A. Albi, A. Meola, F. Zhang, P. Kahali, L. Rigolo et al., Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects, Journal of Neuroimaging, vol.28, issue.2, pp.173-182, 2018.

A. L. Alexander, J. S. Tsuruda, and D. L. Parker, Elimination of eddy current artifacts in diffusion-weighted echo-planar images: The use of bipolar gradients, Magnetic Resonance in Medicine, vol.38, issue.6, pp.1016-1021, 1997.

J. L. Andersson, M. S. Graham, I. Drobnjak, H. Zhang, N. Filippini et al., Towards a comprehensive framework for movement and distortion correction of diffusion MR images: Within volume movement, NeuroImage, vol.152, pp.450-466, 2017.

J. L. Andersson, M. S. Graham, E. Zsoldos, and S. N. Sotiropoulos, Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images, NeuroImage, vol.141, pp.556-572, 2016.

J. L. Andersson, M. Jenkinson, and S. Smith, Non-linear registration aka Spatial normalisation FMRIB, Neuroimage, vol.45, pp.173-186, 2009.

J. L. Andersson, S. Skare, and J. Ashburner, How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging, NeuroImage, vol.20, issue.2, pp.870-888, 2003.

J. L. Andersson and S. N. Sotiropoulos, An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging, NeuroImage, vol.125, pp.1063-1078, 2016.

A. Auría, A. Daducci, J. Thiran, and Y. Wiaux, Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI, NeuroImage, vol.115, pp.245-255, 2015.

P. J. Basser and S. Pajevic, Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise, Magn. Reson. Med, vol.44, pp.41-50, 2000.

M. Bastiani, J. L. Andersson, L. Cordero-grande, M. Murgasova, J. Hutter et al., Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project, NeuroImage, vol.185, pp.750-763, 2019.

M. Bastiani, M. Cottaar, K. Dikranian, A. Ghosh, H. Zhang et al., Improved tractography using asymmetric fibre orientation distributions, NeuroImage, vol.158, pp.205-218, 2017.

G. L. Baum, D. R. Roalf, P. A. Cook, R. Ciric, A. F. Rosen et al., The impact of in-scanner head motion on structural connectivity derived from diffusion MRI, NeuroImage, vol.173, pp.275-286, 2018.

S. Ben-amitay, D. K. Jones, and Y. Assaf, Motion correction and registration of high b-value diffusion weighted images, Magnetic Resonance in Medicine, vol.67, issue.6, pp.1694-1702, 2011.

C. Bhushan, J. P. Haldar, S. Choi, A. A. Joshi, D. W. Shattuck et al., Co-registration and distortion correction of diffusion and anatomical images based on inverse contrast normalization, NeuroImage, vol.115, pp.269-280, 2015.

N. Bodammer, J. Kaufmann, M. Kanowski, and C. Tempelmann, Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity, Magnetic Resonance in Medicine, vol.51, issue.1, pp.188-193, 2003.

V. D. Calhoun, T. D. Wager, A. Krishnan, K. S. Rosch, K. E. Seymour et al., The impact of T1 versus EPI spatial normalization templates for fMRI data analyses, Human Brain Mapping, vol.38, issue.11, pp.5331-5342, 2017.

E. Caruyer, C. Lenglet, G. Sapiro, and R. Deriche, Design of multishell sampling schemes with uniform coverage in diffusion MRI, Magnetic Resonance in Medicine, vol.69, issue.6, pp.1534-1540, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00821688

M. Catani and M. Thiebautdeschotten, A diffusion tensor imaging tractography atlas for virtual in vivo dissections, Cortex, vol.44, issue.8, pp.1105-1132, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00322865

L. Chang, D. K. Jones, and C. Pierpaoli, RESTORE: Robust estimation of tensors by outlier rejection, Magnetic Resonance in Medicine, vol.53, issue.5, pp.1088-1095, 2005.

D. Christiaens, M. Reisert, T. Dhollander, S. Sunaert, P. Suetens et al., Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model, NeuroImage, vol.123, pp.89-101, 2015.

