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Abstract
We describe the breadth-first traversal algorithm by Martin Hofmann that uses a non-strictly positive
data type and carry out a simple verification in an extensional setting. Termination is shown by
implementing the algorithm in the strongly normalising extension of system F by Mendler-style
recursion. We then analyze the same algorithm by alternative verifications first in an intensional
setting using a non-strictly positive inductive definition (not just a non-strictly positive data type),
and subsequently by two different algebraic reductions. The verification approaches are compared in
terms of notions of simulation and should elucidate the somewhat mysterious algorithm and thus
make a case for other uses of non-strictly positive data types. Except for the termination proof,
which cannot be formalised in Coq, all proofs were formalised in Coq and some of the algorithms
were implemented in Agda and Haskell.
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1 Introduction

Given a finitely-branching tree t with labels at all nodes there are different ways to traverse
it starting with its root. Depth-first traversal first goes along the entire left-most1 branch
until the leaf is reached and then backtracks and pursues with the next sibling. An efficient
implementation of depth-first traversal is possible by using a stack of entry points into
subtrees of t. In the beginning, t is pushed on the stack. While the stack is non-empty, a tree
is popped from it, its root visited and its children pushed on the stack from right to left. If
the tree is infinite, depth-first traversal does not visit all nodes in most cases. In particular,
if the left-most branch is infinite, the algorithm will be confined to traverse this branch. (It
visits all nodes if and only if all branches different from the right-most branch are finite.)

The described problem does not occur with breadth-first traversal. The latter means that
it first visits the root, then the roots of all immediate subtrees from left to right2, then in
turn the roots of their immediate subtrees from left to right, etc. An efficient implementation
is given by way of an efficiently implemented first-in, first-out queue (FIFO). The description
of the algorithm is as before for depth-first traversal, but now with the FIFO operations.
However, the immediate subtrees of the currently treated tree are put into the queue from
left to right.

While these algorithms are easy to provide in imperative languages with worst-case
linear execution time, functional programming languages only easily provide amortized linear
execution time for the breadth-first traversal. (In functional programming, the “traversal”
is replaced by the task to construct the list of all node labels in the order the imperative
algorithm would traverse them.) Okasaki [12] presented for the first time an elegant and
worst-case constant-time functional implementation of FIFO, thus yielding worst-case linear-
time breadth-first traversal. However, there are also different functional implementations
with worst-case linear time [8].

This paper is about breadth-first traversal in a functional programming language, but
efficiency is not the concern here. Instead, we explore an algorithm for breadth-first traversal
invented by Martin Hofmann, as presented in his posting [6] to the TYPES forum mailing list.
In a draft [7], Martin Hofmann shows how he crafted the data type on which his proposal is
based. There one also finds a sketch of a correctness proof by induction over binary trees.

We will first explain what is so special about Hofmann’s algorithm. In dependent type
theory one normally wants all programs to be terminating, i. e., the terms to be strongly
normalizing. A well-established way of ensuring strong normalization is to restrict recursion
to structural recursion on inductive structures obtained as least fixed points of monotone
operators. Monotonicity is usually replaced by the stronger syntactic condition of positivity,
which means that the expression that describes the operation must have its formal parameter
at positive positions only. Positivity does not exclude going twice to the left of the arrow
for the function type – only strict positivity would forbid that, but that latter is imposed
in most implementations of type theory, including the Coq system and Agda. Non-strictly
positive data types may not have a naive set-theoretic semantics [15], but they exist well in
system F [3], i. e., polymorphic lambda-calculus [14], where they can be encoded as weakly
initial algebras, in other words, as data types with constructors together with an iterator
for programming structurally recursive functions. As evaluation in system F is strongly
normalizing, all those structurally recursive programs are terminating.

1 The choice of the left direction is only for definiteness of our description.
2 This is again just for definiteness.
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Hofmann’s algorithm is based on the following non-strictly positive data type (our
notation):

Inductive Rou :=
| Over : Rou
| Next : ((Rou→ ListN)→ ListN)→ Rou

Rou stands for “routine”, and there is the constructor Over for the routine that is not executing
further, and the crucial non-strictly positive constructor Next that takes a functional of type
(Rou→ ListN)→ ListN as argument to yield a composite routine.3 Rou appears at a position
twice to the left of → in the type of the argument, hence positively. As we mentioned above,
such inductive definitions are ruled out in most proof assistants, notably in the Coq system
and in Agda.

While there is a generic iterator for Rou in system F – as mentioned before – the recursive
functions needed for the algorithm are not all instances of the iterator. Functions that
would calculate the same values can be defined by iteration, but they would not reflect the
algorithm properly. However, this shortcoming can be solved by using recursive functions
in the style of Mendler [11] which can be provided by a (mild) extension of system F. A
detailed account of these issues, which also settles the question of termination, is given in
Sect. 5. Besides that, the paper concentrates on different correctness proofs, most of them
based on simulations by related algorithms using different intermediate data types, with the
aim to reveal and explain the internal structure of Hofmann’s algorithm and to replace the
impredicative type Rou by a predicative type while preserving the structural characteristics
of the original algorithm.

Overview of the paper : After presenting an executable specification of breadth-first
traversal as the concatenation of all levels (niveaux) of a tree (Sect. 2) we introduce the
data type of routines and Hofmann’s algorithm breadthfirst (Sect. 3) and prove its partial
correctness (i. e., correctness assuming termination) following Hofmann’s proof sketch (Sect. 4).
Termination is proven in Sect. 5 by implementing the functions and data types in the strongly
normalising extension of system F by Mendler-style recursion.

Having thus set the stage, we dive into the analysis of Hofmann’s algorithm. We begin
with a correctness proof (Sect. 6) based on a non-strictly positive inductive representation
relation between routines and double lists (lists of lists) that does not require auxiliary
functions. This proof does not require extensionality which is a natural prerequisite for
Hofmann’s correctness proof. Next we present a proof based on the natural extension of
breadth-first traversal to forests (lists of trees) providing interesting insight into the internal
structure of Hofmann’s algorithm (Sect. 7). We give a meaning to the routine corresponding
to a forest ts. It is the routine (c ts) computing the traversal of a forest ts while recursively
calling (c (sub ts)) for the immediate subforest (sub ts) of ts. The function extract evaluates
these recursive functions, and the function br in Hofmann’s algorithm, that initially seems to
be mysterious, is decoded as an operation which computes (c (t :: ts)) from (c ts) and t.

Building on this insight we construct two predicative versions of this algorithm. The
first one introduced in Sect. 8 is based on the observation that the routines occurring in
the algorithm can be represented as lists of functions List N → List N. Therefore we can
replace the impredicative data type Rou by the predicative type Rou′ := List (ListN→ ListN).

3 ListN is the type of lists of natural numbers which are taken here for simplicity; any list type would be
fine. The data type is tailor-made to our breadth-first traversal problem that requires to compute an
element of ListN.

TYPES 2018
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Meaning is given to the routine corresponding to a forest ts as the routine traverse ts : Rou′
which is the list of functions appending the levels of the forest. As before, the function br′
corresponding to br computes (traverse (t :: ts)) from (traverse ts). The second predicative
version (Sect. 9) observes that the functions in Rou′ constructed in the algorithms are append
functions, i. e., functions of the form λl . l′++ l. They can be represented as lists of natural
numbers, so we can replace Rou′ by the simpler type Rou′′ := List2 N of double lists. These
double lists correspond to the list of levels in the specification of breadth-first traversal.

