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Abstract  40 
 41 

In oocyte to embryo transition, the fertilized oocyte undergoes final maturation 42 

and the embryo genome is gradually activated during the first three cell 43 

divisions. How this transition is coordinated and which factors drive the 44 

processes in humans is largely unknown. Here we studied the role of the double 45 

homeodomain transcription factor DUX4 in regulating the human oocyte to 46 

embryo transition. DUX4 knockdown zygotes show delayed transcriptome 47 

reprogramming during the first three days after fertilization. Our combined 48 

experimental approaches allowed integrated analysis on the transcriptome, 49 

chromatin, and proteome data in human embryos or a DUX4 expressing human 50 

embryonic stem cell model. We conclude that DUX4 is a pioneering factor that 51 

regulates human oocyte to embryo transition through regulating oocyte mRNA 52 

degradation, as well as direct binding and activation of minor genome activation 53 

genes, and genomic repeat elements.  54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

  62 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/732289doi: bioRxiv preprint first posted online Aug. 12, 2019; 

http://dx.doi.org/10.1101/732289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Mammalian pre-implantation development involves a series of coordinated processes, 63 

starting with oocyte to embryo transition (OET). OET is a major developmental 64 

reprogramming event from the oocyte to a totipotent embryo, involving fundamental 65 

changes in the epigenetic landscapes, degradation of maternal mRNAs, and 66 

embryonic genome activation (EGA)1. In humans, the major EGA takes place by the 67 

8-cell stage2-4. Minor EGA genes are upregulated in the human 4-cell embryos where 68 

they subsequently induce genes upregulated at the major EGA3. Until now, most 69 

studies focusing on human EGA have concentrated on the genes that are expressed in 70 

the cleavage stage (2-cell, 4-cell, and 8-cell) embryos3,5 and set the stage for the 71 

forthcoming lineage commitment6,7. How OET and EGA are orchestrated in the 72 

human embryos and which genes act as pioneers remain poorly understood.  73 

 74 

The conserved double homeodomain transcription factor DUX4 is expressed in early 75 

human embryos8-10. It represents a plausible candidate to regulate the OET in humans, 76 

given its capacity to activate EGA-related genes and the genomic repeat elements8,9. 77 

In this work we have used a combination of methods to investigate DUX4 in the 78 

course of early human development. Our data highlight DUX4 mRNA upregulation 79 

already in the zygotes followed by down-regulation within the next cell division. 80 

Abundant cytoplasmic and nuclear DUX4 protein was apparent only during the first 81 

two days of development. Our in-depth characterisation of DUX4 in the human 82 

embryos suggested that it is not required for survival of the human embryos during 83 

the first three days of development but that DUX4 regulates OET in the human. 84 

siRNA silencing of DUX4 in zygotes delayed oocyte mRNA degradation. Our 85 

comprehensive analysis of transcriptome and chromatin data in human embryos or 86 

DUX4 expressing cell lines suggested that DUX4 opens up chromatin through direct 87 
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activation of the retroelements and unannotated genomic regions. Our protein 88 

interaction data demonstrated that DUX4 interacts with transcriptional mediators, 89 

chromatin modifiers, and ubiquitinases expressed in the human oocytes and early 90 

embryos. We conclude that DUX4 regulates different aspects of the OET in humans 91 

by affecting mRNA degradation, transcriptional regulation and chromatin structure.  92 

 93 

 94 

 95 

 96 

 97 

 98 

 99 

 100 
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Results  102 

DUX4 is transiently expressed immediately after fertilization  103 

We first measured DUX4 mRNA levels in human MII oocytes (N=20), zygotes 104 

(N=59), and cleavage embryos (2-cell, N=4; 4-cell, N=14; 8-cell, N=15). We found 105 

significant DUX4 upregulation in the zygotes, while few transcripts were found in the 106 

MII oocytes or the cleavage embryos10-13 (Fig. 1a). The expression of the DUX is 107 

evolutionary conserved as shown by stage-specific expression in mouse, bovine, and 108 

non-human primates14. We stained embryos with a monoclonal antibody targeting the 109 

DUX4 protein and detected cytoplasmic DUX4 in the zygotes and all cleavage 110 

embryos although less in 8-cell embryos (Fig. 1b). DUX4 protein was abundantly 111 

present in the nuclei of the 2- and 4-cell embryos whereas nuclei of the 8-cell 112 

embryos were mostly negative (Fig. 1b). In a single early 8-cell stage embryo there 113 

was high variability in the nuclear DUX4 staining, consistent with a snapshot of on-114 

going degradation. We quantified nuclear DUX4 intensities in 3D and normalized 115 

them to the cytoplasmic DUX4 intensities and found variable but increasing nuclear 116 

signal from the zygotes up to the 4-cell embryos, while nuclear DUX4 was low or 117 

absent in the 8-cell embryos (Fig 1c). These results demonstrated that DUX4 118 

transcription takes place immediately after fertilisation and is followed by 119 

cytoplasmic and nuclear localisation of the DUX4 protein during the first two days of 120 

human embryo development.  121 

 122 

DUX4 protein may form a relatively stable structure even when not bound to DNA  123 

Given predominant DUX4 protein presence in the cytoplasm of the embryos as well 124 

as stage-specific nuclear localization, we analysed the structural features of DUX4 125 
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(Fig. 2). Human DUX4 comprises two homeodomains (HD1: residues 19-81; and 126 

HD2: 94-153; UniProt numbering), an intrinsically disordered region (IDR: 154-370) 127 

and a C-terminal domain (residues 371-424; Fig. 2a). A stretch of hydrophobic 128 

residues (308-323) within IDR is conserved in primates and could have a regulatory 129 

role by interacting with other transcription co-regulators or masking the C-terminal 130 

domain from solvent when no interacting partners are present. The C-terminal domain 131 

is predicted to have two structurally ordered and evolutionarily conserved regions: 132 

residues 371-387 and residues 414-423 (Fig. 2a). As a secondary structure the C-133 

terminal domain is predicted to contain three alpha helices and may form a stable fold 134 

similar to that revealed by NMR for the Pax8 paired box domain (PDB: 2K27;15). We 135 

found a nine amino acid transactivation domain (9aaTAD) located at the C-terminal 136 

domain (371-379), also recently reported by Mitsuhashi et al.16. This motif is also 137 

present in the PRD-like homeoprotein LEUTX17 and might be recognized by other 138 

proteins involved in the regulation of transcription, similar to the 9aaTAD motif of 139 

the MLL that interacts with the cAMP-response element binding protein, a 140 

transcriptional co-activator18. 141 

 142 

In the crystal structure of DUX4 (PDB: 6E8C;19) HD1 and HD2 bind DNA in a 143 

symmetric manner (Fig. 2b). Residue R21, located at the N-terminal loop of HD1, 144 

interacts with the residues I121, E135 and Q139 of HD2 and, equivalently, R96 145 

located at the N-terminal arm of the HD2 interacts with the residues I46, E60 and Q64 146 

of HD1 (Fig. 2b, c, d). Moreover, the main-chain carbonyl groups of G19 of HD1 and 147 

G94 of HD2 respectively form a hydrogen bond with the main-chain nitrogen atom of 148 

I121 of HD2 and I46 of HD1. We next asked whether these residues are conserved 149 

within the DUX family of homeoproteins and within primates (Fig. 2e): based on our 150 
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sequence alignment, residues equivalent to G19, R21, I46, E60, Q64, G94, R96, I121, 151 

E135 and Q139 of DUX4 are highly conserved. Interestingly, the residues G19, R21, 152 

