

First record of Sivameryx (Cetartiodactyla, Anthracotheriidae) from the lower Miocene of Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia and Africa

Ari Grossman, Ran Calvo, Raquel López-Antoñanzas, Fabien Knoll, Gideon

Hartman, Rivka Rabinovich

► To cite this version:

Ari Grossman, Ran Calvo, Raquel López-Antoñanzas, Fabien Knoll, Gideon Hartman, et al.. First record of Sivameryx (Cetartiodactyla, Anthracotheriidae) from the lower Miocene of Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia and Africa. Journal of Vertebrate Paleontology, 2019, 39 (2), pp.e1599901. 10.1080/02724634.2019.1599901. hal-02365607

HAL Id: hal-02365607 https://hal.science/hal-02365607

Submitted on 16 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

First description of *Sivameryx* (Cetartiodactyla: Anthracotheriidae) from the Early Miocene of Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia and Africa

Journal:	Journal of Vertebrate Paleontology
Manuscript ID	JVP-2018-0083.R3
Manuscript Type:	Article
Date Submitted by the Author:	11-Mar-2019
Complete List of Authors:	Grossman, Aryeh; Midwestern University, Anatomy; Midwestern University, College of Veterinary Medicine; Midwestern University, Arizona College of Osteopathic Medicine Calvo, Ran; Geological Survey of Israel López-Antoñanzas, Raquel; Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, CNRS, IRD, EPHE. Knoll, Fabien; Fundación Conjunto Paleontológico de Teruel-Dinópolis, ; University of Manchester, School of Earth & Environmental Sciences, Hartman, Gideon; University of Connecticut, Anthropology Rabinovich, Rivka; The Hebrew University of Jerusalem, National Natural History Collections, Institute of Earth Sciences, Institute of Archaeology,
Key Words:	Israel, early Miocene, anthracotheriidae, cetartiodactyla, <i>Sivameryx</i> , Levantine corridor

1					
2 3	1	First description of Sivameryx (Cetartiodactyla, Anthracotheriidae) from the Early Miocene of			
4 5					
6 7	2	Israel highlights the importance of the Levantine Corridor as a dispersal route between Eurasia			
8	3	and Africa			
9 10					
11 12	4	ARI GROSSMAN, ^{* ,1,2,3} RAN CALVO, ⁴ RAQUEL LOPEZ-ANTONANZAS, ⁵ FABIEN KNOL, ^{6,7} GIDEON			
13 14 15	5	HARTMAN, ^{8,9} and RIVKA RABINOVICH ¹⁰			
16 17	6	¹ Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ			
18	C				
19 20 21	7	85308, USA, agross@midwestern.edu;			
22 23	8	² College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA;			
24					
25 26 27	9	³ Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA;			
28 29	10	⁴ Geological Survey of Israel, Jerusalem, Israel;			
30 31 32	11	⁵ Institut des Sciences de l'Évolution de Montpellier (ISE - M, UMR 5554, CNRS/UM/IRD/EPHE),			
33 34	12	c.c. 64, Université de Montpellier, Place Eugène Bataillon, F -34095 Montpellier Cedex 05,			
35 36					
37 38	13	France;			
39	1/	648410—Eundación Conjunto Paleontológico de Teruel-Dinopolis 44002 Teruel Spain:			
40 41	14	ARAID—Fundación Conjunto Paleontologico de Teruel-Dinopolis, 44002, Teruel, Spain;			
42 43	15	⁷ School of Earth and Environmental Sciences, University of Manchester, Manchester, M13 9PL,			
44					
45 46	16	United Kingdom;			
47 48					
49	17	⁸ Department of Anthropology, University of Connecticut, Unit 1176, 354 Mansfield Road,			
50 51	18	Storrs, CT 06269, USA;			
52 53					
54					
55 56		* Corresponding author			
57					
58 59		1			
60		Society of Vertebrate Paleontology			

1		
2 3	19	⁹ Center for Environmental Sciences and Engineering. University of Connecticut. 3107 Horsebarn
4 5	-	
6	20	Hill Road, Building 4 room 10, Storrs, CT 06269, USA;
8		
9 10	21	¹⁰ National Natural History Collections, Institute of Earth Sciences, Institute of Archaeology, The
11	22	Hebrew University of Jerusalem, Berman Building, Edmond J. Safra Campus, Givat Ram,
12 13		
14 15	23	Jerusalem 91904, Israel
16	24	
17 18	24	
19 20	25	RH: GROSSMAN ET AL -EIRST ANTHRACOTHERE FROM ISRAEL
20	25	
22 23	26	
24		
26		
27 28		
29		
30 31		
32 33		
34		
35 36		
37 38		
39		
40 41		
42 42		
43 44		
45 46		
47		
48 49		
50 51		
52		
53 54		
55 56		
57		
58 59		2
60		Society of Vertebrate Paleontology

2		
3 4	27	ABSTRACT—The genus Sivameryx (Cetartiodactyla: Anthracotheriidae), found both in Asia and
5 6 7	28	Africa, is considered of Asian origin. Recent excavations in the Negev region of southern Israel
, 8 9	29	led to the discovery of a new Early Miocene site called Kamus Junction. Among the fossils
10 11 12	30	recovered at Kamus Junction is an upper molar of Sivameryx palaeindicus. Although known
12 13 14	31	species of Sivameryx have often been distinguished by size, comparisons of the new specimen
15 16	32	with known Sivameryx teeth from Asia and Africa emphasize the need for caution when
17 18 19	33	assigning Sivameryx fossils to species based on size alone. This record of Sivameryx highlights
20 21	34	the importance of the Levant as a corridor connecting Eurasia and Africa. The new find, along
22 23 24	35	with other recent finds, demonstrates that the Levantine Corridor facilitated faunal dispersal
24 25 26	36	events that shaped modern biotas as early as the Early Miocene.
27 28 29 30	37	
31 32	38	INTRODUCTION
33 34 35	39	
36 37	55	
37 38 39	40	Multiple mammalian orders and families appear to have migrated from Africa to Eurasia
40 41 42	41	during the Early and Middle Miocene in a series of relatively rapid migration events (e.g. Cote et
42 43 44	42	al., 2018; Leakey et al., 2011). An uncertain but substantial number of African taxa such as
45 46	43	proboscideans migrated out of Africa roughly simultaneously (e.g. Sanders et al., 2010; Sanders
47 48 49	44	and Miller, 2002). Direct fossil evidence for these migrations from sites that lie between Africa
50 51	45	and Eurasia are rare but crucial for reconstructing biogeographic patterns of dispersal. The
52 53	46	Levantine Corridor, located between Africa and Eurasia, provides the best case for studying
55 56	47	such patterns (Tchernov et al., 1987). Preliminary descriptions recognized 19 fossil Early
57 58		3