The findings are summarized in Sect. 10 where we show that the various algorithms
and proofs all have the structure of a “simulation of systems”. In addition we show that
the two predicative algorithms provide a splitting of Hofmann’s algorithm into two simpler
phases. We round the paper off with a discussion of and pointers to the implementation and
formalization of our work in the proof assistants Coq and Agda, highlighting the difficulties
caused by non-strict positivity and how to overcome them (Sect. 11), and conclude with a
reflection on what was achieved and an outlook to a possible extension of the domain of the
algorithms to infinite trees.

2 Specification of breadth-first traversal

We fix the simplest setting to express the task of programming breadth-first traversal: our
trees are not arbitrarily finitely branching but just binary, and they are even finite. As did
Hofmann, we put labels on the inner nodes and the leaves. For simplicity, we restrict the
type of labels to be the natural numbers but any other type could be used instead.

Inductive Tree :=
| Leaf : N→ Tree
| Node : Tree→ N→ Tree→ Tree

We use the typing conventions

n : N
l : ListN
ls : List2N Def= List (List N)
t, tl, tr : Tree (tl and tr are typically used for the left and right subtree, respectively)

An extended use is made of the auxiliary function zip that “zips” the successive lists in
both arguments using the append function for lists (denoted by ++). More precisely, our zip
behaves like zipWith (++) (with zipWith in the Haskell basic library, and (++) the Haskell
notation for append viewed as a function) for arguments of equal lengths but if lengths differ
zip extends the shorter argument with empty lists wheras zipWith (++) truncates the longer
argument.

zip : List2N→ List2N→ List2N
zip [] ls = ls zip (l :: ls) [] = l :: ls zip (l :: ls) (l′ :: ls′) = (l++ l′) :: zip ls ls′

I Lemma 1 (basic properties of zip).
(a) zip ls [] = ls.
(b) zip ls1 (zip ls2 ls3) = zip (zip ls1 ls2) ls3.

We create the list of labels for every horizontal section of the tree, starting with its root
(niv refers to the French word “niveaux” for levels – the function collects the labels level-wise).



U. Berger, R. Matthes, and A. Setzer 1:5

niv : Tree→ List2N
niv (Leaf n) = [[n]] niv (Node t1 n t2) = [n] :: zip (niv t1) (niv t2)

From the definition, we see that niv is compositional, which the breadth-first traversal
function is not (as also remarked in Hofmann’s draft [7]). The latter is defined as follows:

breadthfirstspec : Tree→ ListN
breadthfirstspec t = flatten (niv t)

Here, flatten : List2N → ListN denotes concatenation of all those lists (the monad multi-
plication of the list monad). We do not consider this description of breadthfirstspec as an
implementation but as an executable specification.

I Example 2. Let t correspond to the following graphical representation:

1

2

4

6 7

5

8

10 11

9

3

Then niv t = [[1], [2, 3], [4, 5], [6, 7, 8, 9], [10, 11]] and breadthfirst t = [1, . . . , 11].

3 Definition of breadth-first traversal via routines

We again show the type Martin Hofmann came up with in his 1993 posting [6]:

Inductive Rou :=
| Over : Rou
| Next : ((Rou→ ListN)→ ListN)→ Rou

The names of the constructors are not those chosen by Hofmann but were suggested to
us by Olivier Danvy (since they are used for programming with coroutines). A routine of the
form (Next f) comes with a functional f of type (Rou → ListN) → ListN whose argument
can be seen as a “continuation”, and f k, with k such a continuation, denotes a list that
could be the result of our breadth-first traversal problem. In general, elements of Rou should
be seen as encapsulations of routines for the computation of lists of natural numbers.

We use the typing conventions

c : Rou (routines)
k : Rou→ ListN (continuations)
f : (Rou→ ListN)→ ListN

TYPES 2018
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We define the following function (called apply by Hofmann) naively by pattern matching
on its first argument and show that this is a legal definition of a terminating function below
in Section 5:

unfold : Rou→ (Rou→ ListN)→ ListN
unfold Over = λk . kOver unfold (Next f) = f

The name unfold seems justified (and more intuitive than Hofmann’s choice of name) for the
second case of the definition since it unfolds (Next f) to its argument f . Unfolding Over is
curious since it yields again an expression involving Over.

The traversal algorithm is expressed as a transformation on routines, instructed by the
tree argument. It is by plain iteration on that tree argument (◦ denotes composition of
functions).

br : Tree→ Rou→ Rou
br (Leaf n) c = Next (λk . n :: unfold c k)
br (Node tl n tr) c = Next

(
λk . n :: unfold c (k ◦ br tl ◦ br tr)

)
We define a function extract which computes a result from a given routine. Again, we

naively define this function by pattern matching on the inductive type of routines, but we
here allow ourselves a recursive call, as follows:

extract : Rou→ ListN
extract Over = [] extract (Next f) = f extract

What is noteworthy here is that the recursive call is not to extract with some term smaller
than (Next f) in any sense. The term extract is even fed in as an argument to the term f ,
which is type-correct since extract is of the type of a continuation. In Section 5, we will show
that this is a plain form of iteration, thus ensuring termination and well-definedness. As we
are doing for unfold, we currently view the equations for extract as a specification, which
allows us to carry out verification in the next section.

Hofmann’s algorithm calculates the routine transformer br for the given tree, applies it
to the trivial routine and then extracts the result from the output routine:

breadthfirst : Tree→ ListN
breadthfirst t = extract(br tOver)

Of course, we have to make sure that breadthfirst is a total function and that its results agree
with those of breadthfirstspec.

4 Martin Hofmann’s verification of partial correctness

Here, we follow the sketch in Hofmann’s notes [6] and argue how functional correctness
(i. e., the algorithm’s result meets the specification) follows from the equational specification
of unfold and extract and the definitions of the other functions (br and those used for the
executable specification in Section 2).

We define a routine transformer that is instructed by a double list, by plain iteration on
that list.

γ : List2N→ Rou→ Rou
γ [] c = c γ (l :: ls) c = Next

(
λk . l++

(
unfold c (k ◦ γ ls)

))
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The following three lemmas (stated in Hofmann’s notes [6] without their simple proofs
shown below) on the function γ are all the preparations needed for the proof of functional
correctness (cf. Theorem 6).

I Lemma 3. extract (γ ls Over) = flatten ls.

Proof. Induction on ls.
extract (γ [] Over) = extract Over = [] = flatten [] .
extract (γ (l :: ls) Over) = extract (Next (λk . l++(unfold Over (k ◦ γ ls))))
= l++((extract ◦ γ ls) Over) IH= l++ flatten ls = flatten(l :: ls) . J

By ext= we denote extensional, i. e., pointwise, equality of functions. The following
lemma uses two instances of the principle of extensionality. The first states that functions
f : (Rou → ListN) → ListN respect extensional equality, i. e., k ext= k′ implies f k = f k′.
The second states extensionality of the constructor Next : ((Rou→ ListN)→ ListN)→ Rou
(w. r. t. extensional equality of its argument). The following two lemmas (4 and 5) and
consequently Theorem 6 depend on extensionality for their proofs.

