuracy in this 1D model, which is one reason for running the current ORT with 3D synthetics. This new test suggests that including estimates of crustal thickness variations from gravity (Wieczorek and Zuber 2004), topography from MOLA (Mars Orbiting Laser Altimeter), and ellipticity lateral variations of surface wave arrival times of up to a few hundred seconds should be expected.

An additional simplification was employed by most teams by determining the correct model from the 14 candidate models based on the biggest event in the dataset (see table 3) and then using that model to locate the smaller events. In practice, a number of small events are expected to be seen in the data before any event that is big enough to constrain the model. To add this complexity to the problem, the data in the new 3D test was released in weekly chunks.

The MQS catalogue included a data quality classification, where reliable locations where classified as quality A, unreliable locations as quality B, and very unreliable/unconstrained locations as quality C. This figure indicates that only class C and a few class B events could not be located correctly (Clinton et al. 2018).

Back-Azimuth Estimation

The back-azimuth estimation in Figure 9 reveals that some methods suffer from a 180° ambiguity, which can however be resolved by either assuming retrograde Rayleigh motion or including the incidence angle in P-wave azimuth estimates (Panning et al. 2015; Böse et al. 2016). Like for the distance estimate, all MQS quality A and the majority of quality B location estimates meet the L1 requirement.

Origin Time Estimation

The error in origin time estimation is closely related to distance estimation by the fixed model set that was provided for this test, and this can also be observed in the strong correlation in performance for distance and origin time (Fig. 10). Similar arguments as in the distance estimation apply for the model complexities and 3D effects.
Impact Discrimination

Only one team (MQS) classified the event type as quake/impact in their catalogue. Only a single event was identified as an impact, which was correct, and no other event was mis-labeled as impact. MQS did miss the biggest impact event of the dataset in the detection stage. Hence we cannot evaluate the distinction capability in this test and just document the three strongest impact events together with three quakes for reference in Figure [11]. If the signal is above the noise, the waveforms appear very distinct from quakes due to trapped energy in the high Q shallow layers of the 1D model as well as very short period surface waves excited by the surface source. In contrast, quakes at depth neither excite trapped waves in the shallow layers in this 1D model due to Snel’s law nor the very short period surface waves due to their limited penetration depth.

MQS’ classification of the impact was purely based on the waveform’s appearance, which they recognised as very different from all other events. With very few impact events ever seismically recorded and the distinct impact behaviour due to the atmosphere on Earth compared to the Moon, there is no well established discrimination technique. Gudkova et al. [2011] suggest a different spectral content of impacts compared to quakes for the Moon. Other criteria include the depth of the event, although the absence of depth phases is difficult to demonstrate. Additionally, newly detected craters on satellite images from Mars might help to discriminate impact events if they can be correlated in time and location.

Conclusions

The submissions to this blind-test have provided the InSight science team with a range of new ideas and brought the specific challenges of single station seismology on Mars to a broader range of seismologists from the general community. In practice, the main benefits of the test to the MQS was that it provided the opportunity to thoroughly test software and routines as well as benchmark the event detection and location capabilities on a previously unavailable quality data set; and to evaluate whether there are new or existing methodologies that were overlooked and could significantly improve MQS’ performance.

Finally, various teams contributed to this 1D test with a number of useful and different ideas; however, the algorithms established in MQS produced comparable or better performance. Further evaluation in the light of the 3D effects from synthetics as well as the actual seismicity observed by the InSight seismometers will be necessary to decide if MQS will adopt any of the suggested methods from other teams. From the test it is also obvious that the best performances were produced by the teams that had the time to dedicate to the test – an important lesson for MQS for organizing routine operations: one team member is always on duty to analyze all new data for possible seismic events with another person as backup. Any suspected event is then analyzed carefully by the review team before communicating to the whole science team (see Clinton et al. [2018] for details on the operations).

The blind test experience has helped forming the basis for the currently running operational readiness tests with 3D
synthetic data for both the MQS and MSS (Mars Structure Service Panning et al. [2017]), which give an opportunity to
the operational teams to train daily data review.

Data and Resources

The test data set is described in more detail by Clinton et al. [2017] and available online at http://blindtest.mars.ethz.ch/ (last accessed December 2018). Figures are created using ObsPy (Krischer et al. [2015]). Submissions (catalogues and documentation) by individual teams are not publicly available.