2		
3 4	48	Miocene mammal taxa from the Negev of Israel (Goldsmith et al., 1982; Savage and Tchernov,
5 6	49	1968; Tchernov et al., 1987). These taxa were primarily of African affinities but demonstrated
7 8 9	50	high levels of regional endemism, which, the authors argued, were probably indicative of
10 11	51	environmental and not temporal differences with other sites in Africa and Asia (Tchernov et al.,
12 13 14	52	1987).
15 16 17	53	Anthracotheres are relatively common in the Early Miocene fossil record of East and
18 19	54	North Africa (Evans et al., 1981; Leakey et al., 2011; Rowan et al., 2015) as well as Eurasia
20 21 22	55	(Antoine et al., 2013; Ducrocq and Lihoreau, 2006; Lihoreau and Ducrocq, 2007; Patnaik, 2013;
23 24	56	Savage et al., 1977; Sehgal and Bhandari, 2014) . Because anthracotheres are so widely
25 26 27	57	dispersed, paleontologists often regard them as useful indicators of early phases of
28 29 20	58	intercontinental dispersal events (e.g. Lihoreau and Ducroq, 1995; Holroyd et al., 2010).
30 31 32	59	Anthracotheres appear in the early reports of mammals from the Miocene of Israel (Goldsmith
33 34 35	60	et al., 1982; Savage and Tchernov, 1968), and Goldmsith even named the main Early Miocene
36 37	61	locality from the Negev "Anthracothere Hill" (Goldsmith et al., 1988). However, the only formal
38 39 40	62	description of the Miocene mammals of the Negev in Israel, Tchernov et al. (1987: Table 7) does
40 41 42	63	not metion anthracotheres. Here we formally describe anthracothere remains from Israel for
43 44	64	the first time, specifically the material found at Kamus Junction.
45 46 47	65	In 2012, we began surveying and excavating new localities in Israel to reconstruct the
48 49 50	66	landscape and biota of the Levantine Corridor during the Miocene (López-Antoñanzas et al.,
50 51 52	67	2014; López-Antoñanzas et al., 2016; Rabinovich et al., 2014). During excavation of Kamus
53 54 55	68	Junction, a new Early Miocene locality, new specimens were recovered including
56 57		
58		4
59		

י ר	
2	
J ∧	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
22	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
75 76	
-10 //7	
4/	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

proboscideans, a giraffid (*Canthumeryx* sp.), and one anthracothere tooth, which we describe
here.

72 Location and Geological Setting of Kamus Junction Locality

The Kamus Junction (KJ) locality is located at the southwestern side of the Yamin Plain, in the northern Negev desert of Israel. The KJ sediments were deposited in the Miocene Hazeva Formation. During most of the Early and Middle Miocene, the Neo-Tethys shoreline was located in Be'er Sheva area (Gvirtzman and Buchbinder, 1969), with the site some 30km southeast (Fig. 1).

During the Early Miocene large drainage systems flowed from deep-inland areas of the 78 79 Arabian Plate, in the southeast, toward the Neo-Tethys, in the northwest. The Hazeva Formation consists mostly of fluvial, fine to coarse, sandstones, with some shale and conglomerates. 80 Episodically, lacustrine environments prevailed, and marls and limestone were also deposited 81 (Calvo and Bartov, 2001). Remnants of the Miocene fluvial-lacustrine Hazeva Formation are 82 preserved in the northern Negev in Israel in synclinal basins within the folds of the 'Syrian Arc' 83 folds system (Zilberman and Calvo, 2013) (Fig. 1). Several large unconformities separate the 84 85 members in the formation (Fig. 2). In the Yamin Plain, the upper parts of the Zefa Member coat the basin edge, and are covered by cycles of layers of the Rotem Member (Fig. 1C, E). The Rotem 86 Member, with a thickness of up to 1,000 m in the Arava Valley, contains low- as well as high-87 energy alluvial facies represented by conglomerate-sand-silt-clay cycles. Due to unconformities, 88 during- and post-Hazeva time, only ~50m of the Rotem Member are preserved in Yamin Plain. In 89

KJ locality the lower part of the Rotem Member begins with 10m of coarse sandstone layers with cross-bedding, followed by 15m of alternating sandstone and shale-marls layers (Fig. 1E). The upper section begins with 1m thick gritstone, which continues into friable sandstone with petrified tree-trunks. HUJI KJ 31 was found eroding out of the sandstone along with fossils of other mammals, crocodilians and turtles. Age of Kamus Junction (KJ) Due to the absence of radiometric dateable markers within the Hazeva Formation, only its base and top ages are known. In central Sinai (Egypt) conglomerate of the base of the formation overlay dikes of ~25 Ma (K-Ar ages) (Steinitz et al., 1978), while in Jordan (east of the Yamin Plain) a ~20 Ma dike cuts the same stratigraphic unit (Calvo, 2000), indicating that the lower parts of the Hazeva Formation were likely deposited during the late Oligocene or Early Miocene (Calvo and Bartov, 2001). Based on geomorphological relationship between marine invasion and terrestrial erosional episodes in Be'er Sheva area, Bar and Zilberman (2016) concluded that the Hazeva Formation deposition ended before ~16-14 Ma.

SYSTEMATIC PALEONTOLOGY

Dental terminology—mostly follows Boisserie et al. 2010 and Bärmann and Rössner. 2011.