I Lemma 4. γ ls ◦ γ ls′ ext= γ (zip ls ls′).

Proof. Induction on ls and ls′.
γ [] ◦ γ ls′ ext= γ ls′ = γ (zip [] ls′) .

γ ls ◦ γ [] ext= γ ls = γ (zip ls []) .
γ (l :: ls) (γ (l′ :: ls′) c)

= γ (l :: ls) (Next (λk′ . l′++(unfold c (k′ ◦ γ ls′))))
= Next (λk . l++(unfold (Next (λk′ . l′++(unfold c (k′ ◦ γ ls′))))) (k ◦ γ ls))
= Next (λk . l++(l′++(unfold c (k ◦ γ ls ◦ γ ls′))))
= Next (λk . l++(l′++(unfold c (k ◦ γ (zip ls ls′))))) (by ind. hyp. and extensionality)
= γ ((l++ l′) :: zip ls ls′) c (by associativity of ++)
= γ (zip (l :: ls) (l′ :: ls′)) c . J

I Lemma 5. br t ext= γ (niv t).

Proof. Induction on t.
br (Leaf n) c = Next (λk . n :: unfold c k) = Next (λk . [n] ++(unfold c k)) = γ [[n]] c

= γ (niv (Leaf n)) c .
br (Node t1 n t2) c = Next (λk . n :: unfold c (k ◦ br t1 ◦ br t2))
IH, extensionality= Next (λk . n :: unfold c (k ◦ γ (niv t1) ◦ γ (niv t2)))

Lem. 4, extensionality= Next (λk . n :: unfold c (k ◦ γ (zip (niv t1) (niv t2))))
= γ ([n] :: zip (niv t1) (niv t2)) c = γ (niv (Node t1 n t2)) c . J

From these lemmas, we now directly (without further inductive arguments) obtain the
main result of this section.

I Theorem 6. breadthfirst ext= breadthfirstspec, i. e., for all trees t, we have
breadthfirst t = breadthfirstspec t.

Proof. breadthfirst t = extract (br tOver) Lem. 5= extract (γ (niv t) Over)
Lem. 3= flatten (niv t) = breadthfirstspec t . J

This completes the proof based on the sketch by Martin Hofmann.

TYPES 2018
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5 Termination of Hofmann’s algorithm

In his 1993 posting [6] Martin Hofmann argued about the existence of the functions unfold
and extract through an impredicative encoding of data types in system F, equipped with
parametric equality (equality that is defined as a logical relation by induction over the type
of terms being equated, which is impredicative for the case of the universal quantifier). This
is, in our opinion, not fully satisfactory, since a verification with parametric equality only
shows the existence of a function that yields breadth-first traversal but does not verify the
termination of the algorithm itself that is expressed by the defining equations.

Like Martin Hofmann, we are heading for a language-based termination guarantee: We
implement the data types and functions of this algorithm in system F extended by Mendler-
style recursion, which is known to be strongly normalising. In fact, all relevant data types
(including Rou) and all functions defined by iteration can be defined in plain system F in
the usual way [4]. Mendler’s extension is only needed to properly model the algorithmic
behaviour of the function unfold.

We begin with the system F encodings of the type Rou and the function extract as an
example of a plain iteration, since in these cases the encoding is very similar to Mendler’s
encoding.

If we strip off the names of the constructors so as to fit into the scheme of categorical
data types4, we get Rou as least fixed point of the “functor” RouF, defined on types by

RouFA := 1 + ((A→ ListN)→ ListN) ,

with the one-element type 1 (a. k. a. unit type with only inhabitant ∗) and the type constructor
+ for disjoint sums (with injections inl and inr and case analysis operator [s0, s1] : A0+A1 → C

for si : Ai → C, i = 0, 1). Clearly, the type A only occurs at a non-strictly positive position
in the right-hand side. The usual impredicative encoding of least fixed points in system F
(also called “Church encoding”) yields as least fixed point of RouF

RouImp := ∀A . (RouFA→ A)→ A .

Iteration over Rou is then given by “catamorphisms” for RouF-algebras since Rou itself is
the carrier of the initial RouF-algebra. Beware that initiality holds only with respect to a
categorical semantics. Computationally, one only gets weak initiality, that is, the existence
but not the uniqueness of the morphism (given by the iterator) in the standard commuting
diagram for initial algebras. Moreover, the single5 equation expressed by the commuting
diagram is computationally directed: we will later use the symbol B∗ for that relation,
instead of the symmetric = that appears in traditional categorical modeling.

This weak initiality principle already captures the behaviour of extract (but we will have
to define extract differently later since also unfold needs to be taken care of). The details are
as follows: We define the iterator

RouIt : ∀A . (RouFA→ A)→ RouImp → A RouItAs t = t A s

4 In the Haskell programming language, we would keep the constructors and define data RouF a = Over
| Next ((a -> List Nat) -> List Nat).

5 before we make informal use of pattern matching that splits the rule into two rules
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Due to positivity of RouF, there is a closed term RouFmap, defined by case analysis on
the sum as follows (slightly informally, for readability):

RouFmap : ∀A,B . (A→ B)→ RouFA→ RouFB
RouFmapAB hA→B (inlu1) = inlu
RouFmapAB hA→B (inr f (A→List N)→List N) = inr

(
λkB→List N . f (k ◦ h)

)
This allows us to define the RouF-algebra foldRouImp with carrier RouImp:

foldRouImp : RouF RouImp → RouImp
foldRouImp t A s = s

(
RouFmap RouImp A (RouItAs) t

)
.

The impredicative implementations of the constructors, OverImp and NextImp, are now instances
of foldRouImp:

OverImp := foldRouImp (inl ∗) : RouImp
NextImp := foldRouImp ◦ inr : ((RouImp → List N)→ List N)→ RouImp

For convenience, we define (λ_ is a void abstraction over unit type):

RouItImp : ∀A .A→ (((A→ ListN)→ ListN)→ A)→ RouImp → A

RouItImp As0 s1 = RouItA [λ_ . s0 , s1]

We will write B for the one-step reduction relation of system F and B∗ for its reflexive
transitive closure. The characteristic reduction behaviour of RouItImp is given by

RouItImp As0 s1 OverImp B∗ s0

RouItImp As0 s1 (NextImp f) B∗ s1

(
λkA→List N. f

(
k ◦ (RouItImp As0 s1)

))
We can implement extract, using the iterator with A := ListN:

extractImp : RouImp → ListN
extractImp = RouItImp (ListN) []

(
λg(List N→List N)→List N . g(λl . l)

)
and obtain proper recursive behaviour with three subsequent steps of β-reduction and one
η-reduction step (that can be assumed in Church-style versions of system F):

extractImp OverImp B
∗[] extractImp (NextImp f)B∗ f extractImp

The equational specification of unfold may seem innocuous, but Harper and Mitchell [5]
have shown that even rewrite rules that just have the form of a projection may break
termination when added to system F. Consider the type S := ∀A,B . (A→ A)→ B → B,
which is trivially inhabited by a term that maps constantly to the identity on B. A different
inhabitant J ′ of S is added to system F, and the reduction relation of system F is extended
by a specific rule for J ′: J ′AAfA→A B f for any type A. It is easy to construct a term
in this extension that rewrites in several steps to itself, hence creating an infinite loop.6
However, unfold is terminating, albeit not for trivial reasons.