I46, E60, Q64, G94, R96, I121, E135 and Q139 of DUX4 (Fig. 2c,d) are not directly 153 

involved in DNA binding, which prompted us to speculate that these residues could 154 

be important for locking HD1 and HD2 together as a unit before DNA binding, a 155 

hypothesis, which we further tested using molecular dynamics (MD) simulations. 156 

  157 

Based on MD simulations and the RMSD among snapshots made every 10 ps (Fig. 158 

2f), the DUX4 HD2-DNA complex appeared the most stable complex (average 159 

RMSD over backbone atoms of 1.73 Å), followed by DUX4-DNA (1.77 Å) and 160 

DUX4 HD1-DNA complex (2.3 Å). The DNA-free DUX4 HD1-HD2 structure (4.0 161 

Å) was the least stabile yet the interactions between HD1 and HD2 were maintained 162 

over the 100 ns simulation. Indeed, ionic interactions between R96 of HD2 and E50 163 

and E60 of HD1 seem to be fundamental for the stability of the double HD structure 164 

of DUX4: the electrostatic interactions/hydrogen bonds between R96 and E60 were 165 

present during 92% of the simulation time. Additional stabilizing interactions between 166 

the two HDs also take place between R21 (HD1) and E135 (HD2), and R22 (HD1) 167 

and E125 (HD2). While these charged interactions hold the two HDs together, the 168 

intermediate linker loop imparts flexibility, which could be vital to accommodate 169 

DNA once DUX4 enters the nucleus and locates its binding motif. Even with bound 170 

DNA, the linker loop fluctuates more relative to HD1 and HD2, as observed from the 171 

RMSF values for the CA atoms of residues of the DUX4-DNA structure (Fig. 2g). 172 

 173 
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DUX4 protein interacts with transcriptional mediators and chromatin modifiers  174 

Abundant nuclear and cytoplasmic DUX4 in the human embryos and the modelled 175 

stable structure of the DUX4 when not bound to DNA suggested that DUX4 might 176 

have functions beyond DNA binding. To study this, we applied a recently published 177 

MAC-tag method to identify DUX4 protein-to-protein interactions20,21. We identified 178 

altogether 158 BioID and 43 AP-MS high-confidence DUX4 interactions, out of 179 

which 19 appeared in both datasets (FDR < 0.05, corresponding to > 0.73 SAINT 180 

Score). Single BioID interactions and AP-MS interactions together with the 181 

interactions that appeared in both data sets, based on the scored frequency of 182 

interaction with DUX4, are shown in Fig 3a. We concentrated on the DUX4 183 

interacting proteins that scored above the median value (Fig 3b). Overrepresentation 184 

Enrichment Analysis (ORA) of protein pathway markers (Reactome, KEGG) showed 185 

significant enrichment (p < 0.05, FDR < 0.01) of markers linked to generic 186 

transcription and ‘RNA Polymerase II Transcription’, ‘Chromatin organization’ and 187 

‘Chromatin modifying enzymes’. Comparing our list of genes to protein complex 188 

databases such as ComplexPortal and Corum using Fisher’s Exact Test yielded 189 

significant overrepresentation of several variants of the SWI/SNF ATP-dependent 190 

chromatin remodelling complex, Core mediator complex, NSL histone 191 

acetyltransferase complex, SRCAP histone exchanging complex and the NuA4 192 

histone acetyltransferase complex (p < 0.05, FDR 0.01) (Fig. 3b).  There were 28 193 

DUX4 interacting proteins classified as RNA binding (GO:0003723) and 19 out of 194 

these were linked to spliceosome and pre-mRNA-splicing. In the protein complex 195 

database Corum, DUX4 interactors were significantly overrepresented in the 196 

Spliceosome, with 10 interactors comprising 7% of the whole complex.  In addition, 197 

we found six DUX4 interacting proteins (ZSCAN4, ZSCAN5C, ZSCAN5D, RFPLA, 198 
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RFPLB, RNF8, PTOV1, and MB3LB) that have not appeared in the analyses of other 199 

transcription factors.  As the protein interaction assay was run in a non-embryonic cell 200 

line (HEK), we next studied which of the identified DUX4 interacting proteins are 201 

expressed by human oocytes or embryos3,11. Importantly, the vast majority of the 202 

genes coding for the DUX4 interacting proteins were expressed in oocytes (maternal 203 

genes), embryos, or both. These results suggested that DUX4 could potentially 204 

regulate maternal and embryonic proteins in the cytoplasm and nucleus during the 205 

OET.  206 

 207 

Knock-down of DUX4 in human zygotes leads to dysregulation of the maternal 208 

transcriptome  209 

We next asked how DUX4 regulates the OET and early human embryo development. 210 

We microinjected either DUX4 targeting siRNA (siDUX4) or control siRNA 211 

(siCTRL) together with GAP-GFP mRNA to triploid human zygotes and followed 212 

their development for 48 h after the microinjections, until the third day of 213 

development (Fig 4a). 18 h after microinjection, GAP-GFP protein was expressed in 214 

all embryos, confirming successful microinjections. Staining for the DUX4 protein 215 

was very faint or absent in the siDUX4 embryos but strongly positive in the siCTRL 216 

embryos 24 h after microinjection, showing that the DUX4 targeting siRNA 217 

efficiently down-regulated DUX4 (Fig 4b). The cells from the embryos were 218 

collected 48 h after microinjections for single-cell-tagged reverse transcription RNA 219 

sequencing (STRT RNA-seq22,23), which detects the transcript far 5’-ends (TFEs). 220 

siDUX4 embryos did not arrest during the experiment by live imaging follow-up, but 221 

their transcriptome was dysregulated in comparison to that of the siCTRL embryos. A 222 
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number of transcripts downregulated in the siCTRL appeared enriched in the siDUX4 223 

embryos (Fig. 4c). In order to study how the siDUX4 enriched transcripts typically 224 

behave during the first three days of development, we next compared siDUX4 and 225 

siCTRL embryos to our published gene expression data set3,10 on human MII oocytes, 226 

zygotes, and cleavage cells. These analyses further confirmed that a large number of 227 

TFEs that remained enriched in the siDUX4 embryos were typically downregulated 228 

between the oocytes and the 4-cell embryos (Fig 4d), the zygotes and the 4-cell 229 

embryos (Fig 4e), and the 4-cell and 8-cell embryos (Fig 4f), indicating delayed 230 

degradation of the maternal transcripts. Gene expression enrichment analysis using 231 

TopAnat24 for the altogether 91 genes enriched in siDUX4 embryos resulted in terms 232 

such as ‘female germ cell’ and ‘oocyte’, in agreement with non-degraded maternal 233 

transcripts. As shown for the siDUX4 enriched gene set, a number of well-known 234 

maternal genes such as GDF9, ZP1, ZP2, ZP3, KHDC3L, WEE2, NPM3, TUBB8, and 235 

RERE failed to downregulate (Fig. 4g), demonstrating that the OET remained 236 

incomplete after DUX4 abolishment in human zygotes.  237 

 238 

DUX4 directly activates the minor EGA genes and a number of unannotated regions 239 

We next generated two TetOn-DUX4 human embryonic stem cell (hESC) lines 240 

expressing DUX4-ires-EmGFP under doxycycline, and studied the effects of DUX4 241 

on the activity and accessibility of the genome (Fig 5a). DUX4 mRNA (Fig 5b) and 242 

protein (Fig 5c) expression promptly followed doxycycline induction and the known 243 

