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A non-linear discrete hybrid approach based on the association of hypoelastic continuous elements (non-linear
shear behaviour) with specific connectors (non-linear tension stiffness) is developed. It allows the simulation of a
two-dimensional (2D) woven reinforcement forming via an accurate explicit finite element analysis. This ap-
proach allows the simulation of 2D unbalanced fabrics uncoupling tensile and shear behaviour. It only needs a
few parameters to be identified, and shows a good agreement with the experiments. The identification of the
model parameters is investigated, and their relevance is analysed in reference tests. To determine the continuous
element behaviour, a VUMAT hypoelastic model is implemented in Abaqus/Explicit. This model allows the
prediction of fibre stresses and the accurate determination of shear angle in large deformations. Identification
and validation of the model are performed using standard characterisation fabric tests. The experimental
characterisation provided the numerical data to produce a representational prediction of the deformed fabric
geometry and shear angle distribution. Further, the behaviour of the carbon woven reinforcement is identified. A
bias extension test is used to both calibrate and validate the model. The capability of the model is illustrated to

simulate deep drawing, and to compare with the experimental results of hemispherical forming.

1. Introduction

For several decades, composite materials have been increasingly
used in many sectors, such as aeronautics where composites are already
used on a large scale. The latest generation of airliners are made with
more than 50% mass of composites [1]. Achieving a lightweight pro-
duct and saving energy are the main challenges in the aircraft industry
production, which explains the increase in composite demand and the
diversity of its applications [2]. Several forming processes of woven
composites are classified under different categories. The liquid com-
posite moulding process involves forming of dry materials into shapes
without resin (an example of such a process is the resin transfer
moulding [3-5]). In this process, dry woven reinforcements are first
formed, then the resin is injected to obtain the final shape [6,7]. This
method has several disadvantages according to different points of view:
difficulty of controlling the final shape and the effective mechanical
properties, high cost of implementation, and low production rate. Some
other problems are related to preform deformation draping: tension
fibres between longitudinal and transverse direction, fibre

disorientation, and wrinkling or local buckling [8]. Knowledge about
the process and accurate modelling are essential for the analysis of
composite structures in service [8]. Numerical approaches for model-
ling the forming of woven fabric composite reinforcement belong to
two main categories that are related to the scale at which the analysis is
made [9]. These approaches have several objectives with different
impacts. First, it makes possible the determination of the feasibility, or
the conditions of this possibility. Second, it allows predicting the po-
sition of fibres after forming [8,10]. The literature proposes several
approaches for modelling the behaviour of woven fabrics. For example,
draping of the woven reinforcements can be achieved either by geo-
metric, continuous, discrete, or semi-discrete approaches. These geo-
metric models involve placing a net on a surface along geodetic lines
[11]. This approach is based on the work of Mark and Taylor [12] with
certain simplifying assumptions (Inextensibility of yarns, no sliding at
the intersections of warps and wefts, free spins between the warps and
wefts and non-slip contact between woven reinforcement and draping
tool) [13]. This method is simple and although temporally very inter-
esting for predicting the orientation of the yarns, but does not take into
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Nomenclature

Vector gradient

Cauchy stress tensor

Objective derivative of Cauchy stress tensor
Updated stress tensor
Green-Naghdi basis

Initial Green-Naghdi basis

Initial material basis

Material basis

Deformation gradient tensor
Rotation tensor

Right stretch tensor

Constitutive tensor

Strain rate tensor

Young’s Modulus in warp direction
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Ey Young’s Modulus in weft direction
G In-plane shear rigidity

Ti> Transformation matrix

dep , Strain increments

doy Stress increments

y Shear angle

61,2 Angle between warp or weft and Green-Naghdi basis
F, Normal bias force

Fy (y) Normalised shear force

E Connector force

U. Connector displacement

e Thickness

K(u) Connector stiffness

N Number of connectors in direction Y
n Number of connectors in direction X

account the physical properties of yarns in the warp and weft direc-
tions. Thus, the result obtained is independent of the material used.
This method is suitable for draping, but not for drawing processes,
where a poor match with the experimental results had been observed
[14]. This model also decouples the tension and shear behaviours [10].
The continuous approach considers the woven fabric as a macro-
scopically contained material, because it takes into account the
homogenised overall behaviour of the reinforcement. The geometry of
the reinforcement is illustrated by a finite element mesh of shell or
membrane [15]. Three continuous approaches are described using a
membrane and shell assumption.