We use the extension of system F by Mendler-style recursion which is strongly normaliz-
ing [11]. Already Mendler’s original work accommodates non-strictly positive inductive types,
as our Rou, but it was later shown that even that restriction to positivity is not necessary for

6 This is also presented in detail in a paper by the second author [10, p.122], together with a discussion
of a variant of the scheme of inductive types with iteration for which termination fails.

TYPES 2018
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strong normalization (see [9, Section 6.1.1] for a semantic and [1] for a syntactic proof). We
describe only the instance of Mendler-style primitive recursion that governs the data type
RouMen, which is the one obtained for RouF. Mendler’s extension permits the construction of
a RouF-algebra foldRouMen with carrier RouMen

Def= µRouF (with µ in the sense of Mendler),
i. e., we have

foldRouMen : RouF RouMen → RouMen with recursor RouRec : ∀A .StepMen A→ RouMen → A

where the type of step functions is

StepMenA := ∀X . (X → RouMen)→ (X → A)→ RouFX → A .

A step function s : StepMen A transforms a function X → A into a function RouFX → A,
possibly using a function X → RouMen. RouRec takes a step function and then transforms
elements of RouMen into elements of A. We have the rewrite rule

RouRecAs (foldRouMen t) B sRouMen (λxRouMen . x) (RouRecAs) t .

The individual constructors for RouMen are obtained as in the impredicative encoding:
OverMen := foldRouMen (inl ∗) and NextMen f := foldRouMen (inr f). Define the step terms for
extract and unfold as follows (which could be mapped to terms of system F with unit and
sum types):

sextract : StepMen (ListN)
sextract X iX→RouMen rX→List N (inlu1) = []
sextract X iX→RouMen rX→List N (inr f (X→List N)→List N) = f r

sunfold : StepMen Aunfold where Aunfold := (RouMen → ListN)→ ListN
sunfold X iX→RouMen rX→Aunfold (inlu1) = λk . kOverMen
sunfold X iX→RouMen rX→Aunfold (inr f (X→List N)→List N) = λk . f (k ◦ i)

Define the Mendler-style implementations:

extractMen : RouMen → ListN extractMen = RouRec (ListN) sextract
unfoldMen : RouMen → Aunfold unfoldMen = RouRec Aunfold sunfold

Obviously, extractMen OverMen B∗[], extractMen (NextMen f)B∗ f extractMen (as for the impre-
dicative implementation) and unfoldMen OverMen B∗ λk . kOverMen. Finally,

unfoldMen (NextMen f)B∗ λk . f (k ◦ (λx . x))B∗ f ,

where the latter reduction has one β- and two η-reduction steps at the end. Thus, extractMen
and unfoldMen are implementations of Hofmann’s functions, and the original defining equations
become reductions in the sense of B∗ of the Mendler-style extension of system F.

Of course, one can also encode any algebraic data types such as lists and trees and
functions defined by iteration on elements of such types in Mendler’s system. This can be
done in a similar (but simpler) way as sketched above for Rou and extract in plain system
F. Moreover, the interpretation is algorithmically faithful to the equational specification of
these functions in the sense that the defining equations become one or more term rewriting
steps in Mendler’s terminating system. In summary we have the following

I Theorem 7. The data types and functions involved in Hofmann’s algorithm for breadth-first
traversal can be algorithmically faithfully interpreted in the strongly normalising system of
Mendler-style recursion. Therefore, Hofmann’s algorithm is terminating.
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6 Verification by a non-strictly positive inductive relation

We now embark on giving alternative correctness proofs of Hofmann’s algorithm. They
explore different concepts and provide different intuitions for the correctness of this algorithm
(see Section 10 for a mathematical assessment of their relations). The first and mathematically
most challenging alternative proof given in this section uses a non-strictly positive inductive
relation between routines c : Rou and double lists ls : List2N that, intuitively, states that c
“represents” ls.

First, we define when a continuation k is an extractor for a binary relation R ⊆ Rou×List2N
(seen as a candidate for a representation relation) and an “initial” double list ls′.

isextractor(R, ls′, k) Def≡ ∀c, ls′′ . R(c, ls′′)→ k c = flatten (zip ls′ ls′′) .

The fact that R occurs negatively in the formula isextractor(R, ls′, k) means that the weaker
R is the more constraints are imposed in order for k to be an extractor for R and ls′. The
name “extractor” should convey the intuition that continuation k “extracts” the “right”
result for ls′′ out of routines c representing ls′′ in the sense of R with initialization ls′. Note
that the formula for the prescribed result does not mention the niv operation of the original
specification breadthfirstspec. Lemma 8 below shows that extract is an extractor for a suitable
representation relation R and initialization ls′ = [].

With this auxiliary concept of extractor (which, after all, is only an abbreviation for a
rather short formula of logic) we now define the representation relation rep ⊆ Rou× List2N
inductively by two rules. Not surprisingly, rep takes the role of relation R in the foregoing
definition. The reason why we formulated the notion of an extractor with a general relation
argument R is that this allows us to conveniently express the induction principle for rep (as
can be seen in the proof of Lemma 8 below). The inductive definition of rep is as follows:

(over)
rep(Over, [])

∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls)
(next)

rep(Next f, l :: ls)
where in (next) the variables f, l, ls are implicitly universally quantified. The premise of the
rule (next) contains the predicate rep positively (though not strictly positively) and therefore
depends monotonically on it. By Tarski’s fixed point theorem it follows that the smallest
relation rep closed under the rules (over) and (next) exists.

Note that, since the premise of the rule (next) refers only to the result of applying
f to k, the predicate rep respects extensional equality in the sense that if f ext= f ′, then
rep(Next f, l :: ls) iff rep(Next f ′, l :: ls). Therefore, unlike the proofs in the previous section,
the proofs of the following lemmas do not depend on extensionality principles.

The recursive function extract, equationally specified in Section 3 as a continuation, is
indeed an extractor for rep and the empty list:

I Lemma 8. isextractor(rep, [], extract), i. e., ∀c, ls . rep(c, ls)→ extract c = flatten ls.

Proof. Setting R0(c, ls′′) Def≡ extract c = flatten ls′′, isextractor(rep, [], extract) is equivalent to
rep ⊆ R0. We prove the latter by (non-strictly positive) induction, i. e., we show that the
closure conditions (over) and (next) hold if rep is replaced by R0.

(over): R0(Over, []) means extract Over = flatten [], which holds since both sides equal [].
(next): Assume ∀k, ls′ . isextractor(R0, ls′, k) → f k = l++ flatten (zip ls′ ls), which is our

induction hypothesis. Since, trivially, isextractor(R0, [], extract), the induction hypothesis
yields f extract = l++ flatten ls, which is equivalent to our goal, R0(Next f, l :: ls). J

TYPES 2018



1:12 Martin Hofmann’s Case for Non-Strictly Positive Data Types

The following lemma shows that br t, defined in Section 2 as a routine transformer, is
well-behaved w. r. t. representation: if the argument routine c represents a (double) list ls,
then the resulting routine represents zip (niv t) ls: 7

I Lemma 9. rep(c, ls)→ rep(br t c, zip (niv t) ls).