Acknowledgements

The co-author list of this paper includes contributors to the evaluation (up to and including D. Giardini), contributors to the data set and invitation paper (Table 1) as well as the participants of the blind test (Table 2).

This work was jointly funded by (1) Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 “Seismology on Mars”), (2) Swiss State Secretariat for Education, Research and Innovation (project “MarsQuake Service—Preparatory Phase”) and (3) ETH Zurich (project “Preparatory phase for Mars InSight Ground Segment Support”). Additional support came from the Swiss National Supercomputing Centre (CSCS) under project ID s682. Some of the research described in this article was supported by the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). The Houston team was partially funded by EAR-1621878. A. Spiga and L. Rolland acknowledge funding by CNES (Centre National d’Études Spatiales).

This paper constitutes InSight Contribution Number 93.

References

List of Figures

1. Catalogue summary maps: distribution of impacts (left) and marsquakes (right) in the true catalogue, both randomly distributed over the sphere. The maps are centered on the InSight landing site (white triangle).

2. Statistics for marsquakes in the true catalogue: (left) The magnitude-frequency distribution approximates a Gutenberg-Richter distribution with b-value 1.0. The largest event in the catalogue has a magnitude $M_w = 5.0$. (right) The magnitude-depth distribution of the marsquakes in the true catalogue is a skewed Gaussian with a maximum event number around 20 km and maximum allowed event depth of 80 km.

3. Summary of the model EH45TcoldCrust1b that was used in the blind test. Vertical profile of (A) seismic velocities and density, (B) dispersion curves, and (C) travel times. This model includes a low-velocity zone (LVZ, a region with a negative velocity gradient for either or both P and S). The LVZ leads to broad shadow zones for direct-arriving S-phases as indicated by gaps in the travel time curves in (C).

4. The most visible events in the data set, plotted as a function of distance from the station. Travel time curves for the most prominent phases are shown in the legend. The waveforms are bandpass filtered between 1.5 and 10 s.
Summary of the team performances: total number of detected events in the submitted catalogues (blue); detected events that can be associated with an event in the true catalogue (orange); detected events in the submitted catalogues with full locations provided (green); and number of these events that lie within L1 mission requirements (red). Note the difference between orange and blue indicates false detections.

Temporal overview of the submitted catalogues indicating correct detections and locations as well as double and false detections. All events in the true catalogue are shown, red and green correspond to correct detection and correct location, those in gray are missing in the submitted catalogue. Marsquakes are shown as circles, and impacts as stars. Note the scale based on linear momentum p for the impacts on the right hand side.

Distance-magnitude summary for the six most complete submitted catalogues. All events in the true catalogue are shown for each team, correctly detected in red, correctly located in green and missed events in gray. The dashed lines approximate the detection threshold (gray dashed line) and correct location threshold (black dashed line) for MQS. Histograms at the top and right side show the number of correctly detected (red), correctly located (green) and missed events (gray) for a number of distance and magnitude bins.

Distance performance - comparing the distances provided in the six most complete submitted catalogues with the true event distance. Gray area marks the L1 requirement. Note that for an event to be located within L1 we also required correct azimuth and origin time. For MQS, their data quality classification is indicated.

Back-azimuth performance for the six most complete submitted catalogues in terms of the back-aimuth estimation error as a function of distance. The gray area marks the mission L1 requirement. Note that for an event to be located within L1 we also required correct distance and origin time.

Origin time performance for the five most complete submitted catalogues in terms of the timing error as a function of distance. Note that there is no L1 requirement, but for an event to be located within L1 we required correct azimuth and distance. Oxford’s catalogue did not include origin times, but only arrival times; hence it is omitted here.
(top) Location and vertical component waveforms for the three strongest impact signals in the true catalogue. On the map, the impacts are indicated by stars (size proportional to the linear momentum), the station is marked with the triangle. The closest event was correctly identified as an impact by MQS. Though some other teams identified the largest event, no other team classified it as an impact in their catalogues.