(i) The first one is based on a continuous non-orthogonal elastic law.
This approach involves formulating the constitutive law by linking
the stress and strain through a continuous medium in a non-or-
thogonal basis described in the directions of the reinforcing yarns
because of the small influence of the shear angle on the biaxial
behaviour [16]. Pu Xue et al. developed a model that indicates the
behaviour of the woven composite using a non-orthogonal co-
ordinate system [17].

(ii) The second approach is the continuous hypoelastic one. In this
case, the stress increments are directly related to the strain incre-
ments with a constitutive tensor containing the material stiffness
moduli [18]. The main advantage is the representation of the non-
linear behaviour and it is often implemented in finite element
analyses at large strains. Several studies developed the hypoelastic
laws for fabric reinforcement simulation [19-21] and for woven
structures [22].

(iii) The third approach is the hyperelastic continuous model, which is
also based on the decoupling between tension and shear. It relies
on the definition of an energy potential from which the hyper-
elastic constitutive model is derived and which reproduces the
non-linear mechanical behaviour of fibrous reinforcements [9,23].
This potential is defined as the sum of three terms: the deformation
energies in the two yarn directions and the shear behaviour. Ai-
mene et al. [24] proposed a model of anisotropic hyperelastic
behaviour for the simulation of woven fibrous reinforcements,
which is likely to reproduce the non-linear behaviour observed on
these woven reinforcements. The work presented by Erchiqui et al.
[25] demonstrates that this approach is able to predict the influ-
ence of fibre orientation in the thermoforming process.

Furthermore, numerical modelling using the discrete approach re-
presents the reinforcement as an elementary physical cell, which uses
finite elements of bars, beams, membranes, or shells [26,27]. The ad-
vantage of this approach is that it can justify certain global behaviour of
tissues from its internal structure. In several publications, it is shown

that the advantage of this reinforcement method to simulate forming
problems [28-30]. Boubaker et al. [31] proposed a model of woven
reinforcements based on a mass-spring system. In [32], Sharma et al.
proposed a model based on an elementary cell constructed only with
elastic bars on the sides and an elastoplastic bar positioned according to
one of the diagonals to model the non-linear shear behaviour. In 2010,
the discrete modelling is still applied by Sherwood et al. [33], who used
this approach to model two types of fabrics (glass taffeta and 2 x 2
twill). The discrete approach was also used by Najjar [34] to simulate
the stamping process of an interlock reinforcement type G1151. The
tension stiffness was modelled by connectors and the shear behaviour
was modelled as elastic. In 2011, Harrison [35] proposed a behaviour
model by combining a non-orthogonal approach to manage shear in a
shell element, and bars to describe the behaviour of yarns in tension.

The semi-discrete approach is a combination of the continuous and
discrete approach. It is a mesoscopic approach of an elementary re-
inforcement cell using the finite element method. This approach is
based on the virtual work theorem, which links internal, external, and
acceleration works in the virtual displacement field [36].