1 2		
2 3 4 5	109	
6 7 8	110	CETARTIODACTYLA Montgelard et al. 1997
9 10 11	111	ANTHRACOTHERIIDAE Leidy 1869
12 13 14	112	BOTHRIODONTINAE Scott, 1940
15 16 17	113	MERYCOPOTAMINI Lydekker, 1883
18 19 20 21	114	SIVAMERYX Lydekker, 1877
21 22 23 24	115	Type-species Sivameryx palaeindicus Lydekker, 1877
25 26 27	116	(included species: S. africanus Andrews 1914; S. moneyi Fourteau 1918)
28 29 30	117	Stratigraphic range: Early Miocene
31 32 33	118	Diagnosis —Following Pickford (1991); Lihoreau (2003), Holroyd et al. (2010), Lihoreau
34 35 26	119	et al. (2016). Medium to small in size; canines sexually dimorphic; p1 double rooted; lower
37 38	120	molars selenodont with anterior crests of labial cusps reaching lingual surface of crown, often
39 40 41	121	ending in a small cuspule; four crests from the metaconid; lingual cusps of lower molars
42 43	122	mediolaterally compressed; talonid of m3 loop-like and strongly obliquely oriented; upper
44 45	123	molars with four main cusps and a paraconule almost fused with protocone and of similar
46 47 48	124	height (=quasi-pentacuspidate); looplike parastyles and mesostyles; two distal crests from
49 50	125	protocone; symphysis reaches back to level of p1; no genial spine; postcanine diastema long,
51 52 53	126	with a flange-like protuberance leaning laterally; enamel microstructure is a mono-zonal radial
54 55	127	Schmelzmuster (not equivalent to the cetartiodactyl plesiomorph condition).
56 57 58		-
59 60		Society of Vertebrate Paleontology

2 3	128	
4 5	120	
6 7 8	129	
9 10	130	an
11 12	131	lin
13 14 15	132	the
16 17	133	cu
18 19 20	134	dis
20 21 22	135	(He
23 24	136	pir
25 26 27	137	of
28 29	138	lin
30 31 22	139	tw
32 33 34	140	Th
35 36	141	pre
37 38 39	142	ра
40 41	143	bu
42 43	144	art
44 45 46	145	me
47 48	146	lev
49 50 51	147	me
52 53	148	be
54 55	149	Th
56 57 58		
50 59		
υu		

New Material—HUJI KJ 31: Right second molar (M2) (Fig. 2)

Comparative Description—the tooth is a nearly complete crown with a slightly broken terior (=mesial) cingulum and the anterior part of the roots also sheared. The molar is buccogually (21.8mm) wider than it is mesio-distally long (19.8mm). The crown is brachyodont and e cusps are selenodont and high, giving the crown a tall appearance. There are four main sps (paracone, protocone, metacone, metaconule), and a fifth very small paraconule, a stinctive character of *Sivameryx* referred to as guasi-pentacuspidate by some authors olroyd et al., 2010; Pickford, 1991). The tips of the metacone and the paracone of HUJI KJ 31 nch-in so that the tips of the cusps are close together. This pinching exaggerates the sloping the buccal sides of each buccal cusp contrasting with the less sloped lingual sides of the gual cusps. This is especially visible in the metacone. A looping mesostyle are connects the o buccal cusps. The parastyle is partially broken but was clearly also looping and prominent. e metastyle of HUJI KJ 31 is relatively smaller than the mesostyle or parastyle. The eparacristule is broad but slightly abraded. It wraps around the mesiolingual side of the racone to merge with the parastyle. Both the metacone and the paracone have distinct Ibous ribs descending buccally; that of the paracone appears larger although this could be an tefact of the degree of erosion of the metacone. A median transverse valley separates the esial and distal portions of the toot. The narrow base of the valley is approximately at the el of the cervix of the tooth. The median transverse valley is enclosed buccally by the esostyle, and continues lingually to terminate at the lingual cingulum. The mesial cingulum gins at the mesial end of the parastyle where the preparacristule merges with the paracone. e mesial cingulum is continuous with a very prominent and arcuate cingulum that surrounds

1 2		
3 4	150	the protocone lingually. This protocone cingulum merges with a second arcuate cingulum that
5 6 7	151	surrounds the metaconule, and the two cingula meet at the termination of the median
, 8 9	152	transverse valley. The metaconule cingulum is continuous with a distal cingulum that extends to
10 11	153	the distal part of the metastyle. Thus, the cingula form a single, shelf-like cingulum covering all
12 13 14 15	154	but the buccal aspect of the tooth.
16 17	155	HUJI KJ 31 shares with other bothriodontine anthracotheres an upper molar mesostyle
18 19 20	156	invaded by the median transverse valley and selenodont crescenteric cusps. Anthracotheriinae
21 22	157	differ by their accessory protostyle on the mesial cingulum, and relatively bunodont upper
23 24 25	158	molar cusps. Micorbunodontinae differ because they lack the median transverse valley invading
26 27	159	the mesostyle,
28 29 30	160	Members of the tribe Merycopotamini (Afromeryx, Sivameryx, Hemimeryx,
31 32 33	161	Merycopotamus, Libycosaurus) are distinguished in their upper molars from other
34 35	162	bothriodontine anthracotheres by a preparacrista that connects labially with the parastyle, lack
36 37 38	163	of ectocristyle, and development of the molar entostyle (Lihoreau et al., 2016). All characters
39 40	164	observed in HUJI KJ 31. We thus restrict further comparisons primarily to Merycopotamini with
41 42 43	165	a few additions.
44 45 46	166	We place HUJI KJ 31 in <i>Sivameryx</i> because it is a five-cusped upper molar with a reduced
47 48	167	paraconule (i.e. quasi-pentascuspidate). It also shares with Sivameryx a loop-like mesostyle and
49 50 51 52 53 54 55 56	168	a strongly developed lingual cingulum of the protocone.
57 58 59		9
60		Society of Vertebrate Paleontology