Proof. Induction on t : Tree.
Case t = Leaf n: Assume rep(c, ls).

We have to show rep(Next (λk . n :: unfold c k), zip [[n]] ls).
Subcase ls = []: Then zip [[n]] ls = [n] :: [] and, since rep(c, []), c = Over. Hence we have to

show rep
(
Next (λk . n :: unfold Over k), [n] :: []

)
, i. e., for all k, ls′, if isextractor(rep, ls′, k),

then n :: kOver = [n] ++ flatten (zip ls′ []), i. e., kOver = flatten ls′. But the latter is
obtained by instantiating the assumption isextractor(rep, ls′, k) with Over and [].

Subcase ls = l :: ls0: Then zip [[n]] ls = (n :: l) :: ls0 and, since rep(c, l :: ls0), c = Next f
with

(+) ∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls0) .

We have to show that rep
(
Next (λk . n :: unfold (Next f) k), (n :: l) :: ls0

)
, i. e.,

∀k, ls′ . isextractor(rep, ls′, k)→ n :: f k = (n :: l) ++ flatten (zip ls′ ls0) .

But, cancelling n, this is exactly (+).
Case t = Node tl n tr: By induction hypothesis, for all c, ls with rep(c, ls) and all t′ ∈
{tl, tr}, rep(br t′ c, zip (niv t′) ls).
Assume rep(c, ls). We have to show rep(br t c, zip (niv t) ls), i. e.,

rep
(
Next (λk . n :: unfold c (k ◦ br tl ◦ br tr)), zip ([n] :: zip (niv tl) (niv tr)) ls

)
.

Subcase ls = []: Then zip ([n] :: zip (niv tl) (niv tr)) ls = [n] :: zip (niv tl) (niv tr), and, since
rep(c, []), c = Over. Hence, we have to show that for all k, ls′ such that isextractor(rep, ls′, k)
we have n :: (k ◦ br tl ◦ br tr) Over = [n] ++ flatten (zip ls′ (zip (niv tl) (niv tr))), i. e.,

k (br tl (br tr Over)) = flatten (zip ls′ (zip (niv tl) (niv tr))) .

Using isextractor(rep, ls′, k), instantiated with
c := br tl (br tr Over) and ls′′ := zip (niv tl) (niv tr), our goal reduces to showing
rep

(
br tl (br tr Over), zip (niv tl) (niv tr)

)
which, by the first induction hypothesis, further

reduces to rep(br tr Over, niv tr). Finally, by the second induction hypothesis (with ls := []),
the latter reduces to (over).

Subcase ls = l :: ls0: Then
zip ([n] :: zip (niv tl) (niv tr)) ls = (n :: l) :: zip (zip (niv tl) (niv tr)) ls0 and therefore, by the
assumption rep(c, ls), we get c = Next f with

(++) ∀k, ls′ . isextractor(rep, ls′, k)→ f k = l++ flatten (zip ls′ ls0) .

We have to show
rep

(
Next (λk . n :: unfold c (k ◦ br tl ◦ br tr)), (n :: l) :: zip (zip (niv tl) (niv tr)) ls0

)
,

i. e., for all k, ls′ with isextractor(rep, ls′, k),

n :: f (k ◦ br tl ◦ br tr) = (n :: l) ++ flatten
(
zip ls′ (zip (zip (niv tl) (niv tr)) ls0)

)
.

7 This descriptional pattern suggests to define representation of double list transformers by routine
transformers in the usual style of logical relations. With that definition in place, the lemma could be
stated as representation of zip (niv t) by br t.
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Deleting n and using associativity for zip we end up with the goal f (k ◦ br tl ◦ br tr) =
l++ flatten

(
zip (zip ls′ (zip (nivtl) (niv tr))) ls0

)
. By (++) it suffices to show

isextractor
(
rep, zip ls′ (zip (niv tl) (niv tr)), k ◦ br tl ◦ br tr

)
.

Assume rep(c, ls′′). We have to show

k (br tl (br tr c)) = flatten
(
zip (zip ls′ (zip (niv tl) (niv tr))) ls′′

)
.

By the assumption isextractor(rep, ls′, k), and using associativity of zip, it suffices to
show rep

(
br tl (br tr c), zip (niv tl) (zip (niv tr) ls′′)

)
. The first induction hypothesis reduces

this to rep(br tr c, zip (niv tr) ls′′) and the second further to rep(c, ls′′), which holds by
assumption. J

Alternative proof of Theorem 6. By the axiom (over), we have rep(Over, []). Therefore,
by Lemma 9, rep(br tOver, niv t). Since, by Lemma 8, isextractor(rep, [], extract), it follows
extract (br tOver) = flatten (niv t), i. e., breadthfirst t = breadthfirstspec t. J

7 Verification by interpreting routines as recursive programs

In this section we give a correctness proof, which is based on understanding the elements of
Rou as recursive programs. We give a meaning to routines by defining what it means for a
routine to compute the breadth-first traversal of a tree, and use this in order to state and
prove in Lemma 12 the correctness condition fulfilled by the key operation br.

Following Okasaki [13], one can understand the breadth-first traversal of a tree by
understanding the more general notion of the breadth-first traversal of elements of Forest :=
List Tree. We use ts (for lists of trees) as variables for forests.

The obvious lifting of breadthfirstspec to forests is

breadthfirstf,spec
Def= flatten ◦ nivf : Forest→ List N ,

where nivf zips all niv t for t in ts, i. e.

nivf : Forest→ List2 N
nivf [] = [] nivf (t :: ts) = zip (niv t) (nivf ts)

Clearly, breadthfirstspec t = breadthfirstf,spec [t].
It is our goal to prove the correctness of Hofmann’s algorithm via an embedding of forests

into routines that is in a certain sense simpler than the embedding γ and explains the roles
of the functions br : Tree→ Rou→ Rou and extract : Rou→ List N.

Our programs will not recurse on the length of a forest but on its depth, and will access
its roots and its immediate subforest:

depth : Tree→ N, depth(Leaf n) = 1, depth(Node tl n tr) = max{depth tl , depth tr}+ 1.
depthf : Forest→ N, depthf [t1, . . . , tn] = max{0, depth t1, . . . , depth tn}.
roots : Forest→ List N
roots [] = [] roots (Leaf n :: ts) = roots (Node tl n tr :: ts) = n :: roots ts
sub : Forest→ Forest calculates the immediate subforest:
sub [] = [], sub (Leaf n :: ts) = sub ts, sub (Node tl n tr :: ts) = tl :: tr :: sub ts.
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I Lemma 10.
(a) length (nivf ts) = depthf ts.
(b) For ts 6= [] we have depthf ts = depthf (sub ts) + 1.
(c) If ts 6= [] then nivf ts = roots ts :: nivf (sub ts).