DUX4 target genes ZSCAN4 and TRIM48 followed the induction with slight delay 244 

(Fig 5b). We performed bulk RNA-seq using STRT RNA-seq methods and the data 245 

analysis of the sorted EmGFP+ DUX4 expressing cells showed roughly equal 246 
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numbers of up- and downregulated TFEs (Fig 5d). Notably, the majority of the 247 

upregulated TFEs were mapped to unannotated genomic regions, whereas the 248 

downregulated TFEs were mapped to protein coding regions (Fig 5d). The known 249 

target genes of DUX4, i.e., ZSCAN4, LEUTX and TRIM48 were significantly 250 

upregulated in the EmGFP+ cells (Fig 5e). Downregulated protein-coding TFEs 251 

included a number of ribosomal genes and genes maintaining pluripotency. This is in 252 

agreement with previous findings showing that DUX4 downregulates some 253 

pluripotency markers25. We integrated the data from our RNA-seq and published 254 

DUX4 ChIP-seq analysis26,27 and found that out of the 32 minor EGA genes induced 255 

in 4-cell embryos3, 23 were induced in the EmGFP+ cells and 17 out of these 256 

overlapped with DUX4 binding sites. This suggested that DUX4 can induce the 257 

majority of the minor EGA-related genes (Fig 5f). We also identified three previously 258 

unannotated DUX4 targets KHDC1 pseudogene 1 (FE463525; Fig 5e and 6a), RING-259 

finger type E3 ubiquitin ligase (FE533694; Fig 5e and 6b), and RING-finger domain 260 

protein 4.2 (FE130507; Fig 5e and 6c) that were induced in 4-cell embryos3, were 261 

upregulated by DUX4, and overlapped with DUX4 binding sites. We cloned novel 262 

DUX4 target transcripts from a cDNA pool of human day 4 embryos, confirming 263 

their presence in early human cleavage embryos (Fig 6). On the other hand, out of the 264 

129 major EGA genes upregulated in 8-cell human embryos3, 14 were upregulated by 265 

DUX4 and interestingly, 33 were downregulated (Fig 5f). These data suggested that 266 

DUX4 could upregulate some major EGA genes, but that most of them are likely 267 

activated by the minor EGA genes (such as LEUTX28), and that DUX4 might also 268 

negatively regulate major EGA genes. DUX4-induced TFEs were highly enriched 269 

with DUX4 binding sites26,27 (Fig 5g), and the most highly enriched motif in the 270 

DUX4-induced TFEs was similar to the known DUX4 motif29 (Fig 5h). Furthermore, 271 
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these TFEs were remarkably overrepresented with the DUX4 binding sites among 272 

hundreds of transcription factors (Fig 5i).  273 

 274 

Ectopic DUX4 expression causes chromatin opening at ERVL-MaLR elements similar 275 

to 2-cell human embryos 276 

We next integrated STRT RNA-seq and ATAC-seq data from EmGFP +/- sorted 277 

TetOn-Dux4 hESC. DUX4 expression lead to consistent modifications in chromatin 278 

accessibility across all studied clones (Fig 7a). The transcriptionally upregulated TFEs 279 

correlated with more accessible (gained) genomic regions in the DUX4 induced cells 280 

while the correlation was less obvious for the downregulated TFEs and less accessible 281 

(lost) chromatin (Fig 7a). We found that the gained chromatin regions correlated with 282 

upregulated TFEs and lost chromatin regions correlated with downregulated TFEs 283 

(Fig 7b), likely implying that the transcriptional downregulation induced by DUX4 284 

expression is faster than the nucleosome-mediated closing of the chromatin (Fig 7a 285 

and b). We then asked how DUX4 expression modified openness of the different 286 

regions of the chromatin. In general, DUX4 rapidly caused chromatin remodelling, 287 

especially chromatin opening, far from transcription start sites (TSS), demonstrating 288 

that the TSSs seem to be less targeted by the DUX4 expression than other genomic 289 

regions (Fig 7c). We next focused on the ATAC-gained chromatin sites. These 290 

chromatin regions were remarkably enriched with DUX4 binding sites compared with 291 

unchanged regions (P<2.2e-16). Out of the ATAC-gained chromatin sites, 48.9% 292 

overlapped with ERVL-MaLR elements and they were significantly enriched for the 293 

DUX4 binding sites compared with non ERVL-MaLR overlapping sites (55.8% P < 294 

2.2e-16) (Fig. 7d). The ATAC-gained ERVL-MaLR regions remarkably overlapped 295 
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with the open chromatin regions found in 2-cell human embryos30 (Fig. 7e). Out of 296 

the DUX4 induced gained chromatin regions that overlapped with those of the 2-cell 297 

embryos, upregulated by DUX4 induction, and overlapped with DUX4 binding sites, 298 

76.7% were unannotated. Only few protein-coding genes, for instance ZSCAN4 and 299 

the transcriptional and chromatin regulators KDM5B (JARID1B) and ZNF296 were 300 

included. These results show that DUX4 directly binds ERVL-MaLR elements and 301 

converts the chromatin landscape of the hESCs towards that of the human 2-cell 302 

embryos. These data also suggest that DUX4 largely functions through yet 303 

unannotated genomic regions.  304 

  305 
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Discussion  306 

The OET, including fertilization and activation of the oocyte to totipotent blastomeres 307 

and subsequent EGA, gradually sets the stage for embryo development31-33. How the 308 

OET is orchestrated in human and which factors are the main drivers are still poorly 309 

known. One of the potential candidates driving the OET in human embryos is DUX4. 310 

Our data here show that DUX4 transcripts appear immediately after fertilisation and 311 

are downregulated rapidly following the first and the second cleavage divisions. The 312 

origin of DUX4 transcripts is still unclear. It could be one of the maternal dormant 313 

RNAs, supported by the fact that DUX4 was absent in the majority of the oocytes but 314 

was significantly induced in the zygotes. Dormant maternal RNAs are stored in the 315 

oocytes as deadenylated transcripts and they are polyadenylated and translated only 316 

after resumption of meiosis or after fertilisation34. The increasing nuclear DUX4 317 

protein intensity from zygotes to 4-cell embryos and its disappearance in the nuclei of 318 

8-cell embryos suggested that DUX4 can modify transcriptome and chromatin of the 319 

embryos already before the genome activation takes place. Detailed mechanisms of 320 

DUX4 protein degradation in the 8-cell embryos remain to be further investigated; 321 

however, DUX4 upregulated and interacted with several protein ubiquitinases, such 322 

as TRIM48, a well-known DUX4 target gene. We also identified two previously 323 

unannotated and possibly embryo-specific putative RING-finger type E3 ubiquitin 324 

ligases that were expressed in early human embryos and induced by DUX4. The 325 

putative ubiquitinases RFPLA (RFPL4A) and RFPLB (RFPL4B) regulate protein 326 

degradation in germ cells35,36. Another ubiquitin-ligase, RNF114, was recently shown 327 

to be essential for the OET in the mouse37. Taken together, our data suggested that 328 

DUX4 induces expression of ubiquitin ligases and also interacts with ubiquitinases, 329 
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possibly regulating the presence of DUX4 itself as well as general proteome during 330 