1 2		
2 3 4	169	Brachyodus (Early Miocene of Africa and Europe, Middle Miocene of Thailand) differs
5 6 7	170	from HUJI KJ 31 because it has pinched rather than looping styles on its upper molars.
8 9	171	<i>Brachyodus</i> is also much bigger than HUJI KJ 31.
10 11 12	172	Afromeryx (Early Miocene of East and North Africa), Hemimeryx (Late Oligocene to late
13 14 15	173	Early Miocene of Pakistan), Telmatodon (Early Miocene of Palistan), Gonotelma (Libycosaurus
16 17	174	(Late Miocene of North Africa and Uganda), and Merycompotamus (late Middle Miocene to
18 19 20	175	Late Miocene of India and Pakistan) differ from HUJI KJ 31 because they are tetracuspidate and
20 21 22	176	their upper molars lack a paraconule.
23 24 25	177	Elomeryx, a bothriodontine genus with a widespread Eurasian and North American
20 27 28	178	distribution differs from HUJI KJ 31, by its much more developed paraconule, which is located
29 30	179	substantially farther from the protocone than seen in <i>Sivameryx</i> .
31 32 33 34	180	We recognize HUJI KJ 31 as a second upper molar (M2). The tooth has a distal wear
35 36	181	facet indicating that it is not an M3. Furthermore, the marked pinching of the tips of the
37 38	182	metacone and the paracone causing exaggerated sloping of the buccal sides of each buccal cusp
39 40 41	183	is particularly exaggerated on the metacone of HUJI KJ 31, a condition typically more marked on
42 43	184	M1 and M2. To determine if it is a first or second upper molar, we collected all available mesio-
44 45	185	distal length and bucco-lingual width measurements of upper molars assigned to Sivameryx
40 47 48	186	(Table 1). We used a simple bi-variate plot to compare HUJI KJ 31 with the other upper molars
49 50 51	187	belonging to Sivameryx species (Fig. 3). Recent discoveries of skulls of S. africanus (Rowan et al.,
52 53	188	2015) and S. moneyi (Miller et al., 2014) demonstrate that in both S. africanus and S. moneyi
54 55	189	the M1 is smaller than M2 and M3. The M2 and M3 overlap in size although the M3 is generally
57 58 59		10

2			
3 4	190	larger than M2 (Fig. 3). HUJI KJ 31 falls within the cluster that includes M2 of S. africanus, S.	
5 6 7	191	moneyi, and S. palaeindicus (Fig. 3), and thus we recognize it as an M2.	
, 8 9	107		
10 11	192		
12 13	193	DISCUSSION	
15 16	194	Four Early Miocene genera of anthracotheres are known from Africa: Brachyodus,	
17 18 19	195	Sivameryx, Afromeryx, and Jaggermeryx. The distribution of the species of these genera	
20 21	196	suggests that African anthracotheres dispersed from Africa to Eurasia, while Eurasian	
22 23 24	197	anthracotheres dispersed to Africa. However, the exact pathways enabling such dispersals are	
25 26	198	unknown. Jaggermeryx naida is a monospecific genus identified only from dentaries and lower	
27 28 29	199	dentition found at Wadi Moghra in Egypt (Miller et al., 2014). As such, direct comparisons with	
30 31	200	HUJI KJ 31 are impossible. However, J. naida differs from known lower dentition of Sivameryx	
32 33 34	201	by its bunodont rather than selenodont dentition and overall greater size (Miller et al., 2014). J.	
35 36	202	naida is an African genus. Miller et al. (2014) suggested that this genus is derived from older	
37 38 39	203	African anthracotheres found in Oligocene deposits of the Fayum in Egypt.	
40 41 42	204	Brachyodus is considered a descendant of Bothriogenys from the Oligocene of the	
43 44	205	Fayum in Egypt and thus of African origin (Holroyd et al., 2010). Brachyodus currently includes	
45 46 47	206	three species in Africa; <i>B. depreteti</i> from Wadi Moghara and Siwa in Egypt (Miller et al., 2014;	
48 49	207	Pickford, 1991), and from Sperrgebiet in Namibia (Pickford, 2008); B. mogharensis found only at	
50 51	208	Wadi Moghra (Miller et al., 2014; Pickford, 1991); and B. aequatorialis in various localities in	
52 53 54	209	East Africa (Kalodirr, Rusinga, Loperot, and Locherangan, Kenya, and Moroto, Uganda) (Holroyd	
55 56	210	et al., 2010). Records of <i>Brachyodus</i> in Eurasia include: <i>B. onoideus</i> from Early Miocene deposits	
57 58		11	

Page 12 of 28

in southern Europe (Portugal, Spain, France; (e.g. Antunes and Ginsburg, 2010; Orliac et al., 2013) and from Middle Miocene deposits in Thailand (Ducroq et al., 2003). The exact pathway and timing of the dispersal by *Brachyodus* from Africa into Eurasia is as yet undetermined. Afromeryx zelteni is recognized in North Africa (Jebel Zelten, Libya), East Africa (Loperot, Buluk, Ombo, Nachola and Wayondo, Kenya), and in Ghaba, Sultanate of Oman (Holroyd et al., 2010; Pickford, 1991; Thomas et al., 1999). A second species A. africanus is known only from Jebel Zelten in Libya. Two new species A. grex and A. palustris were recently described from Wadi Moghara (Miller et al., 2014). No records of Afromeryx are known from Eurasia. Although there is disagreement about its exact ancestral relationsips (e.g. Pickford, 1991 vs. Lihoreau and Ducrog, 2007), some researchers argue that it is of Eurasian origin (Holroyd et al., 2010; Lihoreau and Ducroq, 2007; Pickford, 1991). Three species, one Asian and two African, are currently included in the genus Sivameryx. The type species S. palaeindicus, known from several sites in India and Pakistan, is similar in size and morphology to S. africanus, found in East and North Africa (e.g. Holroyd et al., 2010; Lihoreau and Ducrocq, 2007). While some prefer to retain them as two geographically distinct species (Holroyd et al., 2010), others suggest that there is insufficient morphological evidence to distinguish between the two species and the earlier name Sivameryx palaeindicus should take precedence (Lihoreau and Ducrocq, 2007). In addition to Sivameryx africanus identified in East Africa (Karungu, Rusinga, Chianda Uyoma, Kalodirr, Holroyd et al., 2010; Pickford, 1991; Rowan et al., 2015), and North Africa (Gebel Zelten, Pickford, 1991), and possibly in Tunisia

(Oued Bazina, (Lihoreau, 2003), the third species, S. moneyi, is known only from Wadi Moghara

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
17	
47 10	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

in Egypt (Holroyd et al., 2010; Miller et al., 2014). The two African species are regarded as
morphologically indistinct and are only separated by size differences expressed in the length of
the mandibular molar row (~80mm in *S. africanus vs.* ~59mm in *S. moneyi*) (Pickford, 1991). *Sivameryx africanus* and *S. moneyi* are considered migrants from Eurasia to Africa (Holroyd et
al., 2010; Lihoreau and Ducroq, 2007; Miller et al., 2014; Pickford, 1991).