Proof. Easy. J

We begin with the observation (which is made precise in Lemma 12 below) that the routines
created in a run of the algorithm breadthfirst are either Over or of the form (next (addroots ts) c)
where

next : (List N→ List N)→ Rou→ Rou next g c = Next (λk . g (k c)).
addroots : Forest→ List N→ List N addroots ts = append (roots ts)

We can regard these routines as recursive programs: Over is the routine which immediately
terminates returning []. The routine (next g c) makes a recursive call to c, and if the result
returned there is l it returns (g l). extract executes these recursive programs: We have
extract Over = [] and extract (next g c) = g (extract c).
We now construct for ts : Forest the routine (c ts) which represents the computation of the
breadth-first traversal of ts. If ts = [], then Over represents the traversal of ts which is [].
Otherwise, c represents the traversal of ts if it recursively calls a routine representing the
traversal of (sub ts) and adds to the result (roots ts). More formally we define c ts : Rou by
recursion on the measure depthf ts:

c ts =
{

Over if ts = [],
next (addroots ts) (c (sub ts)) otherwise.

We show that extract evaluates the routines c ts to the breadth-first traversal of ts:

I Lemma 11. extract ◦ c ext= breadthfirstf,spec.

Proof. We show extract (c ts) = breadthfirstf,spec ts by induction on depthf ts:
If depthf ts = 0 then ts = [], and extract (c ts) = [] = flatten (nivf ts) = breadthfirstf,spec ts.
Otherwise by IH extract (c (sub ts)) = breadthfirstf,spec (sub ts)), and therefore, by Lemma 10
extract (c ts) = extract (next (addroots ts) (c (sub ts))) = addroots ts (extract (c (sub ts)))

= roots ts ++ flatten (nivf (sub ts)) = flatten (roots ts :: nivf (sub ts))
= flatten (nivf ts) = breadthfirstf,spec ts . J

The next lemma is a key lemma for br. It shows that (br t c) translates a routine c
computing the traversal of ts into a routine computing the traversal of (t :: ts):

I Lemma 12. br t ◦ c ext= c ◦ cons t.

Proof. We show br t (c ts) = c (t :: ts) by induction on depth t:
Case 1 ts = []. Then c ts = Over.
Case 1.1 t = Leaf n. We have

br t (c ts) = next (consn) Over
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)

.

Case 1.2 t = Node tl n tr . Then by IH we get
br t (c ts) = next (consn) (br tl (br tl (c ts)))

= next (consn) (c (tl :: tr :: ts))
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)
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Case 2 Otherwise. Then c ts = next (addroots ts) (c (sub ts)).

Case 2.1 t = Leaf n.
br t (c ts) = next (consn ◦ addroots ts) (c (sub ts))

= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts)

Case 2.2 t = Node tl n tl. Then
br t (c ts) = next (consn ◦ addroots ts) (br tl (br tl (c (sub ts))))

= next (addroots (t :: ts)) (c (tl :: tr :: (sub ts)))
= next (addroots (t :: ts)) (c (sub (t :: ts))) = c (t :: ts) J

Alternative proof of Theorem 6. breadthfirst t = extract (br tOver) = extract (br t (c [])) =
extract (c [t]) = breadthfirstf,spec [t] = breadthfirstspec t. J

8 A predicative version of breadthfirst

In this section we present a variant of breadth-first traversal that, like Hofmann’s algorithm,
avoids the repeated use of list concatenation but is predicative since it doesn’t use the data
type of routines. Instead lists of functions are used as intermediate data type.

As observed in the previous section, the only elements of Rou created by the operations
br and breadthfirst are Over and next g c, where g : List N→ List N and c : Rou, and c is itself
created by the algorithm. We can represent the elements of Rou that are defined inductively
by these clauses as lists of functions g : List N→ List N, and therefore obtain them as those
in the image of the function Φ defined as follows:

Rou′ = List(ListN→ ListN)
Φ : Rou′ → Rou Φ [] = Over Φ (g :: gs) = next g (Φ gs)

We denote elements of Rou′ with the variable gs.
We translate br into a function br′ referring to Rou′ s. t. Φ ◦ br′ t ext= br t ◦ Φ:

br′ : Tree→ Rou′ → Rou′
br′ (Leaf n) [] = consn :: []
br′ (Leaf n) (g :: gs) = (consn ◦ g) :: gs
br′ (Node tl n tr) [] = consn :: br′ tl (br′ tr [])
br′ (Node tl n tr) (g :: gs) = (consn ◦ g) :: br′ tl (br′ tr gs)
The defining equations for br′ are easily derived by transforming the right-hand side of

the desired functional equation Φ (br′ t gs) = br t (Φ gs) into the form Φ gs′ and then setting
br′ t gs = gs′.

I Lemma 13. Φ ◦ br′ t ext= br t ◦ Φ.

Proof. One shows Φ (br′ t gs) = br t (Φ gs) by a straightforward induction on t and case
analysis on gs (formalized in the Coq proof br’_Lemma, see Section 11). J

We can in the same way translate extract into a function extract′ operating on Rou′

s. t. extract′ ext= extract ◦ Φ: From this condition one can immediately derive its defining
equations:
extract′ : Rou′ → List N extract′ [] = [] extract′ (g :: gs) = g (extract′ gs)

I Lemma 14. extract′ ext= extract ◦ Φ.
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Proof. We show extract′ gs = extract (Φ gs) by induction on gs:
extract′ [] = [] = extract (Φ [])
extract′ (g :: gs) = g (extract′ gs) = g (extract (Φ gs))

= extract (next g (Φ gs)) = extract (Φ (g :: gs)) J

Now we define breadthfirst′ : Tree→ List N, breadthfirst′ t = extract′ (br′ t []). It follows:

I Lemma 15. breadthfirst′ ext= breadthfirst.

Proof. breadthfirst′ t = extract′ (br′ t []) = extract (Φ (br′ t [])) = extract (br t (Φ []))
= extract (br tOver) = breadthfirst t. J

In the next section 9 we will see how breadthfirst′ can be reduced to breadthfirst′′ which
is extensionally equal to breadthfirstspec, giving an algebraic proof of the correctness of
breadthfirst. However, we can give as well a direct correctness proof of breadthfirst′:
The routine computing the traversal of a ts : Forest having nivf = [l1, . . . , lm] is given by
traverse ts = [append l1, . . . , append ln]. A recursive definition (recursion on the measure
depth ts) of traverse ts : Rou′ is as follows:

traverse ts =
{

[] if ts = [],
addroots ts :: traverse (sub ts) otherwise.

I Lemma 16. extract′ ◦ traverse ext= breadthfirstf,spec.

I Lemma 17. br′ t ◦ traverse ext= traverse ◦ (cons t).

Proof of Lemmas 16 and 17. One shows extract′ (traverse ts) = breadthfirstf,spec ts by in-
duction on depth ts and br′ t (traverse ts) = traverse (t :: ts) by induction on t. J

We obtain an alternative proof of Theorem 6 which contains as well the correctness
of breadthfirst′:

I Theorem 18. breadthfirst ext= breadthfirst′ ext= breadthfirstspec.