R. Cusack, M. Brett, and K. Osswald, An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images, NeuroImage, vol.18, issue.1, pp.127-142, 2003.

A. Daducci, A. Dal-palu, A. Lemkaddem, and J. Thiran, COMMIT: Convex Optimization Modeling for Microstructure Informed Tractography, IEEE Transactions on Medical Imaging, vol.34, issue.1, pp.246-257, 2015.

K. V. Embleton, H. A. Haroon, D. M. Morris, M. A. Ralph, and G. J. Parker, Distortion correction for diffusion-weighted MRI tractography and fMRI in the temporal lobes, Human Brain Mapping, vol.31, issue.10, pp.1570-1587, 2010.

M. Farzinfar, I. Oguz, R. G. Smith, A. R. Verde, C. Dietrich et al., Diffusion imaging quality control via entropy of principal direction distribution, NeuroImage, vol.82, pp.1-12, 2013.

P. Fillard, M. Descoteaux, A. Goh, S. Gouttard, B. Jeurissen et al., Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom, NeuroImage, vol.56, issue.1, pp.220-234, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00559191

C. Fischer, G. Operto, S. Laguitton, M. Perrot, I. Denghien et al., Morphologist 2012: the new morphological pipeline of BrainVISA, Proceedings of the HBM, 2012.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van-der-walt et al., Dipy, a library for the analysis of diffusion MRI data, Frontiers in Neuroinformatics, vol.8, p.8, 2014.

D. Geffroy, D. Rivière, I. Denghien, N. Souedet, S. Laguitton et al., BrainVISA?: a complete software platform for neuroimaging, Proceedings of the Python in Neuroscience Workshop, 2011.

A. Ghosh and R. Deriche, A survey of current trends in diffusion MRI for structural brain connectivity, Journal of Neural Engineering, vol.13, issue.1, p.011001, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01293828

G. Girard, A. Daducci, L. Petit, J. Thiran, K. Whittingstall et al., AxTract: Toward microstructure informed tractography, Human Brain Mapping, vol.38, issue.11, pp.5485-5500, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01564041

G. Girard, K. Whittingstall, R. Deriche, and M. Descoteaux, Towards quantitative connectivity analysis: reducing tractography biases, NeuroImage, vol.98, pp.266-278, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991846

M. F. Glasser, S. M. Smith, D. S. Marcus, J. L. Andersson, E. J. Auerbach et al., The Human Connectome Project's neuroimaging approach, Nature Neuroscience, vol.19, issue.9, pp.1175-1187, 2016.

M. S. Graham, I. Drobnjak, and H. Zhang, Realistic simulation of artefacts in diffusion MRI for validating post-processing correction techniques, NeuroImage, vol.125, pp.1079-1094, 2016.

P. Hagmann, L. Cammoun, X. Gigandet, S. Gerhardb, P. Grant et al., MR connectomics: principles and challenges, J. Neurosci. Methods, vol.194, pp.34-45, 2010.

J. C. Haselgrove and J. R. Moore, Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient, Magnetic Resonance in Medicine, vol.36, issue.6, pp.960-964, 1996.

E. B. Hutchinson, A. V. Avram, M. O. Irfanoglu, C. G. Koay, A. S. Barnett et al., Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models, Magnetic Resonance in Medicine, vol.78, issue.5, pp.1767-1780, 2017.

M. O. Irfanoglu, L. Walker, J. Sarlls, S. Marenco, and C. Pierpaoli, Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results, NeuroImage, vol.61, issue.1, pp.275-288, 2012.

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol.62, issue.2, pp.782-790, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01149484

P. Jezzard and R. S. Balaban, Correction for geometric distortion in echo planar images from B0 field variations, Magnetic Resonance in Medicine, vol.34, issue.1, pp.65-73, 1995.

P. Jezzard, A. S. Barnett, and C. Pierpaoli, Characterization of and correction for eddy current artifacts in echo planar diffusion imaging, Magnetic Resonance in Medicine, vol.39, issue.5, pp.801-812, 1998.