237 In order to assign HUJI KJ 31 to a species we wanted to determine if it is similar in size to S. moneyi from Wadi Moghra or the larger species S. palaeindicus and S. africanus. HUJI KJ 31 is 238 an upper molar, but we expect that the maxillary molars will mirror differences in the size of 239 mandibular molars. However, our analysis of the upper molar dimensions of *Sivameryx* from 240 241 Asia, East Africa, and North Africa (Fig. 3) does not support such size distinction. In our analysis, the smallest individuals are specimens assigned to S. africanus from Kalodirr (Holroyd et al., 242 2010; Rowan et al., 2015). At the same time, the S. moneyi specimens from Wadi Moghara have 243 244 a size range as great as the range of upper molars from India, Pakistan, or Gebel Zelten, attributed to either S. palaeindicus or S. africanus (Fig. 3). Alternatively, the overlap in size of 245 246 the upper molars of S. moneyi, S. africanus, and S. palaeindicus combined with very little morphological variation may indicate that *Sivameryx* is a monospecific genus. A complete 247 248 phylogenetic analysis required to examine this alternative is outside the scope of this paper. We 249 suggest that size alone, at least as expressed via molar size, is not sufficient to distinguish different species of Sivameryx without additional material from well-dated localities. We 250 therefore assign the specimen from Israel as *S. palaeindicus* because we cannot separate any of 251 the species by upper molar size or morphology and the name *S. palaeindicus* takes precedence 252 253 in the literature.

2 3 4	254	Regardless whether the genus <i>Sivameryx</i> has one or three species, all authors agree that
5 6 7	255	the genus is an Asian immigrant into Africa (Holroyd et al., 2010; Lihoreau and Ducrocq, 2007;
, 8 9	256	Miller et al., 2014; Pickford, 1991; Rowan et al., 2015). HUJI KJ 31 is found in the Levantine
10 11 12	257	Corridor, an area that physically connects the two continents. This discovery of Sivameryx in
13 14	258	Israel is part of a growing body of evidence (e.g. ctenodactylid rodents: López-Antoñanzas et al.,
15 16 17	259	2016) that mammals exploited this route to migrate between Asia and Africa as early as the
18 19 20	260	Early Miocene.
21 22 23	261	
24 25 26	262	ACKNOWLEDGMENTS
27 28 29 30	263	
30 31 32	264	This research is supported by ISF Grant #925/16 (RR and RC). AG is supported by a grant from
33 34 35	265	Midwestern University. We are very grateful to the two anonymous reviewers for their
36 37	266	thorough and helpful comments and comments from the editor, Dr. M. Sanchez-Villagra, which
38 39 40	267	greatly improved the final manuscript. We wish to thank G. Beiner for preparing the material
40 41 42	268	and V. Gutkin for SEM of the specimen. The faunal collection is deposited at the National
43 44 45	269	Natural History Collection of the Hebrew University of Jerusalem.
46 47 48	270	
49 50 51	271	REFERENCES
52 53 54 55 56 57 58	272	14
59 60		Society of Vertebrate Paleontology

2		
3 4	273	Andrews, C. W. 1914. On the Lower Miocene Vertebrates from British East Africa, collected by Dr. Felix
5 6	274	Oswald. Quarterly Journal of the Geological Society 70:163-186.
7 8	275	Antoine, PO., G. Métais, M. J. Orliac, J. Crochet, L. J. Flynn, L. Marivaux, A. R. Rajpar, G. Roohi, and JL.
9 10 11	276	Welcomme. 2013. Mammalian Neogene biostratigraphy of the Sulaiman Province, Pakistan.
12 13	277	Fossil mammals of Asia: Neogene Biostratigraphy and Chronology. Columbia University Press,
14 15	278	New York:400 – 422.
16 17	279	Antunes, M. T., and L. Ginsburg. 2010. The last Anthracothere Brachyodus onoideus (Mammalia,
18 19	280	Artiodactyla) from westernmost Europe and its extinction.
20 21 22	281	Bar, O., and E. Zilberman. 2016. Subsidence and conversion of the Dead Sea basin to an inland erosion
23 24	282	base level in the early middle Miocene as inferred from geomorphological analysis of its ancient
25 26	283	western fluvial outlet. Geomorphology 261:147 – 161.
27 28	284	Bärmann, E. V., and G. E. Rössner. 2011. Dental nomenclature in Ruminantia: Towards a standard
29 30 21	285	terminological framework. Mammalian Biology 76:762–768.
32 33	286	Boisserie, JR., F. Lihoreau, M. Orliac, R. E. Fisher, E. M. Weston, and S. Ducrocq. 2010. Morphology and
34 35	287	phylogenetic relationships of the earliest known hippopotamids (Cetartiodactyla,
36 37	288	Hippopotamidae, Kenyapotaminae). Zoological Journal of the Linnean Society 158:325-366.
38 39 40	289	Calvo, R. 2000. Stratigraphy and petrology of the Hazeva Formation in the Arava and the Negev:
41 42	290	Implications for the development of the sedimentary basins and the morphotectonics of the
43 44	291	Dead Sea Rift Valley: In Geology, Vol. PhD, pp. 113 (in Hebrew, with English abstract). The
45 46	292	Hebrew University in Jerusalem.
47 48 49	293	Calvo, R., and Y. Bartov. 2001. Hazeva Group, southern Israel: New observations, and their implications
49 50 51	294	for its stratigraphy, paleogeography, and tectono-sedimentary regime. Israel Journal of Earth
52 53	295	Sciences 50:71 – 99.
54 55		
56 57		
58 59		15
60		Society of Vertebrate Paleontology

