M. Burger, M. Buck, G. Pohlner, S. Rahman, R. Kulenovic et al., Coolability of particulate beds in severe accidents: Status and remaining uncertainties, Prog. Nucl. Energy, vol.52, issue.1, pp.61-75, 2010.

G. Pohlner, M. Buck, R. Meignen, P. Kudinov, W. Ma et al., Analyses on ex-vessel debris formation and coolability in SARNET frame, Ann. Nucl. Energy, vol.74, pp.50-57, 2014.

R. Lipinski, A coolability model for postaccident nuclear reactor debris, Nucl. Technol, vol.65, issue.1, pp.53-66, 1984.

E. Decossin, Ebullition et assèchement dans un lit de particules avec production interne de chaleur: premières expériences et simulations numériques en situation multidimensionnelle, 2000.

K. Atkhen and G. Berthoud, Silfide experiment: coolability in a volumetrically heated debris bed, Nucl. Eng. Des, vol.236, pp.2126-2134, 2006.

B. Raverdy, R. Meignen, L. Piar, S. Picchi, and T. Janin, Capabilities of MC3D to investigate the coolability of corium debris beds, Nucl. Eng. Des, vol.319, pp.48-60, 2017.

A. Naik and V. Dhir, Forced flow evaporative cooling of a volumetrically heated porous layer, Int. J. Heat Mass Transf, vol.25, issue.4, pp.541-552, 1982.

A. Reed, E. Bergeron, K. Boldt, and T. Schmidt, Coolability of UO 2 debris beds in pressurized water pools: DCC-1 and DCC-2 experiment results, Nucl. Eng. Des, vol.97, issue.1, pp.81-88, 1986.

L. Barleon, K. Thomauske, and H. Werle, Extended dryout and rewetting of small-particle core debris, Nucl. Eng. Des, vol.102, issue.1, pp.59-69, 1987.

A. K. Stubos and J. M. Buchlin, Vapour channels in boiling, unconstricted particle bedseffect on the dryout heat flux, Int. J. Multiph. Flow, vol.20, issue.1, pp.131-152, 1994.

A. Zeisberger and F. Mayinger, Heat transport and void fraction in granulated debris, Nucl. Eng. Des, vol.236, pp.2117-2123, 2006.

G. Repetto, T. Garcin, S. Eymery, and F. Fichot, Experimental program on debris reflooding (PEARL). results on prelude facility, Nucl. Eng. Des, vol.264, pp.176-186, 2013.

Y. Davit and M. Quintard, One-phase and two-phase flow in highly permeable porous media, Heat Transfer Eng, pp.1-19, 2018.

A. , Ebullition convective en milieu poreux modèle: étude expérimentale de l'assèchement et du flux critique, 2017.

P. Sapin, A. Gourbil, P. Duru, F. Fichot, M. Prat et al., Reflooding with internal boiling of a heating model porous medium with mm-scale pores, Int. J. Heat Mass Transf, vol.99, pp.512-520, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01347198

N. Chikhi, O. Coindreau, L. Li, W. Ma, V. Taivassalo et al., Evaluation of an effective diameter to study quenching and dry-out of complex debris bed, Ann. Nucl. Energy, vol.74, pp.24-41, 2014.

R. Clavier, N. Chikhi, F. Fichot, and M. Quintard, Modeling of inertial multi-phase flows through high permeability porous media: friction closure laws, Int. J. Multiph. Flow, vol.91, pp.243-261, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01498570

J. Bonnet and R. Lenormand, Réalisation de micromodèles pour l'étude des écoulements polyphasiques en milieux poreux, vol.32, pp.477-480, 1977.

T. P. Tsai and I. Catton, The effect of flow from below on dryout heat flux, J. Heat Transfer, vol.109, issue.2, p.491, 1987.

K. Atkhen and G. Berthoud, Coolability of a 3D homogeneous debris bed, experimental and numerical investigations, Proc. 9th Int. Conf. on Nuclear Engineering, vol.9, pp.270-282, 2001.