C. Kharif, E. Pelinovsky, and A. Slunayev, advances in geophysical and environmental mechanics and mathematics, p.255, 2008.

R. J. Rapp and W. K. Melville, laboratory measurements of deep-water breaking waves, Philos. Trans. R. Soc. Lond. A, vol.331, pp.735-800, 1990.

C. Lin and D. Rockwell, Evolution of a quasi-steady breaking waves, J. Fluid Mech, vol.302, pp.29-44, 1995.

T. Baldock, T. E. Swan, and P. H. Taylor, A laboratory study of non-linear surface waves on water, Philos. Trans. R. Soc. Lond. A, vol.354, pp.1-285, 1996.

M. Perlin, J. He, and L. P. Bernal, An experimental study of deep water plunging breakers, phys. Fluids, vol.8, issue.9, pp.2365-2374, 1996.

H. M. Nepf, C. H. Wu, and E. S. Chan, A comparison of two and three dimensional wave breaking, J. Phys. Oceanogr, vol.28, pp.1496-1510, 1998.

T. B. Johannessen and C. Swan, A laboratory study of the focusing of transient and directionally spread surface water waves, Proceedings of the Royal Society A, vol.457, pp.971-1006, 2001.

D. A. Drazen, W. K. Melville, and L. Lenain, Inertial scaling of dissipation in unsteady breaking waves, J. Fluid Mech, vol.611, pp.307-332, 2008.

Z. Tian, M. Perlin, and W. Choi, Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model, J. Fluid Mech, pp.217-275, 2010.

D. Liu, Y. Ma, G. Dong, and M. Perlin, Detuning and wave breaking during nonlinear surface wave focusing, vol.113, pp.215-223, 2016.

Z. Tian, M. Perlin, and W. Choi, Frequency spectra evolution of two-dimensional focusing wave groups in finite water depth water, J. Fluid Mech, vol.688, pp.169-194, 2011.

E. Meza, J. Zhang, and R. J. Seymour, Free-wave energy dissipation in experimental breaking waves, J.Phys. Oceanogr, vol.30, pp.2404-2418, 2000.

T. B. Benjamin and J. E. Feir, Disintegration of wave trains on deep water, Part1, Theory, J. Fluid Mech, vol.27, pp.417-430, 1967.

M. P. Tulin and T. Waseda, Laboratory observations of wave group evolution, including breaking effects, J. Fluid Mech, vol.378, pp.197-232, 1999.

M. L. Banner and W. L. Peirson, Wave breaking onset and strength for two-dimensional deep-water wave groups, J. Fluid Mech, vol.585, pp.93-115, 2007.

M. S. Longuet-higgins, Breaking waves in deep or shallow water, Proc. 10 th Conf. on Naval hydrodynamics, MIT, pp.597-605, 1974.

D. Drazen, Laboratory studies of nonlinear and breaking surface waves, p.202, 2006.

W. K. Melville, Energy-dissipation by breaking waves, J. Phys. Oceanogr, vol.24, pp.2041-2049, 1994.

S. Liang, Y. Zhang, Z. Sun, and Y. Chang, Laboratory study on the evolution of waves parameters due to wave breaking in deep water, Wave Motion, vol.68, pp.31-42, 2017.

F. Günther, C. , and B. , Gaussian wave packets -a new approach to seakeeping tests of ocean structures, Applied Ocean Research, vol.8, issue.4, pp.190-206, 1986.

A. Duràn, D. Dutykh, and D. Mitsotakis, Peregrine's System Revisited

, Nonlinear Waves and Pattern Dynamics, pp.3-43, 2018.

D. Dutykh and C. Dider, Modified shallow water equations for significantly varying seabeds, Applied mathematical modelling, issue.40, pp.9767-9787, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00675209

P. S. Tromans, A. R. Anaturk, and P. Hagemeijer, A new model for the kinematics of large ocean waves-application as a design wave, Proceedings of the first international offshore and polar engineering conference, the international society of offshore and polar engineers, pp.64-71, 1991.

J. Pierson, L. Willard, and . Moskowitz, Proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii, journal of geophysical research, vol.69, pp.5181-5190

K. Hasselmann, T. Barnett, E. Bouws, H. Carlson, D. Cartwright et al.,

D. Gienapp, P. Hasselmann, A. Krusemann, A. Meerburg, P. Muller et al.,

H. Sell and . Walden, Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Deutsches Hydrographisches Institut, vol.12, 1973.

A. C. Hunt-raby, A. G. Borthwick, P. K. Stansby, and P. H. Taylor, Experimental measurement of focused wave group and solitary wave overtopping, J. Hydraul. Res, vol.49, pp.450-464, 2011.

C. N. Whittaker, C. J. Fitzgerald, A. C. Raby, P. H. Taylor, J. Orszaghova et al.,

. Borthwick, Optimisation of focused wave group runup on a plane beach, Coast. Eng, vol.121, pp.44-55, 2017.