3 4	296	Cote, S., J. Kingston, A. Deino, A. Winkler, R. Kityo, and L. MacLatchy. 2018. Evidence for rapid faunal
5 6	297	change in the early Miocene of East Africa based on revised biostratigraphic and radiometric
7 8	298	dating of Bukwa, Uganda. Journal of Human Evolution 116:95 – 107.
9 10 11	299	Ducrocq, S., Y. Chaimanee, V. Suteethorn, and JJ. Jaeger. 2003. Occurrence of the anthracotheriid
12 13	300	Brachyodus (Artiodactyla, Mammalia) in the early Middle Miocene of Thailand. Comptes Rendus
14 15	301	Palevol 2:261-268.
16 17	302	Ducrocq, S., and F. Lihoreau. 2006. The occurrence of bothriodontines (Artiodactyla, Mammalia) in the
18 19 20	303	Paleogene of Asia with special reference to Elomeryx: Paleobiogeographical implications.
20 21 22	304	Journal of Asian Earth Sciences 27:885 – 891.
23 24	305	Evans, E. N., J. A. Van Couvering, and P. Andrews. 1981. Palaeoecology of Miocene sites in western
25 26	306	Kenya. Journal of Human Evolution 10:99 – 116.
27 28 20	307	Fourteau, R. 1918. Contribution a l'etude des vertebres miocenes de l'Egypte. Geological Survey
29 30 31	308	Department, Ministry of Finance, Egypt, Cairo. 120p.
32 33	309	Goldsmith, N., E. Tchernov, L. Ginsburg, P. Tassy, and J. Van Couvering. 1982. Ctenodactylid rodents in
34 35	310	the Miocene Negev fauna of Israel. Nature 296:645 – 647.
36 37 38	311	Goldsmith, N. F., F. Hirsch, G. M. Friedman, E. Tchernov, B. Derin, E. Gerry, A. Horowitz, and G.
39 40	312	Weinberger. 1988. Rotem mammals and Yeroham crassostreids: stratigraphy of the Hazeva
41 42	313	Formation (Israel) and the paleogeography of Miocene Africa. Newsletters on Stratigraphy:73 –
43 44	314	90.
45 46 47	315	Gvirtzman, G., and B. Buchbinder. 1969. Outcrops of Neogene Formation in the Central and Southern
47 48 49	316	Coastal Plain, Hashephela and Beer Sheva'Regions, Israel. Geological Survey of Israel Bulletin
50 51	317	50:1 – 73.
52 53	318	Holroyd, P., F. Lihoreau, G. Gunnell, E. Miller, L. Werdelin, and W. Sanders. 2010. Anthracotheriidae.
54 55	319	Cenozoic Mammals of Africa. University of California Press, Berkeley:843 – 851.
57 58		16
59		Society of Vertebrate Paleontology
00		

2								
3 4	320	Leakey, M., A. Grossman, M. Gutiérrez, and J. G. Fleagle. 2011. Faunal change in the Turkana Basin						
5 6	321	during the late Oligocene and Miocene. Evolutionary Anthropology: Issues, News, and Reviews						
7 8	322	20:238 – 253.						
9 10 11	323	Leidy, J. 1869. The extinct mammalian fauna of Dakota and Nebraska including an account of some allied						
12 13 14 15	324	forms from other localities, together with a synopsis of the mammalian remains of North						
	325	America. Journal of the Academy of Natural Sciences of Philadelphia, series 2 7:1-472.						
16 17	326	Lihoreau, F. 2003. Systématique et paléoécologie des Anthracotheriidae [Artiodactyla; Suiformes] du						
18 19 20	327	mio-pliocène de l'ancien monde: implications paléobiogéographiques. Ph.D. Thesis, Université						
20 21 22	328	de Poitiers, Poitiers, France, 395pp.						
23 24	329	Lihoreau, F., L. Alloing-Séguier, PO. Antoine, JR. Boisserie, L. Marivaux, G. Métais, and JL.						
25 26	330	Welcomme. 2016. Enamel microstructure defines a major Paleogene hippopotamoid clade: the						
27 28 29 30 31 32 33 34 35	331	Merycopotamini (Cetartiodactyla, Hippopotamoidea). Historical Biology:1 – 11.						
	332	Lihoreau, F., and S. Ducrocq. 2007. Family Anthracotheriidae; pp. 89 – 105 in D. R. Prothero, and S. E.						
	333	Foss (eds.), The evolution of artiodactyls. The Johns Hopkins University Press, Baltimore, MD.						
	334	López-Antoñanzas, R., V. Gutkin, R. Rabinovich, R. Calvo, and A. Grossman. 2014. The rodent fauna from						
36 37 38	335	the Early Miocene of the Rotem Basin (Israel): African, Asian, both or neither. Journal of						
30 39 40	336	Vertebrate Paleontology 34 (suppl.),:170.						
41 42	337	López-Antoñanzas, R., V. Gutkin, R. Rabinovich, R. Calvo, and A. Grossman. 2016. A Transitional Gundi						
43 44	338	(Rodentia: Ctenodactylidae) from the Miocene of Israel. PLoS One 11:e0151804.						
45 46	339	Lydekker, R. 1877. Notices of new and rare Mammals from the Siwaliks. Records of the geological Survey						
47 48 49	340	of India 10:76-83.						
50 51	341	Miller, E. R., G. F. Gunnell, M. A. Gawad, M. Hamdan, A. N. El-Barkooky, M. T. Clementz, and S. M.						
52 53	342	Hassan. 2014. Anthracotheres from Wadi Moghra, early Miocene, Egypt. Journal of Paleontology						
54 55	343	88:967 – 981.						
56 57 58		4-7						
59		17						
60		Society of Vertebrate Paleontology						