OET.  331 

 332 

Knock-down of DUX4 in the human zygotes did not cause mitotic arrest during the 2-333 

day experiment, in agreement with recent findings on Dux in mouse embryos where a 334 

minority of embryos may proceed until blastocyst stage8,38,39. In the mouse Dux-/- 335 

embryos, around 30% of the EGA transcripts that should be upregulated were 336 

downregulated39, while in the human DUX4 knock-down embryos, many of the 337 

maternal, normally downregulated genes remained unchanged, suggesting that 338 

Dux/DUX4 alone is sufficient for neither the OET nor the EGA. Another candidate 339 

gene regulating OET is PLAG140. De novo PLAG1 binding site is found in the EGA 340 

genes in the human embryos, and the phenotype of Plag1+/- mice lacking the 341 

maternal Plag1 allele show enriched expression of maternal transcripts at the 2-cell 342 

stage, when major EGA occurs in the mouse. The question remains how DUX4, 343 

together with other factors such as PLAG1, coordinates regulation of the maternal and 344 

EGA transcripts in human and which yet unnamed genes might be involved in the 345 

OET in human.  346 

 347 

Ectopic expression of DUX4 in the hESC caused opening of the chromatin regions 348 

outside of TSSs, largely at ERVL-MaLR elements. Dux binding at Mervl loci drives 349 

chromatin reorganisation at Mervl loci in the mouse 2-cell embryo-like cells, and 350 

chromatin organisation during early mouse development is a consequence of the 351 

Mervl integration41. Human 2-cell-like cells have not been established by now, but 352 

importantly, in our experiments binding of the DUX4 at ERVL-MaLR elements14 353 
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could modify chromatin towards embryo-like stage even in the hESCs. Long terminal 354 

repeat elements abundantly present in the genome have been suggested as key 355 

elements contributing to the OET, when major epigenetic and chromatin changes take 356 

place42. Our integrated analysis on chromatin openness and transcriptional regulation, 357 

together with the DUX4 ChIP-seq data26,27 demonstrated that DUX4 regulates several 358 

transcripts and the corresponding genomic loci coding for chromatin modifiers and 359 

epigenetic regulators, as also suggested by Liu et al.43. Taken together, our data 360 

indicate that DUX4 alone is not a sufficient inducer for the first three days of human 361 

embryo development but that it regulates the OET by regulating maternal RNA 362 

degradation, EGA genes, and repetitive elements, all of which have been shown to be 363 

crucial for the successful OET in organisms other than human. In addition to 364 

regulating genetic elements by DNA-binding, DUX4 may regulate the proteome by 365 

inducing ubiquitination pathway genes during the OET in human.  366 

 367 

 368 

 369 

 370 

  371 
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Online methods  372 
 373 

Human pre-implantation embryos for single cell RNA-sequencing using STRT method  374 

We analysed single cell RNA-sequencing data from Töhönen et al.3 for MII oocytes 375 

(N=20), zygotes (N=59), 2-cell (N=4), 4-cell (N=15) and 8-cell (N=14) embryos.  376 

For the DUX4 knockdown experiment 18 siCTRL cells (N=2) and 18 siDUX4 cells 377 

(N=3) were analysed. The embryos were incubated in Ca2+/Mg2+ -free culture 378 

medium (Biopsy Medium, Origio) at 37°C heated stage for separation of the cells. 379 

Individuals cells were briefly rinsed in Ca2+/Mg2+ -free PBS and placed directly in 380 

lysis buffer (5mM Tris-HCl, pH 7.0 (LifeTechnologies); 5mM DTT (Thermo 381 

Scientific), 0.02 % Tx100 (Fisher Scientific); 0.5 U/µl Ribolock RNAse inhibitor 382 

(ThermoFisher)). The library was prepared according to the published protocol3,22,44. 383 

The amplified libraries were sequenced on the Illumina HiSeq 2000 instrument.  384 

 385 

Bulk RNA-sequencing using STRT method 386 

Total RNA was isolated from the FAC-sorted DUX4-TetOn hESCs using the 387 

RNAqueous Total RNA Isolation Kit (AM1912; ThermoFisherScientific). 20ng of 388 

total RNA from each sample was used for library preparations. The libraries were 389 

prepared using the STRT method as above, with minor modifications. Briefly, RNA 390 

samples were placed in a 48-well plate in which a universal primer, template-391 

switching oligos, and a well-specific 8-bp barcode sequence (for sample 392 

identification) were added to each well23,45. The synthesized cDNAs from the samples 393 

were then pooled into one library and amplified by single-primer PCR with the 394 
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universal primer sequence. The resulting amplified library was then sequenced using 395 

the Illumina NextSeq 500 instrument.  396 

 397 

Preprocess of raw STRT RNAseq reads 398 

The sequenced STRT raw reads were processed by STRTprep23, v3dev branch 399 

91a62d2 commit at https://github.com/shka/STRTprep/tree/v3dev. The processed 400 

nonredundant reads were aligned to hg19 human reference genome sequences, ERCC 401 

spike-in sequences and human ribosomal DNA unit (GenBank: U13369) with RefSeq 402 

transcript alignments as a guide of exon junctions. For gene-based statistics, uniquely 403 

mapped reads within (i) the 5’-UTR or the proximal upstream (up to 500 bp) of the 404 

RefSeq protein coding genes, and (ii) within the first 50 bp of spike-in sequences, 405 

were counted. For TFE-based statistics, the mapped reads were assembled according 406 

to the alignments, and uniquely mapped reads within the first exons of the assembled 407 

transcripts were counted, as described in Töhönen et al 20153.  408 

 409 

Downstream STRT RNA-sequencing data analysis 410 

Differentially expressed genes and TFEs required significantly different tendency on 411 

the expression levels between two groups (q-value < 0.05), and significantly larger 412 

variation than the technical variation (adjusted p-value < 0.05 by BH correction). The 413 

former tendency was tested by the R package SAMstrt v0.99.045, and the latter 414 

variation (fluctuation) was estimated based on gene-to-spikein (or TFE-to-spikein) 415 

ratios in the squared coefficient of variation, described in Supplementary Text 1 of 416 

Krjutskov et al. 201623. The minimum value but non-zero was added to all the 417 
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normalized read counts and then the counts were divided by the minimum value so 418 

that the logarithm of zero counts become zero. Enrichment analysis of anatomical 419 

terms for the list of upregulated genes by siDUX4 was performed using the TopAnat24 420 

(https://bgee.org/?page=top_anat). All human genes in the Bgee database were used 421 

as background. STRT data of human early embryo were obtained from Töhönen et al. 422 

2015 and 20173,10 and were overlapped with TFEs using the intersectBed function 423 

from BEDTools46 (v2.27.1). DUX4 ChIP-seq data was obtained from GSE3383826 424 

and scores around the FEs were calculated with computeMatrix and visualized with 425 

plotProfile from deepTools47 (v3.1.3). Motif enrichment was analyzed using the 426 

command findMotifsGenome.pl from HOMER48 (v4.10.3) with the option “-size -427 

300,100”. Enrichment analysis with publicly available ChIP-seq datasets was 428 

conducted with ChIP-Atlas49 (http://chip-atlas.org). A total of 7,216 human 429 

transcription factor ChIP-seq datasets which had more than 500 peaks were analyzed. 430 

Fold enrichment was calculated as (the number of ChIP-seq peaks overlapping with 431 

upregulated TFEs / the number of upregulated TFEs) / (the number of ChIP-seq peaks 432 

overlapping with all TFEs / the number of all TFEs). P-values were calculated with 433 

Fisher’s exact test and Q-values were calculated with the Benjamini & Hochberg 434 

method. After excluding the TFEs annotated on ribosomal DNA, 6,425 upregulated 435 

TFEs were used as foreground and 109,624 all the detected TFEs were used as 436 

background both in the motif and ChIP-seq enrichment analysis. 437 

 438 

Human ESC culture  439 

hESC lines H1 (WA01) and H9 (WA09) were purchased from WiCell. The hESCs 440 

were maintained on Geltrex-coated tissue culture dishes in Essential 8 culture medium 441 
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and passaged every three to five days by incubation with 0.5 mM EDTA (all from 442 