(bottom) Similar plot for three quakes for comparison. Seismic phases in both plots are annotated as:

- S1/P1 - first arriving S/P wave, where S was only visible on the transverse component,
- G1/R1 - minor arc Love/Rayleigh waves,
- OT - source origin time.
<table>
<thead>
<tr>
<th>contribution</th>
<th>responsible co-authors (alphabetically ordered by last names)</th>
</tr>
</thead>
<tbody>
<tr>
<td>marsquake catalogue</td>
<td>Savas Ceylan, John Clinton, Martin van Driel</td>
</tr>
<tr>
<td>impact catalogue</td>
<td>Ingrid Daubar, Matthew P. Golombek</td>
</tr>
<tr>
<td>synthetic seismograms</td>
<td>Martin van Driel, Melanie Drilleau</td>
</tr>
<tr>
<td>synthetic noise and pressure</td>
<td>Melanie Drilleau, Raphael Garcia, Balthasar Kenda, Philippe Lognonné, David Mimoun, Naomi Murdoch, Ludovic Perrin, Aymeric Spiga</td>
</tr>
<tr>
<td>compilation of 1D models</td>
<td>Amir Khan, Mark P. Panning</td>
</tr>
<tr>
<td>compilation of the data set and webservers</td>
<td>Savas Ceylan, Martin van Driel, Fabian Euchner</td>
</tr>
<tr>
<td>final choice of 1D model and catalogues</td>
<td>Bruce Banerdt, Martin van Driel</td>
</tr>
<tr>
<td>test conception and initiation</td>
<td>Domenico Giardini, Philippe Lognonné</td>
</tr>
</tbody>
</table>
Table 2: Participating teams and their members