C. T. Stansberg, Effects from directionality and spectral bandwidth on nonlinear spatial modulations of deep-water surface gravity wave trains, Coastal Engineering, Proceedings of the XXIV international conference, pp.579-593, 1994.

J. H. Kway, E. Yloh, and . Chan, Laboratory study of deep-water breaking waves, Ocean Eng, vol.25, issue.8, pp.657-676, 1998.

A. Yao and C. H. Wu, Energy dissipation of unsteady wave breaking on currents, J. Phys. Oceanogr, vol.34, pp.2288-2304, 2004.

S. Liang, S. Zhaochena, Z. Yihui, S. Jiafa, and Y. Zhang, Laboratory study on the characteristics of Deep-water Breaking Waves, Procedia Engineering, vol.116, pp.414-421, 2015.

M. S. Longuet-higgins, A nonlinear mechanism for the generation of sea waves, Proc. Roy. Soc. London, pp.371-389, 1969.

K. Hasselmann, On the mass and momentum transfer between short gravity waves and larger-scale motions, Journal. Fluid Mech, vol.50, pp.189-205, 1971.

W. K. Melville, The role of surface-wave breaking in air-sea interaction, Annu. Rev. Fluid. Mech, vol.28, pp.279-321, 1996.

D. Dutykh, T. Katsaounis, and D. , Mitsotakis, Finite volume schemes for dispersive wave propagation and runup, J. Comput. Phys, vol.230, issue.8, pp.3035-3061, 2011.

D. H. Peregrine, Long waves on a beach, J. Fluid Mech, vol.27, pp.815-827, 1967.

G. Bellotti and M. Brocchini, On the shoreline boundary conditions for Boussinesq-type models, Int. J. Numer. Methods Fluids, vol.37, issue.4, pp.479-500, 2001.

J. Orszaghova, P. H. Taylor, A. G. Borthwick, and A. C. Raby, Importance of secondorder wave generation for focused wave group runup and overtopping, Coast. Eng, vol.94, pp.63-79, 2014.

, WG1 and WG2 are the two used wave gauges. 2. Fig. 2. The experimental dimensionless frequency spectrum for Pierson-Moskowitz, JONSWAP (?=3.3) and JONSWAP (?=7) spectrum. The reference spectrum calculated at x = 4 m is plotted as a dotted line

, The partitioning performed on the spectrum frequency relative to a Pierson-Moskowitz wave train (P-MW4) computed at x = 4 m. (b) The spectrogram relative to P-MW4. Concerning the spectrogram, the horizontal coordinate is the normalized frequency and the vertical coordinate is the abscissa (m) along the flume, The colorbar indicates the dimensionless wave frequency spectrum from x = 4 m to x = 14 m

, Spectrograms obtained by wave gauges through FFT

, The experimentally measured spatial peak frequency evolution of (a) Pierson-Moskowitz wave trains with crest at focusing, (b) Pierson-Moskowitz wave trains with trough at focusing, (c) JONSWAP (? =3.3) wave trains and (d), JONSWAP

, The spatial evolution of the dimensionless energy relative to Pierson-Moskowitz wave trains: squares correspond to the total energy E0, triangles represent the energy in the peak region E1, circles exhibits the energy in the transfer region E2, plus sign (+) illustrates the energy in high frequency region E3

, The spatial evolution of the dimensionless energy relative to JONSWAP (?=3.3) wave trains: squares correspond to the total energy E0, triangles represent the energy in the peak region E1, circles exhibits the energy in the transfer region E2, plus sign (+) illustrates the energy in high frequency region E3

, The spatial evolution of the dimensionless energy relative to JONSWAP (?=7) wave trains: squares correspond to the total energy E0, triangles represent the energy in the peak region E1, circles exhibits the energy in the transfer region E2, plus sign (+) illustrates the energy in high frequency region E3

, The spatial evolution of the dimensionless energy in E4 for Pierson-Moskowitz and JONSWAP wave trains

. Fig, The experimental (black) and the numerical (red) dimensionless frequency spectrum for Pierson-Moskowitz, JONSWAP (?=3.3) and JONSWAP (?=7) spectrum. For the three wave trains, the wave breaking occurs between x = 12.07 m and x = 12, vol.81

, The numerically predicted spatial peak frequency evolution of (a) Pierson-Moskowitz wave trains with crest at focusing, (b) JONSWAP (? =3.3) wave trains

, JONSWAP (? =7

. Fig, Comparison of spectrograms obtained by wave gauges and those predicted by the mPeregrine code for JONSWAP wave trains (?=3.3 and ?=7). The figures on the left, vol.12

. Fig, Comparison of spectrograms obtained by wave gauges and those predicted by the mPeregrine code for Pierson-Moskowitz wave trains, vol.13