Thermo Fisher Scientific).  443 

 444 

Plasmid construction  445 

The full-length DUX4 (NM_001293798.2) was synthesized and cloned between the 446 

SalI and BamHI sites of the pB-tight-hMAFA-ires-EmGFP-pA-PGK-Puro vector (a 447 

kind gift from Diego Balboa, Biomedicum Stem Cell Centre) at GenScript (Genscript, 448 

NJ, USA).  449 

 450 

Doxycycline-inducible DUX4 expressing human ESCs  451 

The hESCs were incubated with StemPro Accutase (Thermo Fisher Scientific) until 452 

the edges of the colonies started to curl up. The Accutase was aspirated and the cells 453 

were gently detached in cold 5% FBS (Thermo Fisher Scientific) -PBS (Corning) and 454 

counted. One million cells were centrifuged at 800rpm for 5 min and the pellet was 455 

transferred into 120 µl of R-buffer containing 1 µg of pB-tight-DUX4-ires-EmGFP-456 

pA-PGK-Puro, 0.5 µg of pBASE and 0.5 µg of rtTA-M2-IN plasmids. 100 µl of the 457 

cell-plasmid suspension was electroporated with two pulses of 1100 V, 20 ms pulse 458 

width, using Neon Transfection system. The electroporated cells were plated on 459 

Geltrex-coated dishes in Essential 8 medium with 10 µM ROCK inhibitor Y27632 460 

(Peprotech). Fresh Essential 8 medium without ROCK-inhibitor was changed to the 461 

cells on the day following the electroporation. The cells were selected with 462 

Puromycin at 0.3 µg/mL.  The TetOn-DUX4 hESC clones were picked manually on 463 

Geltrex-coated 96-well plates, expanded and selected again with Puromycin. 464 
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Appearance of the EmGFP reporter protein was tested using Doxycycline at 465 

concentrations ranging from 0.2 µg/ml to 1.0 µg/ml and detected using EVOS FL Cell 466 

imaging system (Thermo Fisher Scientific). When indicated for the experiments 467 

presented in this paper, the EmGFP+ DUX4 expressing hESC clones had been treated 468 

with 1µg/ml of Doxicycline for 1, 2, 3, (qPCR) or 4 hours prior to downstream 469 

analyses.  470 

 471 

cDNA cloning of unannotated DUX4 targets 472 

Single human 4-cell embryo cDNA library was prepared according to the protocol by 473 

Tang et al.50 and used for cloning of the putative transcripts. The transcripts were 474 

amplified using Phusion High-Fidelity DNA polymerase (New England Biolabs) 475 

according to manufacturer’s instructions. Predicted KHDC1 pseudo gene 1, putative 476 

RING-finger type E3 ubiquitin ligase and putative RING-finger domain protein 477 

encoding genes were amplified using touchdown PCR: 98˚C for 30 s; 24 cycles of 478 

98˚C for 10 s, annealing for 30 s, temperature decreasing from 63˚C to 56˚C, 1 ˚C/3 479 

cycles, 72˚C for 30 s; 16 cycles of 98 ˚C for 10 s, 55˚C for 30 s, 72˚C for 30 s; final 480 

extension 72˚C for 10 min. All PCR products were cloned into pCR4Blunt-TOPO 481 

vector using Zero Blunt TOPO PCR Cloning kit (Invitrogen) and sequences were 482 

verified by Sanger sequencing (Eurofins Genomics). Clone sequences are available 483 

from the ENA browser at http://www.ebi.ac.uk/ena/data/view/LR694082-LR694089. 484 

 485 

Bioinformatics analysis and molecular dynamics simulations of the DUX4 protein 486 

The sequence for the human DUX4 (Q9UBX2) protein was obtained from the 487 

UniProt database (The UniProt Consortium30), whereas other sequences were 488 
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retrieved from the non-redundant database of NCBI using blastp51 and with human 489 

DUX4 as the query sequence. Multiple sequence alignment was carried out using 490 

MAFFT52. Secondary structures, solvent accessibility and disordered regions were 491 

predicted using POLYVIEW-2D53, SABLE54, SCRATCH55 and RaptorX-Property56. 492 

The 9aaTAD web server57 was used to predict 9aaTAD motifs. The 2.12 Å resolution 493 

crystal structure of the DUX4 HD1-linker-HD2 fragment bound to DNA19 (PDB: 494 

6E8C) was obtained from the Protein Data Bank58. PyMOL (version 1.6; Schrödinger 495 

LLC) and Bodil59 were used to analyze inter-HD interactions. Based on the DUX4 496 

structure, molecular dynamics (MD) simulations, over all atoms, were used to explore 497 

the dynamic states of the (1) double HD complex with (HD1-HD2 + DNA) and (2) 498 

without (HD1-HD2) bound DNA and the individual HDs with bound DNA: (3) HD1 499 

+ DNA and (4) HD2 + DNA. MD simulations of these four structures were carried 500 

out with the AMBER package60 (version 18) using the ff14SB61 (for protein) and 501 

OL1562 (for DNA) force fields. The structures were solvated with explicit TIP3P 502 

water molecules63 within an octahedral box ensuring a 12 Å distance between the 503 

boundaries of the simulation box and solute atoms. Sodium counter ions were added 504 

to neutralize the system and additional Na+/Cl- ions were added to bring the salt 505 

concentration to 150 mM. Periodic boundary conditions were employed and the 506 

particle-mesh Ewald algorithm64 was applied to electrostatic interactions with a 507 

distance cutoff of 9 Å.  508 

 509 

Prior to the production simulation, 5000 cycles of steepest descent and conjugate 510 

gradient energy minimization were carried out on each system, initiated by 511 

introducing a 25 kcal mol−1 Å−2 restraint on solute atoms that was gradually reduced 512 

to 0 kcal mol−1 Å−2 over the total minimization. The systems were then heated from 513 
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100 K to 300 K during 100 ps with a 10 kcal mol−1 Å−2 restraint on solute atoms, 514 

followed by a 900 ps equilibration at constant pressure while systematically reducing 515 

the restraint to 0.1 kcal mol−1 Å−2. The equilibration protocol was finalized with a 516 

restraint-free 5 ns simulation. The production simulation was performed for 100 ns at 517 

constant temperature (300 K) and pressure (1 bar), which was maintained using the 518 

Berendsen algorithm65 with 5 ps coupling constant. Trajectories were saved every 10 519 

ps and the resulting structural snapshots were analyzed further by calculating the root-520 

mean-square deviations (RMSD; over backbone atoms) and root-mean-square 521 

fluctuations (RMSF; over Cα atoms), as well monitoring hydrogen bond interactions 522 

using the programs CPPTRAJ66 and VMD67. 523 

 524 

Affinity purification of protein complexes, mass spectrometry and data analysis  525 

Cell Culture and Affinity Purification  526 

 527 

Cloning of DUX4 to MAC-tag Gateway® destination vector 528 

DUX4 was first amplified in two-step PCR reaction from pB-tight-DUX4-ires-529 

EmGFP-pA-PGK-Puro and cloned to Gateway compatible entry clone using Gateway 530 

BP Clonase II (Invitrogen) according to manufacturer’s instructions. The entry clone 531 

was further cloned to Gateway compatible destination vectors containing the C-532 

terminal and N-terminal tags as described21. Transfection and selection of the T-Rex 533 