2							
3 4	344	Montgelard, C., F. M. Catzeflis, and E. Douzery. 1997. Phylogenetic relationships of artiodactyls and					
5 6	345	cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial					
7 8	346	sequences. Molecular Biology and Evolution 14:550-559.					
9 10 11	347	Orliac, M. J., PO. Antoine, AL. Charruault, S. Hervet, F. Prodeo, and F. Duranthon. 2013. Specialization					
12 13	348	for amphibiosis in Brachyodus onoideus (Artiodactyla, Hippopotamoidea) from the Early					
14 15	349	Miocene of France. Swiss Journal of Geosciences 106:265-278.					
16 17	350	Patnaik, R. 2013. Indian Neogene Siwalik mammalian biostratigraphy: an overview. Fossil mammals of					
18 19 20	351	Asia: Neogene Biostratigraphy and Chronology. Columbia University Press, New York:423 – 444.					
20 21 22	352	Pickford, M. 1991. Revision of the Neogene Anthracotheriidae of Africa. The Geology of Libya:1491 –					
23 24	353	1525.					
25 26	354	Pickford, M. 2008. Anthracotheriidae from the Early Miocene deposits of the northern Sperrgebiet,					
27 28 20	355	Namibia. Geology and palaeobiology of the Northern Sperrgebiet, Namibia. Geological Survey of					
29 30 31	356	Namibia, Memoir 20:343-348.					
32 33	357	Rabinovich, R., A. Grossman, H. Ginat, Y. Avni, and R. Calvo. 2014. Newly discovered Miocene					
34 35	358	proboscideans in the southern Levant. Journal of Vertebrate Paleontology 34 (suppl.),:210.					
36 37 38	359	Rowan, J., B. Adrian, and A. Grossman. 2015. The first skull of Sivameryx africanus (Anthracotheriidae,					
39 40	360	Bothriodontinae) from the early Miocene of East Africa. Journal of Vertebrate Paleontology 35:3					
41 42	361	e928305.					
43 44	362	Sanders, W. j., E. Gheerbrant, J. M. Harris, H. Saegusa, and C. Delmer. 2010. Proboscidea; pp. 161–251					
45 46 47	363	in L. Werdelin, and W. J. Sanders (eds.), Cenozoic Mammals of Africa. University of California					
47 48 49	364	Press.					
50 51	365	Sanders, W. J., and E. R. Miller. 2002. New proboscideans from the early Miocene of Wadi Moghara,					
52 53	366	Egypt. Journal of Vertebrate Paleontology 22:388 – 404.					
54 55	367	Savage, R., and E. Tchernov. 1968. Miocene mammals of Israel. Proc Geol Soc London 1648:98 – 101.					
56 57 58		10					
59		Lo cociety of Vortebrate Delegatelory					
60		Society of vertebrate Paleontology					

2		
3 4	368	Savage, R. J., P. C. Dixit, and D. Murty. 1977. On an anthracothere upper molar from Ladakh, Kashmir.
5 6	369	Journal of the Palaeontological Society of India 20:219 – 223.
7 8	370	Sehgal, R., and A. Bhandari. 2014. Miocene mammals from India: present status and future prospects.
9 10	371	Indian Miocene: a geodynamic and chronological framework for palaeobiota, sedimentary
11 12 12	372	environments and palaeoclimates. Palaeontol. Soc. India Spec. Publ 5:199 – 212.
15 14 15	373	Steinitz, G., Y. Bartov, and J. Hunziker. 1978. K-Ar age determinations of some Miocene–Pliocene basalts
16 17	374	in Israel: their significance to the tectonics of the Rift Valley. Geological Magazine 115:329 – 340.
18 19	375	Tchernov, E., L. Ginsburg, P. Tassy, and N. Goldsmith. 1987. Miocene mammals of the Negev (Israel).
20 21	376	Journal of Vertebrate Paleontology 7:284 – 310.
22 23	377	Thomas, H., R. Jack, S. Sen, M. Pickford, E. Gheerbrant, Z. Al-Sulaimani, and S. Al-Busaidi, 1999.
24 25	279	Oligocone and Miocone terrestrial vertebrates in the Southern Arabian peninsula (Sultanate of
26 27	370	Orgotene and milliotene terrestrial vertebrates in the Southern Arabian permisula (Suitanate of
28 29	379	Oman) and their geodynamic and paleogeographic settings; pp. 430-442 in P. J. Whybrow, and
30 31 22	380	A. Hill (eds.), Fossil vertebrates of Arabia. Yale University Press, New Haven, CT.
32 33 34	381	Zilberman, E., and R. Calvo. 2013. Remnants of Miocene fluvial sediments in the Negev Desert, Israel,
35 36	382	and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern
37 38	383	margins of the Arabian plate. Journal of African Earth Sciences 82:33 – 53.
39 40		
41 42	384	
43 44	385	Submitted July 14, 2018; accepted Month DD, YYYY
45 46		
47 48	386	
49 50	387	
51 52		
53 54	388	
55 56		
57 58		19
59 60		Society of Vertebrate Paleontology
- •		

1		
2		
3 ⊿	389	
5		
6	200	
7	390	
8		
9 10	391	FIGURE CAPTIONS
10		
12		
13	392	FIGURE 1. Location map of the Kamus Junction (KJ) locality in the Yamin Plain, northern Negev,
14		
15	393	Israel.
16		
17 18	204	A Constal location of northern Negau Jarool
19	394	A. General location of northern Negev, Israel.
20		
21	395	B. Hazeva Formation outcrops in the northern Negey. Kamus Junction area is marked by a
22		
23 24	396	blue star.
24 25	000	
26		
27	397	C. The Hazeva Formation fills the Yamin Plain with all of its members. In the Kamus
28		
29	398	Junction area the upper parts of Zefa Member are overlain by clastic units of the Rotem
30		
31 32	399	Member, Small unconformity separates the lower and upper parts of the Rotem
33		
34	400	Member, Green dot marks the location of the upper level of KI site where HUII KI 31
35	100	
36	401	was found
37	401	
38 20		
40	402	D. Topographic elevation of KJ site where HUJI KJ 31 was found (Green dot).
41		
42		
43	403	E. Columnar stratigraphic section in the Kamus Junction locality.
44		
45 46	101	[Intended for Full page width]
47	404	
48		
49	405	
50		
51		
52 53	406	FIGURE 2. SEM and schematic drawing of HUJI KJ 31—M2 of <i>Sivameryx palaeindicus</i> in occlusal
55 54		
55	407	view. Arrow on schematic indicates the paraconule.
56		
57		
58		20
59 60		Society of Vertebrate Paleontology
50		