D. K. Jones and M. Cercignani, Twenty-five pitfalls in the analysis of diffusion MRI data, NMR in Biomedicine, vol.23, issue.7, pp.803-820, 2010.

D. Kim, H. Park, K. Kang, Y. Shin, J. Kim et al., How does distortion correction correlate with anisotropic indices? A diffusion tensor imaging study, Magnetic Resonance Imaging, vol.24, issue.10, pp.1369-1376, 2006.

J. Kybic, P. Thevenaz, A. Nirkko, and M. Unser, Unwarping of unidirectionally distorted EPI images, IEEE Transactions on Medical Imaging, vol.19, issue.2, pp.80-93, 2000.

M. Lazar and A. L. Alexander, Bootstrap white matter tractography (BOOT-TRAC), NeuroImage, vol.24, issue.2, pp.524-532, 2005.

L. Bihan, D. Poupon, C. Amadon, A. Lethimonnier, and F. , Artifacts and pitfalls in diffusion MRI, J. Magn. Reson. Imaging, vol.24, pp.478-488, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00349658

A. Leemans and D. K. Jones, TheB-matrix must be rotated when correcting for subject motion in DTI data, Magnetic Resonance in Medicine, vol.61, issue.6, pp.1336-1349, 2009.

A. P. Mahmoudzadeh and N. H. Kashou, Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration, International Journal of Biomedical Imaging, vol.2013, pp.1-19, 2013.

J. Mangin, P. Fillard, Y. Cointepas, D. Le-bihan, V. Frouin et al., Toward global tractography, NeuroImage, vol.80, pp.290-296, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00856326

J. V. Manjón, P. Coupé, L. Concha, A. Buades, D. L. Collins et al., Diffusion Weighted Image Denoising Using Overcomplete Local PCA, PLoS ONE, vol.8, issue.9, p.e73021, 2013.

D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellyn, and W. Eubank, <title>Nonrigid multimodality image registration</title>, Medical Imaging 2001: Image Processing, vol.4322, pp.1609-1620, 2001.

D. Merhof, G. Soza, A. Stadlbauer, G. Greiner, and C. Nimsky, Correction of susceptibility artifacts in diffusion tensor data using non-linear registration, Medical Image Analysis, vol.11, issue.6, pp.588-603, 2007.

M. Modat, G. R. Ridgway, Z. A. Taylor, M. Lehmann, J. Barnes et al., Fast free-form deformation using graphics processing units, Computer Methods and Programs in Biomedicine, vol.98, issue.3, pp.278-284, 2010.

S. Mori, S. Wakana, L. M. Nagae-poetscher, and P. C. Van-zijl, Methods, MRI Atlas of Human White Matter, pp.7-13, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00794406

P. F. Neher, M. Descoteaux, J. Houde, B. Stieltjes, and K. H. Maier-hein, Strengths and weaknesses of state of the art fiber tractography pipelines ? A comprehensive in-vivo and phantom evaluation study using Tractometer, Medical Image Analysis, vol.26, issue.1, pp.287-305, 2015.

M. Nilsson, E. Englund, F. Szczepankiewicz, D. Van-westen, and P. C. Sundgren, Imaging brain tumour microstructure, NeuroImage, vol.182, pp.232-250, 2018.

M. Nilsson, F. Szczepankiewicz, D. Van-westen, and O. Hansson, Extrapolation-Based References Improve Motion and Eddy-Current Correction of High B-Value DWI Data: Application in Parkinson?s Disease Dementia, PLOS ONE, vol.10, issue.11, p.e0141825, 2015.

L. Ning, F. Laun, Y. Gur, E. Dibella, S. Deslauriers-gauthier et al., Sparse Reconstruction Challenge for diffusion MRI: Validation on a physical phantom to determine which acquisition scheme and analysis method to use? Med, Image Anal, vol.26, pp.316-331, 2015.

I. Oguz, M. Farzinfar, J. Matsui, F. Budin, Z. Liu et al., DTIPrep: quality control of diffusion-weighted images, Frontiers in Neuroinformatics, vol.8, p.4, 2014.