Proof. The first equation is Lemma 15. The 2nd equation follows as the alternative proof of
Theorem 6 in Sect. 7 but using Lemmas 16 and 17 instead of Lemmas 11 and 12, respectively,
and replacing Over by [] : Rou′. J

9 A simplified predicative version of breadthfirst

The predicative algorithm for breadth-first traversal developed in the previous section can
be simplified by observing that the type Rou′ is only used with lists of functions that are
formed from (consn) by composition, i. e., functions of the form λl . l′++ l for some l′ : List N.
We can therefore denote them by elements of List N, and the elements of Rou′ by elements of
List2 N. Therefore, we define

Rou′′ := List2 N
Ψ : Rou′′ → Rou′ Ψ ls = map append ls
where map : (A→ B)→ ListA→ ListB map f [l1, . . . , ln] = [f l1, . . . , f ln]

We translate br′ into a function br′′ referring to Rou′′:
br′′ : Tree→ Rou′′ → Rou′′
br′′ (Leaf n) [] = [[n]]
br′′ (Leaf n) (l :: ls) = consn l :: ls
br′′ (Node tl n tr) [] = [n] :: br′′ tl (br′′ tr [])
br′′ (Node tl n tr) (l :: ls) = consn l :: br′′ tl (br′′ tr ls)
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I Lemma 19. Ψ ◦ br′′ t ext= br′ t ◦Ψ.

Proof. We show Ψ (br′′ t ls) = br′ t (Ψ ls) by induction on t:
Ψ (br′′ (Leaf n) []) = Ψ [[n]] = consn :: [] = br′ (Leaf n) []
Ψ (br′′ (Leaf n) (l :: ls)) = Ψ (consn l :: ls)

= (consn ◦ append l) :: Ψ ls
= br′ (Leaf n) (append l :: Ψ ls)

Ψ (br′′ (Node tl n tr) []) = Ψ ([n] :: br′′ tl (br′′ tr []))
= consn :: br′ tl (br′ tr [])
= br′ (Node tl n tr) []

Ψ (br′′ (Node tl n tr) (l :: ls)) = Ψ(consn l :: (br′′ tl (br′′ tr ls)))
= consn ◦ append l :: (br′ tl (br′ tr (Ψ ls)))
= br′ (Node tl n tr) (append l :: Ψ ls) J

I Lemma 20. br′′ t ext= zip (niv t).

Proof. We show br′′ t ls = zip (niv t) ls by induction on t: For t = Leaf n this follows
immediately by the definition of br′′. In the case that t = Node tl n tr and ls = []
we get using the IH br′′ t ls = [n] :: br′′ tl (br′′ tr []) = [n] :: zip (niv tl) (zip (niv tr) []) =
[n] :: zip (niv tl) (niv tr) = niv t = zip (niv t) []. In case of t = Node tl n tr and ls = l′ :: ls′ we
get using the IH br′′ t ls = consn l′ :: br′′ tl (br′′ tr ls′) = consn l′ :: zip (niv tl) (zip (niv tr) ls′) =
consn l′ :: zip (zip (niv tl) (zip (niv tr))) ls′) = zip ([n] :: zip (niv tl) (zip (niv tr))) (l′ :: ls′) =
zip(niv t) ls. J

I Lemma 21. flatten ext= extract′ ◦Ψ.

Proof. By induction on the list argument:
flatten [] = [] = extract′ []
flatten (l :: ls) = l++ flatten ls = append l (extract′ (Ψ ls)) = extract′ (Ψ (l :: ls)) J

Now we define breadthfirst′′ : Tree→ List N by breadthfirst′′ t = flatten (br′′ t []).
We obtain an alternative proof of Theorem 6 which contains as well the correctness

of breadthfirst′ and breadthfirst′′:

I Theorem 22. breadthfirst ext= breadthfirst′ ext= breadthfirst′′ ext= breadthfirstspec.

Proof. The first equation is Lemma 15. We prove the second equation:
breadthfirst′′ t = flatten (br′′ t []) = extract′ (Ψ (br′′ t [])) = extract′ (br′ t (Ψ [])) =
extract′ (br′ t []) = breadthfirst′ t.
Furthermore, by Lemma 20, we get
breadthfirst′′ t = flatten (br′′ t []) = flatten (zip (niv t) []) = flatten (niv t) = breadthfirstspec t. J

10 Formal comparison of the obtained algorithms and proofs

In this section we isolate the common structure of the algorithms and proofs we have seen so
far. Since, as remarked earlier, breadth-first traversal is not modular, all algorithms first
compute some intermediate result (in a modular way) from which then the final result can
be easily extracted. In fact, the program computing the intermediate result has an extra
parameter which makes it possible to replace list concatenation (featuring in the specification)
by function composition. We capture this common structure by the notion of a “system” and
show that all proofs boil down to establishing a “simulation” relation between systems.
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I Definition 23.

A system is a quadruple S = (A,Nil, g, e) where A : Set, Nil : A, g : Tree→ A→ A, and
e : A→ ListN.

S is correct (for breadth-first traversal) if e (g tNil) = breadthfirstspec t for all trees t.

Let S′ = (A′,Nil′, g′, e′) be another system. A relation R on A×A′ is a simulation between
S and S′, S R∼ S′, if (1) R(Nil,Nil′), and, whenever R(a, a′), then (2) R(g t a, g′ t a′) for
all trees t, and (3) e a = e′ a′.

Let S, S′ be systems. S and S′ are similar, S ∼ S′, if there exists a simulation between
S and S′.

I Lemma 24. If S ∼ S′ then S is correct if and only if S′ is correct.

Proof. If S R∼ S′, then R(g tNil, g′ tNil′), by (1) and (2), hence e (g tNil) = e′ (g′ tNil′),
by (3). J

Note that if R is functional, i. e., defined as the graph of a function φ : A′ → A, by
setting R(a, a′) iff a = φa′, then the simulation conditions become (1) Nil = φNil′, (2)
g t ◦ φ ext= φ ◦ g′ t for all trees t, and (3) e ◦ φ ext= e′. In this situation we write S φ← S′. All
but one of the simulations described below are functional.

The specification of breadth-first traversal given in Section 2 corresponds to the sys-
tem Sspec

Def≡ (List2N, [], zip ◦ niv, flatten). Correctness holds since flatten ((zip ◦ niv) t []) =
flatten (niv t) = breadthfirstspec t.

In the new view of systems, we may say that Hofmann defined his algorithm breadthfirst
by the system SMH

Def≡ (Rou,Over, br, extract) (Sect. 3) and showed that SMH
γOver← Sspec where

γOver ls Def≡ γ ls Over (Sect. 4). Condition (1) holds by the definition of γ, (2) holds by
Lemmas 4 and 5, and (3) is Lemma 3.

The proofs given in Section 6 amount to showing SMH
rep∼ Sspec. (1) is the axiom (over),

(2) is Lemma 9, and (3) is Lemma 8.
The (spec.-like) algorithm λt . breadthfirstf,spec [t] of Section 7 works with forests as the

intermediate data type. The underlying system is Sforest
Def≡ (Forest, [], cons, breadthfirstf,spec).

Correctness of this system is easily established via the functional simulation Sspec
nivf← Sforest

((2) holds by definition of nivf , (3) is trivial). However, the point of Sforest is to provide a new
correctness proof for SMH. This is achieved by showing SMH

c← Sforest. (1) holds by definition
of c, (2) is Lemma 12, and (3) is Lemma 11.