Page 21 of 28		Journal of Vertebrate Paleontology: For Review Only					
1 2 3 408		[Intended for 2/3 page width]					
5 6 7	409						
8 9 10 11	410	FIGURE 3. Scatter plot of upper molars of <i>Sivameryx</i> spp.					
12 13 14	411	KEY: Triangles = M1, Squares = M2, Trapezoid = M3, Cross = HUJI KJ 31					
15 16 17	412	Grey fill = S. moneyi, Dark fill = S. africanus, White fill = S. palaeindicus					
18 19 20 21	413	Measurements listed in Table 1					
21 22 23 24	414	[Intended for 2/3 page width]					
25 26 27	415						
28 29 30	416						
31 32 33							
34 35 36 37							
38 39 40							
41 42 43							
44 45 46							
47 48 49							
50 51 52 53							
54 55 56							
57 58 59							
60		Society of Vertebrate Paleontology					

TABLE 1. Measurements of Sivameryx spp. Upper molars

Specimen No.	MD	BL	Tooth position	Reference	Site
KJ 31	19.8	21.8	M2	This paper	Kamus Junction
		Sivam	eryx moneyi		
CUWM 64AB	19.92	18.27	M1	Miller et al. 2014	Wadi Moghara
CUWM 64AB	23.08	21.18	M2	Miller et al. 2014	Wadi Moghara
CUWM 64AB	23.44	22.46	M3	Miller et al. 2014	Wadi Moghara
CUWM 70	17.5	17.5	M1	Miller et al. 2014	Wadi Moghara
CUWM 70	22.11	21.55	M2	Miller et al. 2014	Wadi Moghara
DPC 4066	21.47	22.34	M2	Miller et al. 2014	Wadi Moghara
DPC 4066	24.04	24.86	M3	Miller et al. 2014	Wadi Moghara
DPC 5979	20.71	20.89	M2	Miller et al. 2014	Wadi Moghara
DPC 6243	15.5	16.35	M1	Miller et al. 2014	Wadi Moghara
DPC 6243	23.12	20.81	M2	Miller et al. 2014	Wadi Moghara
DPC 6289	21.1	21.32	M3	Miller et al. 2014	Wadi Moghara
DPC 7659	25.35	22.89	M3	Miller et al. 2014	Wadi Moghara

1 2						
2 3 4 5	TABLE 1. (Contin	ued)				
6 7 8	DPC 17685	20.69	20.08	M2	Miller et al. 2014	Wadi Moghara
9 10 11	DPC 17685	22.23	22.12	M3	Miller et al. 2014	Wadi Moghara
12 13 14	DPC 21506	27.49	30.03	M3	Miller et al. 2014	Wadi Moghara
15 16 17			Sivameryx afı	ricanus		
18 19 20 21	WK 18129	12.4	14.7	M1	Rowan et al. 2015	Kalodirr
22 23 24	WK 18129	11.6	15.5	M1	Rowan et al. 2015	Kalodirr
25 26 27	WK 18129	13.6	18.3	M2	Rowan et al. 2015	Kalodirr
28 29 30	WK 18129	14.6	18.7	M2	Rowan et al. 2015	Kalodirr
31 32 33 34	WK 18129	19.9	20.3	M3	Rowan et al. 2015	Kalodirr
35 36 37	WK 18129	16.6	18.9	M3	Rowan et al. 2015	Kalodirr
38 39 40	WK 17109	10.9	11.9	M1	Holroyd et al.	Kalodirr
41 42 43					2010	
44 45 46	S. africanus	22.9	20.8	M2	Lihoreau et al.	Gebel Zelten, or
47 48 40					2016	Rusinga or
49 50 51						Karungu
52 53 54 55 56 57		S	ivameryx pala	eindicus		
58 59 60			Society	of Vertebrate	Paleontology	

Ladakh Molar	24	26	M2	Savage et al. 1977	Ladakh
B82	22	25	?M3	Savage et al. 1977	Laki Hills
B82	20.5	22.5	?M2	Savage et al. 1977	Laki Hills
TABLE 1. (Contin	ued)				
M12738	24	25	M3	Savage et al. 1977	Dera Bugti
B482	19	20	?M1	Savage et al. 1977	Bugti Hills
B482a	21	22.5	?M2	Savage et al. 1977	Bugti Hills
Y238	19	18	M1	Lihoreau 2003	Potwar Y27926
		So	ciety of Vertebra	ate Paleontology	

60

FIGURE 1. Location map of the Kamus Junction (KJ) locality in the Yamin Plain, northern Negev, Israel. A. Genreal location of northern Negev, Israel.

B. Hazeva Formation outcrops in the northern Negev. Kamus Junction area is marked by a blue star.
 C. The Hazeva Formation fills the Yamin Plain with all of its members. In the Kamus Junction area the upper parts of Zefa Member are overlain by clastic units of the Rotem Member. Small unconformity separates the lower and upper parts of the Rotem Member. Green dot marks the location of the upper level of KJ site where HUJI KJ 31 was found.

D. Topographic elevation of KJ site where HUJI KJ 31 was found (Green dot).
 E. Columnar stratigraphic section in the Kamus Junction locality.

103x58mm (300 x 300 DPI)

FIGURE 1. Location map of the Kamus Junction (KJ) locality in the Yamin Plain, northern Negev, Israel. A. Genreal location of northern Negev, Israel.

B. Hazeva Formation outcrops in the northern Negev. Kamus Junction area is marked by a blue star.
 C. The Hazeva Formation fills the Yamin Plain with all of its members. In the Kamus Junction area the upper parts of Zefa Member are overlain by clastic units of the Rotem Member. Small unconformity separates the lower and upper parts of the Rotem Member. Green dot marks the location of the upper level of KJ site where HUJI KJ 31 was found.

D. Topographic elevation of KJ site where HUJI KJ 31 was found (Green dot).
 E. Columnar stratigraphic section in the Kamus Junction locality.

103x58mm (300 x 300 DPI)

90x90mm (300 x 300 DPI)

Society of Vertebrate Paleontology