<table>
<thead>
<tr>
<th>group name</th>
<th>team members (alphabetically ordered by last names)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bochum</td>
<td>Marc S. Boberg, Manuel Ditz, Andre Lamert, Thomas Möller, Marcel Paffrath</td>
</tr>
<tr>
<td>Colorado</td>
<td>Shane Zhang</td>
</tr>
<tr>
<td>Geoazur</td>
<td>Hector Alemany, David Ambrosi, Julien Balestra, Jérôme Chèze, Anne Deschamps, Diego Mercerat, Fabrice Peix, Lucie Rolland, Cédric Twardzik</td>
</tr>
<tr>
<td>SEISonMars@school</td>
<td>French Seismological Educational Network (SISMOS à l’École) coordinated by Julien Balestra</td>
</tr>
<tr>
<td>Hamburg</td>
<td>Dirk Becker, Titus Casademont, Fabian Dethof, David Essing, Katharina Grunert, Celine Hadziioannou, Isabell Hochfeld, Tabea Kilchling, Sarah Mader, Lorenz Marten, Franziska Mehrkens, Paul Neumann, Robert Neurath, Christoph Schröer, René Steinmann, Noah Trumpik, Philipp Werdenbach-Jarkowski</td>
</tr>
<tr>
<td>Houston</td>
<td>Hao Hu, Jiaxuan Li, Yingcai Zheng</td>
</tr>
<tr>
<td>IPGP</td>
<td>Martin Schimmel, Eleonore Stutzmann</td>
</tr>
<tr>
<td>Max Planck</td>
<td>Conny Hammer, Brigitte Knapmeyer-Endrun</td>
</tr>
<tr>
<td>MQS</td>
<td>Maren Böse, Nienke Brinkman, Savas Ceylan, John Francis Clinton, Fabian Euchner, Domenico Giardini, Sharon Kedar, Amir Khan, Simon Christian Stähler</td>
</tr>
<tr>
<td>Oxford</td>
<td>Benjamin Fernando, Thomas Garth, Harriet Godwin, Claudia Haindl, Kasra Hosseini, Alexandre Szenicer, Maria Tsekhmistrenko</td>
</tr>
<tr>
<td>Utah</td>
<td>Amir Allam</td>
</tr>
<tr>
<td>Group Name</td>
<td>Detection</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Bochum</td>
<td>manual event detection</td>
</tr>
<tr>
<td>Colorado</td>
<td>automated event detection using different STA/LTA triggers, manual classification;</td>
</tr>
<tr>
<td>Geoazur</td>
<td>visual inspection of the data, manual event detection.</td>
</tr>
<tr>
<td>SEISonMars@school</td>
<td>visual (data and spectrograms) and automated event detection (STA/LTA triggers with variable parameter settings, spectrogram detector);</td>
</tr>
<tr>
<td>Hamburg</td>
<td>four probabilistic methods for distance and azimuth for body and surface waves (Bose et al. 2016); new model set for probabilistic methods based on the largest events; distances refined by visual alignment of waveforms vs. distance for all events; multiple iterations in relocation to detect outliers;</td>
</tr>
<tr>
<td>IPGP</td>
<td>autocorrelation to detect crustal discontinuities (Schimmel 1999; Schimmel et al. 2011a); degree of polarization Rayleigh wave detection and azimuth (Schimmel et al. 2011a); no catalogue submitted.</td>
</tr>
<tr>
<td>Marsquake Service</td>
<td>event detection by visual screening of spectrograms;</td>
</tr>
<tr>
<td>Oxford</td>
<td>visual event detection on bandpass filtered traces;</td>
</tr>
<tr>
<td>Utah</td>
<td>model wrongly detected based on H/V ratio (Lin et al. 2014) and receiver functions (Allam et al. 2017);</td>
</tr>
</tbody>
</table>
Figure 1: Catalogue summary maps: distribution of impacts (left) and marsquakes (right) in the true catalogue, both randomly distributed over the sphere. The maps are centered on the InSight landing site (white triangle). Only a fraction of these events were detectable above the noise level.
Figure 2: Statistics for marsquakes in the true catalogue: (left) The magnitude-frequency distribution approximates a Gutenberg-Richter distribution with b-value 1.0. The largest event in the catalogue has a magnitude $M_w = 5.0$. (right) The magnitude-depth distribution of the marsquakes in the true catalogue is a skewed Gaussian with a maximum event number around 20 km and maximum allowed event depth of 80 km.
Figure 3: Summary of the model EH45TcoldCrust1b that was used in the blind test. Vertical profile of (A) seismic velocities and density, (B) dispersion curves, and (C) travel times. This model includes a low-velocity zone (LVZ, a region with a negative velocity gradient for either or both P and S). The LVZ leads to broad shadow zones for direct-arriving S-phases as indicated by gaps in the travel time curves in (C).
Figure 4: The most visible events in the data set, plotted as a function of distance from the station. Travel time curves for the most prominent phases are shown in the legend. The waveforms are bandpass filtered between 1.5 and 10 s.
Figure 5: Summary of the team performances: total number of detected events in the submitted catalogues (blue); detected events that can be associated with an event in the true catalogue (orange); detected events in the submitted catalogues with full locations provided (green); and number of these events that lie within L1 mission requirements (red). Note the difference between orange and blue indicates false detections.
Figure 6: Temporal overview of the submitted catalogues indicating correct detections and locations as well as double and false detections. All events in the true catalogue are shown, red and green correspond to correct detection and correct location, those in gray are missing in the submitted catalogue. Detections and false detections are shown as circles, and impacts as stars. Note the scale based on linear momentum p for the impacts on the right hand side.
Figure 7: Distance-magnitude summary for the six most complete submitted catalogues. All events in the true catalogue are shown for each team, correctly detected in red, correctly located in green and missed events in gray. The dashed lines approximate the detection threshold (gray dashed line) and correct location threshold (black dashed line) for MQS. Histograms at the top and right side show the number of correctly detected (red), correctly located (green) and missed events (gray) for a number of distance and magnitude bins.
Figure 8: Distance performance - comparing the distances provided in the six most complete submitted catalogues with the true event distance. Gray area marks the L1 requirement. Note that for an event to be located within L1 we also required correct azimuth and origin time. For MQS, their data quality classification is indicated.
Figure 9: Back-azimuth performance for the six most complete submitted catalogues in terms of the back-aimuth estimation error as a function of distance. The gray area marks the mission L1 requirement. Note that for an event to be located within L1 we also required correct distance and origin time.
Figure 10: Origin time performance for the five most complete submitted catalogues in terms of the timing error as a function of distance. Note that there is no L1 requirement, but for an event to be located within L1 we required correct azimuth and distance. Oxford’s catalogue did not include origin times, but only arrival times; hence it is omitted here.
Figure 11: (top) Location and vertical component waveforms for the three strongest impact signals in the true catalogue. On the map, the impacts are indicated by stars (size proportional to the linear momentum), the station is marked with the triangle. The closest event was correctly identified as an impact by MQS. Though some other teams identified the largest event, no other team classified it as an impact in their catalogues. (bottom) Similar plot for three quakes for comparison. Seismic phases in both plots are annotated as: S1/P1 - first arriving S/P wave, where S was only visible on the tranverse component, G1/R1 - minor arc Love-Rayleigh waves, OT - source origin time.