N. G. Papadakis, K. M. Martin, I. D. Wilkinson, C. L. Huang, and .. , A measure of curve fitting error for noise filtering diffusion tensor MRI data, J. Magn. Reson, vol.164, pp.1-9, 2003.

P. J. Reber, E. C. Wong, R. B. Buxton, and L. R. Frank, Correction of off resonance-related distortion in echo-planar imaging using EPI-based field maps, Magnetic Resonance in Medicine, vol.39, issue.2, pp.328-330, 1998.

M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell et al., Global fiber reconstruction becomes practical, Neuroimage, vol.54, pp.955-962, 2011.

D. Rivière, D. Geffroy, I. Denghien, N. Souedet, and Y. Cointepas, BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools, NeuroImage, vol.47, p.S163, 2009.

D. R. Roalf, M. Quarmley, M. A. Elliott, T. D. Satterthwaite, S. N. Vandekar et al., The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort, Neuroimage, vol.125, pp.903-919, 2016.

G. K. Rohde, A. S. Barnett, P. J. Basser, S. Marenco, and C. Pierpaoli, Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI, Magnetic Resonance in Medicine, vol.51, issue.1, pp.103-114, 2003.

F. Schmitt, M. K. Stehling, and R. Turner, Echo-Planar Imaging, 1998.

Y. Shen, D. J. Larkman, S. Counsell, I. M. Pu, D. Edwards et al., Correction of high-order eddy current induced geometric distortion in diffusion-weighted echo-planar images, Magnetic Resonance in Medicine, vol.52, issue.5, pp.1184-1189, 2004.

S. M. Smith, M. Jenkinson, M. W. Woolrich, C. F. Beckmann, T. E. Behrens et al., Advances in functional and structural MR image analysis and implementation as FSL, Neuroimage, vol.23, pp.208-219, 2004.

S. N. Sotiropoulos, S. Jbabdi, J. Xu, J. Andersson, S. Moeller et al., Advances in diffusion MRI acquisition and processing in the Human Connectome Project, Neuroimage, vol.80, pp.125-143, 2013.

R. Tao, P. T. Fletcher, S. Gerber, and R. T. Whitaker, A Variational Image-Based Approach to the Correction of Susceptibility Artifacts in the Alignment of Diffusion Weighted and Structural MRI, Lecture Notes in Computer Science, vol.5636, pp.664-675, 2009.

P. A. Taylor, A. Alhamud, A. Van-der-kouwe, M. G. Saleh, B. Laughton et al., Assessing the performance of different DTI motion correction strategies in the presence of EPI distortion correction, Hum. Brain Mapp, vol.37, pp.4405-4424, 2016.

J. M. Treiber, N. S. White, T. C. Steed, H. Bartsch, D. Holland et al., Characterization and correction of geometric distortions in 814, 2016.

J. M. Treiber, N. S. White, T. C. Steed, H. Bartsch, D. Holland et al., Characterization and Correction of Geometric Distortions in 814 Diffusion Weighted Images, PLOS ONE, vol.11, issue.3, p.e0152472, 2016.

D. C. Van-essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub et al., The WU-Minn Human Connectome Project: An overview, NeuroImage, vol.80, pp.62-79, 2013.

S. Wang, D. J. Peterson, J. C. Gatenby, W. Li, T. J. Grabowski et al., Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI, Frontiers in Neuroinformatics, vol.11, p.17, 2017.

M. Wu, L. C. Chang, and L. Walker, Comparison of EPI distortion correction methods in diffusion tensor MRI using a novel framework, Med. Image Comput. Comput. Assist. Interv, vol.11, pp.321-329, 2008.

H. Yamada, O. Abe, T. Shizukuishi, J. Kikuta, T. Shinozaki et al., Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL Eddy and Eddy_Correct Using 30 and 60 Directions Diffusion Encoding, PLoS ONE, vol.9, issue.11, p.e112411, 2014.

A. Yendiki, K. Koldewyn, S. Kakunoori, N. Kanwisher, and B. Fischl, Spurious group differences due to head motion in a diffusion MRI study, NeuroImage, vol.88, pp.79-90, 2014.