The first predicative version of breadth-first traversal introduced in Section 8 defines
the system Spred1

Def≡ (Rou′, [], br′, extract′) and proves the simulation SMH
Φ← Spred1. The

simulation conditions (2),(3) are shown in Lemmas 13 and 14, while (1) holds by definition
of Φ. The correctness of Spred1 is shown via the simulation Spred1

traverse← Sforest.

The simplified predicative algorithm in Section 9 is defined by the system Spred2
Def≡

(List2N, [], br′′, flatten). Spred2 is in fact (extensionally) equal to Sspec since br′′ ext= zip ◦ niv,
by Lemma 20. We show Spred1

Ψ← Spred2: the simulation conditions (2),(3) are given by the
Lemmas 19 and 21, while (1) holds by definition of Ψ.
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The following diagram gives an overview of the simulations:

SMH

Sforest
traverse

c
-

- Spred1

�

Φ

Sspec
ext= Spred2

rep γOver

6

Ψ

-

nivf -

In fact, the functions in the diagram are fully commutative assuming extensionality (regarding
rep all we know at this stage is that it is a simulation, but we don’t know its relationship to
the simulation defined by γOver):

I Lemma 25.
(a) γOver

ext= Φ ◦Ψ.
(b) traverse ext= Ψ ◦ nivf .
(c) c ext= Φ ◦ traverse ext= γOver ◦ nivf .

Proof. Φ (Ψ ls) = γOver ls can be easily shown by induction on ls. However, the proof
uses the extensionality principle (cf. Section 4). The equation traverse ts = Ψ(nivf ts) is
obvious from the definition of traverse. c ts = Φ (traverse ts) follows by induction on depth ts.
c ext= γOver ◦ nivf follows from the previous equations. J

In particular, the simulations SMH
Φ← Spred1

Ψ← Spred2 provide a splitting of Hofmann’s
simulation SMH

γOver← Sspec into simpler components.

11 Implementation and formalization in proof assistants

Here, we comment on our (partial) implementation of the presented ideas in Coq and
Agda, that is publicly available in a Git repository [2]. The Coq system does not allow
any inductive data type beyond strictly positive ones.8 We overcome this by working
with a version of Coq augmented by the plugin TypingFlags provided by Simon Boulier.9
The effect of this plugin is to disable the checks for strict positivity, guardedness and
termination. If, in such a development, one has established Lemma lem (for example),
then Print Assumptions lem reveals for which constructions the plugin has forced Coq
to accept them. For the formalization of Theorem 6, the forced acceptance only concerns
the inductive data type Rou and the recursive function extract (and we also referred to
Logic.FunctionalExtensionality.functional_extensionality, which is nothing but
assuming equality of pointwise equal functions). The formalization and its verification
present no difficulties at all, given the detailed proofs we provide in the paper. Thus, all of
the elaborated mathematical developments in the Sections 2 to 10, with the notable exception
of Section 5 (that is situated outside of Coq since it reflects on the term evaluation mechanism)

8 See the Coq reference manual, in particular https://coq.inria.fr/distrib/current/refman/
language/cic.html#positivity-condition.

9 Plugin available at https://github.com/SimonBoulier/TypingFlags/.
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are fully formalized in Coq, under the above provisos, i. e., with forced acceptance by Coq
of the type Rou, the function extract, the relation rep and its induction principle rep_ind
that is “manually” defined and not generated by the system, and by sometimes employing
extensionality. For the recapitulations in form of the four formalized correctness proofs of
SMH – through Hofmann’s function γ, through the relation rep, through forests and through
the two predicative systems, lines of the form Print Assumptions S_MH_correct* reveal
what is assumed beyond the core of Coq: Rou and extract in all cases since the algorithm is
expressed in terms of them, rep and its induction principle only for the second proof, and
extensionality only for the first and fourth proof.

Agda has the feature that using pragmas one can switch off strict positivity checks locally
for data types and termination checks locally for functions. This allowed us to implement
the functions used in the paper. Using quantification of set levels we were able to write down
a substantial part of the operations defined in System F in Sect. 5, and after using postulates
and the REWRITE pragma as well the extension by Mendler recursion. This allowed us to
check that the reductions hold (at least that the left-hand and right-hand side of a reduction
have the same normal form). Carrying out the proofs not requiring extensionality is still
work in progress.

12 Conclusion and further work

In this paper we studied an intriguing algorithm by Martin Hofmann for the breadth-first
traversal of finite binary trees which uses a non-strictly positive data type Rou of routines.
We completed Hofmann’s proof sketch of correctness (Sect. 4) and provided a justification
for the termination of the algorithm by reduction to Mendler-style recursion in system F
(Sect. 5). Furthermore we presented various alternative breadth-first traversal algorithms and
correctness proofs with the aim to provide an explanation of Hofmann’s somewhat mysterious
construction. In Sect. 6 we transformed the data type Rou into a non-strictly positive inductive
relation rep between routines and double lists and proved directly that the algorithm maps a
tree to a routine that represents its levels from which correctness follows immediately. While
the proof in Sect. 6 exploits non-strict positive induction as a proof principle, the other proofs
only use structural induction (on lists or trees) but instead introduce new constructions that
explain the roles of the components of Hofmann’s algorithm and break it (the algorithm) into
smaller, simpler, parts. The proof in Sect. 7 proves the correctness of Hofmann’s algorithm
breadthfirst via a simulation by a straightforward extension of breadth-first traversal to forests
(which is closely related to the common approach to breadth-first traversal [13]). This reveals
that the crucial component, br, of breadthfirst performs – via this simulation – nothing but
the cons-operation on lists of trees. Through an analysis of the behaviour of breadthfirst we
showed in Section 8 how to replace the impredicative type Rou of routines by the type Rou′
of lists of list functions and provided a predicative version, breadthfirst′, of breadthfirst. In
Section 9, this predicative algorithm is further simplified by observing that only functions of
the form λl . l′++ l are needed which can be represented by the list l′. Section 10 isolates the
common structure of the algorithms by the notion of a system and the common structure of
the correctness proofs by the notion of a simulation. In addition it shows that the simulation
SMH

γOver← Sspec, which corresponds to Hofmann’s original proof, is split into the two, simpler
and predicative, simulations SMH

Φ← Spred1
Ψ← Spred2.

All algorithms were implemented and verified in the proof assistant Coq using various
tweaks and extensions to accommodate non-strict positivity and some algorithms were
implemented in Agda and Haskell [2].
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Is the mystery of non-strictly positive breadth-first traversal now completely solved?
Far from it. Looking at the algorithms it is quite clear that they should work for infinite
(and hence non-well-founded) binary trees as well. This is confirmed by experiments with
implementations in Haskell [2]. In order to formally prove this, coinductive data types and
proof principles will be required which rely on the productivity of algorithms instead of
the well-foundedness of their inputs. Carrying this out in current proof systems (whose
capabilities of dealing with coinduction are still in their infancy) will be an exciting challenge.

Another mysterious algorithm that can be formulated with a non-strictly positive inductive
type similar to the type of routines is a solution to the “same-fringe problem” that was
suggested to us by Olivier Danvy. The problem is well-known: testing whether two finite
trees have the same fringe, i. e., the same left-to-right listing of labels at their leaves. This
problem is essentially different from breadth-first traversal since it relies on trees being finite.
Its analysis is left to further work.
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