293 cells (Invitrogen, Life Technologies, R78007, cultured in manufacturer’s 534 

recommended conditions) and affinity purification of the final product was done as 535 

previously21. 536 
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 537 

Liquid Chromatography-Mass Spectrometry 538 

Analysis was performed on a Q-Exactive mass spectrometer with an EASY-nLC 1000 539 

system via an electrospray ionization sprayer (Thermo Fisher Scientific), using 540 

Xcalibur version 3.0.63. Peptides were eluted from the sample with a C18 precolumn 541 

(Acclaim PepMap 100, 75 µm x 2 cm, 3 µm, 100 Å; Thermo Scientific) and 542 

analytical column (Acclaim PepMap RSLC, 65 µm x 15 cm, 2 µm, 100 Å; Thermo 543 

Scientific), using a 60 minute buffer gradient ranging from 5 to 35% Buffer B, then a 544 

5 min gradient from 35 to 80% Buffer B and 10 minute gradient from 80 to 100% 545 

Buffer B (0.1% formic acid in 98% acetonitrile and 2% HPLC grade water). 4 µl of 546 

peptide sample was loaded by a cooled autosampler. Data-dependent FTMS 547 

acquisition was in positive ion mode for 80 min. A full scan (200-2000 m/z) was 548 

performed with a resolution of 70,000 followed by top10 CID-MS2 ion trap scans with 549 

a resolution of 17,500. Dynamic exclusion was set for 30 s. Database search was 550 

performed with Proteome Discoverer 1.4 (Thermo Scientific) using the SEQUEST 551 

search engine on the Reviewed human proteome in UniProtKB/SwissProt databases 552 

(http://www.uniprot.org, downloaded Nov. 2018). Trypsin was selected as the 553 

cleavage enzyme and maximum of 2 missed cleavages were permitted, precursor 554 

mass tolerance at ±15 ppm and fragment mass tolerance at 0.05 Da. 555 

Carbamidomethylation of cysteine was defined as a static modification. Oxidation of 556 

methionine and biotinylation of lysine and N-termini were set as variable 557 

modifications. All reported data were based on high-confidence peptides assigned in 558 

Proteome Discoverer (FDR < 0.01).  559 

 560 
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Identification of statistical confidence of interactions 561 

Significance Analysis of INTeractome (SAINT68) -express version 3.6.3 and 562 

Contaminant Repository for Affinity Purification (CRAPome, 563 

http://www.crapome.org) were used to discover statistically significant interactions 564 

from the AP-MS data69. The DUX4 LC-MS data was ran alongside a large dataset of 565 

other transcription factors, as well as a large GFP control set. Final results represent 566 

proteins with a SAINT score higher than 0.73, and present in all four replicates.  567 

 568 

Overrepresentation Analysis 569 

Overrepresentation analysis of statistically significant interactions in Gene Ontology 570 

and Reactome was done in WebGestalt70, and overrepresentation of prey proteins in 571 

ComplexPortal71 (https://www.ebi.ac.uk/complexportal) and CORUM72 572 

(https://mips.helmholtz-muenchen.de/corum/) was done using Fisher’s exact test and 573 

multiple testing correction in an in-house R-script.  574 

 575 

Interaction network 576 

Protein interaction networks were constructed from filtered SAINT data that was 577 

imported to Cytoscape 3.6.0. Known prey-prey interactions were obtained from the 578 

iRef database (http://irefindex.org). 579 

 580 
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RNA isolation, reverse transcription and quantitative real-time quantitative PCR  581 

Total RNA was isolated by NucleoSpin RNA kit (Macherey Nagel). 1µg of RNA was 582 

reverse transcribed by MMLV-RTase with oligodT, dNTPs, and Ribolock in MMLV-583 

RTase buffer (Thermo Fisher Scientific). 5X HOT FirelPol qPCR Mix (Solis 584 

Biodyne) was used to measure relative mRNA levels with Lightcycler (Roche). ΔΔ585 

CT method was followed to quantify relative gene expression where CYCLOPHILIN 586 

G was used as endogenous control. Relative expression of each gene was normalized 587 

to the expression without doxycycline treatment.  588 

 589 

Fluorescence associated cell sorting   590 

TetOn-DUX4 hESCs were treated with TrypLE for 5 min and suspended into cold 591 

FACS buffer (5% FBS-PBS). Single cell suspension was filtered through 40µm Cell 592 

strainers and centrifuged at 800 rpm for 5min. The cell pellets were suspended in cold 593 

FACS buffer and placed on ice. EmGFP- and EmGFP+ cells were separated to FACS 594 

buffer by Sony SH800Z Cell Sorter with blue laser (488) and 100 µm nozzle.  595 

 596 

ATAC-sequencing library preparation and data analysis  597 

In principle the ATAC-sequencing libraries were prepared as in73. 5x104 EmGFP-598 

negative and EmGFP-positive TetOn-hESCs for four biological samples; TetOn-599 

DUX4 in H1 clone 2, H1 clone 8, H9 clone 3 and H9 clone 4, were centrifuged at 600 

500g for 5 min. The pellets were washed in cold 1X PBS by centrifugation at 500g for 601 

5min. Each cell pellet was lysed in 50 µl of cold lysis buffer (10 mM Tris-HCl, pH 602 

7.4; 10 mM NaCl, 3 mM MgCl2, and 0.1% IGEPAL CA-630) and centrifuged at 500g 603 
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at 4°C for 10 min. The pellet was then resuspended in the transposase reaction mix 604 

(2.5 µl of transposase in TD buffer) and incubated at 37°C for 30min. The reactions 605 

were purified through columns and eluated in 20 µl. After addition of the barcode 606 

oligos the DNA samples were amplified for 12 cycles (98°C for 10 seconds, 63°C for 607 

30 seconds and 72°C for 60 seconds) in Phusion PCR master mix (Thermo Fisher 608 

Scientific).  The PCR products were purified through the columns and eluted in 20 µl.  609 

 610 

ATAC-seq data analysis  611 

Bcl files were converted and demultiplexed to fastq using the bcl2fastq program. 612 

STAR74 was used to index the human reference genome (hg19), obtained from 613 

UCSC, and align the resulting fastq files. The resulting bam files with the mapped 614 

reads were then converted to tag directories with subsequent peaks calling using the 615 

HOMER suit of programs48. HOMER was also employed for counting the reads in the 616 

identified peak regions. The raw tag counts from the peaks were then imported to 617 

R/Bioconductor and differential peak analysis was performed using the edgeR 618 

package and its general linear models pipeline. Peaks with an FDR adjusted p value 619 

under 0.05 were termed significant. Plotting was done in R using packages Complex 620 

heatmap, ggplot2 and ggbeeswarm. RepeatMasker table downloaded from UCSC 621 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz) was 622 

converted to BED format and then intersected with the ATAC-seq peaks using the 623 

intersectBed from BEDTools46 to determine the peaks overlapped with ERVL-MaLR 624 

elements. ATAC-seq data of human early embryo were obtained from GSE10157130, 625 

and scores around the ATAC-seq peaks were calculated with computeMatrix and 626 
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visualized with plotHeatmap from deepTools47. All the scripts and command line 627 

options can be provided upon request. 628 

 629 

Immunocytochemistry of the human ESC  630 

The cells were fixed with 3.8% PFA, washed three times, permeabilised in 0.5% (v/v) 631 

Tx100-PBS for 7 min, and washed with washing buffer (0.1% (v/v) Tween20-PBS). 632 

The samples were incubated with ProteinBlock (Thermo Fisher Scientifi) at room 633 

temperature for 10 min to prevent unspecific binding of primary antibody. Primary 634 

antibody (rabbit MAb anti DUX4, clone E5-5, 1:400; Abcam) was diluted as 635 

indicated in washing buffer and incubated at 4°C overnight. After washings, 636 

fluorescence-conjugated secondary antibody (anti rabbit 594, A-21207; Thermo 637 

Fisher Scientific) was diluted 1:1000 in washing buffer and incubated at room 638 

temperature for 20 min. Nuclei were counterstained with DAPI 1:1000 in washing 639 

buffer. The images were captured with Evos FL Cell Imaging system with 10X and 640 

20X Plan Achromatic objectives.   641 

 642 

Immunocytochemistry of the human embryos  643 

The embryos were fixed in 3.8 % PFA at room temperature for 15min, washed three 644 

times in the washing buffer (above), and permeabilised in 0.5 % Tx100-PBS at room 645 

temperature for 15 min. Unspecific primary antibody binding was blocked as above. 646 

DUX4 (as above) was incubated at 4°C overnight. The embryos were washed and 647 

incubated in the secondary antibody (anti-rabbit 488, A-21202; Thermo Fisher 648 

Scientific) diluted 1:500 in washing buffer (as above) at room temperature for 2 649 
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hours. After washings, nuclei were counterstained with DAPI 1:500 in washing 650 

buffer.  651 

 652 

Imaging of the fixed human embryos  653 

The embryos were imaged in washing buffer on Ibidi 8-well μ slides with Leica TCS 654 

SP8 confocal laser scanning microscope (Leica Microsystems, Mannheim, Germany) 655 

using Leica HC PL APO CS2 40X/1.10NA and Leica HC PL APO CS2 63X/1.20NA 656 

water objectives.  657 

 658 

Confocal microscopy image analysis  659 

Confocal images were processed using Fiji (http://fiji.sc). For the data presented in 660 

the Fig 1b, images were smoothened by Gaussian filter (radius=1 pixel kernel). For 661 

the quantification of the DUX4 intensity in the nucleus (Fig 1c), the DAPI channel 662 

was denoised using rolling ball (radius=100). The images were smoothened in 3D 663 

using Gaussian filter (radius=2 pixel kernel) and cell nuclei were segmented. The 664 

segmented regions were used to measure average pixel intensity per nucleus in each 665 

cell in the DUX4 channel. DUX4 intensity in the nucleus was normalized to intensity 666 

of the corresponding cytoplasmic DUX4 staining in the single representative plane.  667 

 668 

Culture and microinjection of human embryos  669 

Human triploid zygotes were warmed using Gems Warming Set (Genea Biomedx) 670 

and cultured in G-TL medium (Vitrolife) in 6 %O2 and 6 % CO2 at 37°C. 12 µl of 671 

either 20 µM scrambled control siRNA (AM4611, Thermo Fisher Scientific) or 672 
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DUX4-targeting siRNA (cat. 4457308, Thermo Fisher Scientific) diluted in 673 

nucleotide-free H2O were mixed with total of 500 ng of GAP-GFP mRNA and 674 

centrifuged at maximum speed at 4°C for 10 min. The embryos were microinjected 675 

using Eppendorf microinjector and placed in G-TL medium in Geri dish for 3D time-676 

lapse imaging (Geri incubator, Genea Biomedx, Australia).  677 

 678 

Human embryo live imaging  679 

Imaging of the human triploid embryos was initiated immediately after 680 

microinjections (Geri incubator). Images were captured in 3D every 15 minutes until 681 

the embryos were removed for fluorescence staining or termination of the experiment.    682 

 683 

Ethical approvals   684 

Collection and experiments on human oocytes and embryos were approved by the 685 

Helsinki University Hospital ethical committee, diary numbers 308/13/03/03/2015 686 

and HUS/1069/2016. Human surplus oocytes, zygotes, and embryos were donated by 687 

couples that had undergone infertility treatments at Helsinki University Hospital 688 

Reproduction Medicine Unit. The donations were done with an informed consent and 689 
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Figure Legends  725 

Figure 1. DUX4 expression in human embryos.  726 

(a) Log2 RPM of DUX4 mRNA reads in human oocytes (N=20), zygotes (N=59), 2-727 

cell (N=4), 4-cell (N=14), and 8-cell (N=15) embryos.  728 

(b) Representative confocal images of zygotes (N=3), 2-cell (N=3), 4-cell (N=4), and 729 

8-cell (N=2) human embryos stained with monoclonal DUX4 antibody E5-5 (green). 730 

Nuclei counterstained with DAPI (magenta).  731 

(c) 3D quantification of DUX4 intensity in the nuclei of the human embryos, 732 

normalised to cytoplasmic DUX4 staining (single plane) with standard deviation.  733 

 734 

Figure 2. Structural features of DUX4.  735 

(a) Domain structure of full-length DUX4: N- and C-terminal amino acid residues, as 736 

well as boundary residues for the homeodomains HD1 and HD2, three predicted 737 

ordered C-terminal regions (disorder value < 0.5; red curve) and 9aaTAD motif 738 

(blue). Conservation of residues in primates versus the human sequence C-terminal to 739 

residue G153 (green curve) and sequence alignment and predicted secondary 740 

structures (alpha helices) of the ordered regions. Residue numbering from UniProt ID 741 

Q9UBX2.  742 

(b) Crystal structure (PDB:6E8C; Lee et al., 2018) of DUX4 HD1 (blue) and HD2 743 

(gold) in complex with the consensus DNA motif  “TAATCTAATCA” (grey). 744 

Disordered/linker regions, magenta; residues forming inter-homeodomain contacts 745 

drawn as sticks.  746 
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(c) Structure of DUX4 HD1 (blue) and 2 (gold) without DNA. The coordinates of the 747 

bound DNA of the X-ray structure shown in (b) were deleted from the coordinate file 748 

of DUX4 structure. Coloring as in (b).  749 

(d) View focused on the inter-homeodomain interactions shown in (c). Hydrogen 750 

bonds, yellow dash lines; coloring as in (b).  751 

(e) Sequence comparison of residues forming inter-homeodomain contacts.  752 

(f) Root-mean-squared fluctuations (RMSF) of the Cα atoms of the X-ray structure 753 

of DUX4 with (red curve) and without (blue curve) bound DNA during a 100 ns MD 754 

simulation. HD1 (blue), linker (magenta) and HD2 (gold).  755 

(g) Root-mean-squared deviation (RMSD) of the backbone atoms of the X-ray 756 

structure of DUX4 with and without bound DNA during a 100 ns MD simulation. 757 

Homedomains with (HD1-HD2 +DNA) and without (HD1-HD2) bound DNA and 758 

single homedomains (HD1+DNA and HD2 +DNA) with bound DNA were used in 759 

the simulations. 760 

 761 

Figure 3. The protein – protein interaction network of DUX4.  762 

(a) High confidence protein-protein interactions detected by AP-MS (n=24) and 763 

BioID (n=139) -methods (SAINT score > 0.74). Average spectral count of the 764 

interaction filtered to show interactions larger than the median (AP-MS=4.125, 765 

BioID=7.5).  766 

(b) DUX4 interactome, filtered to show spectral counts larger than median. BioID -767 

interactions shown in red lines and AP-MS -interactions in blue, if protein appeared in 768 

both data sets it is outlined in bold black. Known prey-prey interactions shown in grey 769 

(iREF). 770 
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 771 

Figure 4. Knockdown of DUX4 in human embryos.  772 

(a) Schematic of the experimental set up.  773 

(b) Human embryos immunostained with DUX4 antibody (green) 24 h after 774 

microinjection with either control siRNA (left panel) or DUX4 targeting siRNA (right 775 

panel). Nuclei counterstained with DAPI (blue). Overlay of a single representative z 776 

plane and the corresponding z-planes shown for DUX4 staining, nucleus and bright 777 

field channels on the right side of each overlay. Scale bar 50 µm.  778 

(c) Scatter plot of the expression levels of TFEs across the siCTRL and siDUX4 779 

embryos. Red dots represent significantly upregulated TFEs by siDUX4 and grey 780 

crosses represent TFEs, which showed no significant change.  781 

(d-f) TFEs upregulated (red dots) or showing no significant change (grey crosses) by 782 

siDUX4 in the human OET transcriptome as in3. Comparisons in d: oocyte to 4-cell, 783 

e: zygote to 4-cell, and f: 4-cell to 8-cell. The dotted line marks the cell division effect 784 

on cellular RNA content. P-values were calculated with Fisher’s exact test for the 785 

frequency of the siDUX4-upregulated TFEs of the TFEs normally downregulated 786 

during respective stages.  787 

(g) Expression levels of the oocyte-specific genes in siCTRL and siDUX4 embryos. 788 

Asterisks represent statistical significance (q-value < 0.05). Horizontal lines represent 789 

the median values in each group. 790 

 791 

Figure 5. Transcriptome and ChIP-seq analysis on the TetOn-DUX4 hESCs.  792 

(a) Schematic of the experimental set up.  793 
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(b) Doxicycline induction of TetOn-DUX4 hESCs induces expression of DUX4 and 794 

DUX4 target genes, ZSCAN4 and TRIM48. Shown for H1-TetOn-DUX4 clone 2. All 795 

clones selected for experiments followed the same trend. X-axis indicates time (h) 796 

incubated in doxycycline. Relative mRNA expression levels were normalized to the 797 

non-induced cells.  798 

(c) 4-hour doxycycline induction upregulates DUX4 protein expression in the 799 

nucleus, shown for H1-TetOn-DUX4 clone 2.  800 

(d) Proportion of the upregulated and downregulated TFEs based on the genome 801 

annotation.  802 

(e) Expression level of putative DUX4 target genes. Asterisks represent statistical 803 

significance (q-value < 0.05). Horizontal lines represent the median values in each 804 

group.  805 

(f) Proportion of the upregulated (Up), downregulated (Down), and non-significantly 806 

changed (NS) TFEs by DUX4 induction among the minor (Oocyte to 4-cell embryo) 807 

and major (4- to 8-cell embryo) EGA genes. One TFE out of the 129 major EGA 808 

genes annotated on unassigned chromosome (ChrUn) and was excluded from the 809 

analysis. 810 

(g) DUX4 ChIP-seq intensity26 around the peaks of reads within the upregulated TFEs 811 

(blue) and all the detected TFEs (green).  812 

(h) De novo motif enrichment analysis of the DUX4-induced TFEs. Top: the most 813 

significantly enriched motif (P = 1e-961). Bottom: the best-matched known motif 814 

(DUX4 ChIP-seq of myoblasts: GSE7579129; matched score = 0.92). 815 

(i) Enrichment analysis of the DUX4-induced TFEs with publicly available ChIP-seq 816 

datasets. A total of 7,216 ChIP-seq data for transcription factors are shown. ChIP-seq 817 
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data for DUX4 are shown in red. Dots on the left side of the dashed line are 818 

underrepresented, whereas dots on the right side are overrepresented.  819 

 820 

Figure 6. Novel DUX4 targets.  821 

(a) Predicted KHDC1 pseudogene 1 (clone K5.2), at chromosome 6 (73,918,461-822 

73,920,115) was expressed by the human 4-cell embryos (FE463525) and upregulated 823 

in the TetOn -DUX4- hESCs (TFE93242). TFEs overlapped with DUX4 binding sites 824 

(DUX4 ChIP). cDNA clone K5.2 (thick orange regions indicate exons and grey thin 825 

regions indicate introns) corresponded to the KHDC1 pseudogene 1 transcript 826 

assembly in TetOn-DUX4 cells. Transcript assemblies (mRNA Genbank and human 827 

ESTs), including unspliced, are shown.  828 

(b) Putative RING-finger type E3 ubiquitin ligase at chromosome 2 (108,273,771-829 

108,277,850) was expressed by the human 4-cell embryos (FE130507) and it was 830 

upregulated in the TetOn-DUX4 hESCs (TFE25640). DUX4 ChIP-seq peak 831 

overlapped with the TFEs. RET11.1 was cloned from human 4-cell embryo (clone 832 

RET11.1). Thick blue regions indicate exons and thin grey regions indicate introns. 833 

Transcript assemblies (mRNA Genbank and human ESTs), including unspliced, are 834 

shown. 835 

(c) Putative RING-finger domain protein at chromosome 8 (210,701-215,100) was 836 

expressed by the human 4-cell embryos (TFE533694) and induced by TetOn-DUX4 837 

hESCs (TFE102707). ChIP-seq overlapped with the TFEs. Two cDNA clones, Ring 838 

4.2 and Ring 10.22, were expressed in the human 4-cell embyos. Thick blue regions 839 

indicate exons and grey thin regions indicate introns. Transcript assemblies (mRNA 840 

Genbank and human ESTs), including unspliced, are shown.  841 
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 842 

Figure 7. Integrated analysis of the DUX4 induced changes in the chromatin and 843 

transcriptome of the hESCs.  844 

(a) Heatmap of the 4,686 ATAC-sequencing reads across all samples at ATAC-seq 845 

peaks that overlap with differentially regulated TFE reads. Counts for each peak were 846 

standardized across each sample (mean=0, sd=1). Samples and peaks were then 847 

clustered using hierarchical clustering. The Separate heatmap of the ATAC-seq shows 848 

if the changes in the heatmap are significant (red: ATAC-reg gained; blue: ATAC-reg 849 

lost; grey: ATAC-reg non-significant). TFE-Reg heatmap shows if the overlapping 850 

TFE site is upregulated or downregulated (red: upregulated; blue: downregulated).  851 

(b) Quasi random plot showing the results of the differential peak analysis on the 852 

ATAC-seq and STRT-RNA-seq. Each point is an ATAC-seq peak. Analyses were 853 

carried out on peaks that were repeated at least three times. Red: ATAC-seq gained; 854 

blue: ATAC-seq lost; grey: ATAC-seq non-significant. Y-axis: The log fold change 855 

of the ATAC-seq reads in the DUX4 expressing versus the control samples. X-axis: 856 

The ATAC-seq peaks overlapping either with the down-regulated TFEs or 857 

upregulated TFEs.  858 

(c) Density plot showing distribution of the ATAC-seq peaks relative to the TSS of 859 

genes separated by how the peak is regulated by the DUX4-expression. red: ATAC-860 

reg gained; blue: ATAC-reg lost; grey: ATAC-reg non-significant.  861 

(d) Proportion of the peaks overlapped with ERVL-MaLR elements in the gained, 862 

non-significant and lost ATAC-reg peaks (pink) by DUX4 induction. Inset pie charts 863 

inidicate the proportion of the ATAC-gained peaks overlapping with DUX4 binding 864 

sites (green).  865 
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(e) ATAC-reg intensity of human early embryo30 around the gained, non-significant 866 

(NS), and lost ATAC-reg peaks by DUX4 induction which overlap with ERVL-867 

MaLR elements. 868 

 869 

  870 
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