In this present work, a hybrid discrete hypoelastic model is devel-
oped, and then compared with experimental results. To determine the
behaviour of HexForce 48600 C 1300 carbon fabric during the pre-
forming process, some basic mechanical tests should be conducted.
Tensile testing campaigns, up to the warp and weft directions of 48600
C 1300 carbon fabric, were carried out to determine the rigidity of the
fabric, which is itself introduced in the numerical simulation. The fol-
lowing aspects are presented in this paper:

e Material characterisation and determination of the model para-
meters,

e Formulation description of the hypoelastic and hybrid model,

o Identification of non-linear stiffness and shear,

e Validation of the shear and stress response on a single mesh and the
bias extension simulation by comparing with marker tracking
method data,

e Simulation of a hemispherical forming test,

e Comparison between the hemispherical forming test and numerical
results.

2. Materials and experimental investigations
2.1. Specimen and material used

To determine the behaviour of woven carbon reinforcements, ten-
sile and bias extension tests were carried out following three directions
(0°, 45°, and 90°), using 270 mm X 50 mm samples with a 150 mm
gauge length. In this work, the carbon fabric used is HexForce 48600 C



1300. This fabric is a 2 x 2 twill weave with a 0.62 mm thickness ply.
Referring to the datasheet provided by Hexcel [37], this fabric is con-
sidered to be balanced (a fabric made up of equal numbers and sizes of
warp and weft yarns). The fabric specifications and geometric proper-
ties are presented in Table 1.

2.2. Tensile test

Tensile tests along the warp and weft directions are conducted to
characterise the stiffness of fabrics. In this experiment, the samples are
loaded at a constant displacement rate of 2 mm/min [38] on an Instron
550R testing machine. The load is recorded by the machine and the
displacement is recorded by a digital image correlation (DIC) system
(Fig. 1). To avoid slipping between the specimen and the jaws and to
ensure a smooth surface sheet, steel plates are used for clamping
(60 x 50 mm).

The load cell is rated at 100 kN, and the controlled room tempera-
ture is 22 °C. The specimen is placed without any pre-loading; as re-
ference for the test, the displacement and load are set as zero.
Furthermore, the shear stiffness of the fabric is increased significantly
by yarn pretension. The effective stiffness of the fabric is determined
from the slope of the load—displacement curve.

2.3. Plane shearing and experimental analysis

2.3.1. Bias extension test of woven fabric 48600 C 1300

The yarns of the specimen are located at + 45° to the tensile di-
rection, and the initial angle between the warp and weft is 90°. Bias
extension tests are used to characterise the shear mechanisms of fabric
reinforcement considering the low values of forces involved during this
test. Testing of the specimens was conducted on an Instron 550R tensile
machine, using a 500N load cell under a 10 mm/min displacement
speed [39,40]. Moreover, the load-displacement diagrams are re-
corded. These tests are carried out at room temperature (22 °C). The
ratio A between the length and width of the specimen should not be
smaller than two (A. = L/W) in the bias extension tests [36], where L is
the total length of the material, and W is the width of the specimen.
This ratio should be greater than two in order to obtain pure shear in
the centre of the specimen. Fig. 2 shows an idealised bias extension test
sample with A = 3, in which the material is divided into three regions.
This has been shown in [41], where the material is divided into three
different regions (A, B, and C). The deformation in area B is located in
the centre of the specimen and it can be considered as a pure shear area.
The shear angle in area C is always half the shear angle in area B, while
area A remains undeformed, assuming that yarns are inextensible and
that no slip occurs in the specimen. During the bias extension tests, the
angle a, between the warp and weft gradually decreases. The shear
angle y is calculated from the geometry of the bias extension test.

a)_ H+d)—-W _ = d
o (2) 2(H — W) cos (%) ( 2 ) 2(H = W) oos((%)
1)
¥y = 90° = o = 90° = 2arcos (13/;;) @

where D is the initial diagonal length of area C, and d is the displace-
ment of the mobile clamps of the tensile machine. Five samples were
tested and the average response was computed. It is observed that the
load recorded is very small (5.5N maximum), whereas the displace-
ment is very large (up to 50 mm at maximum load). The load increases
to a maximum value of 5.5N and then decreases progressively.

2.3.2. Mark tracking method application
The fundamental principle of the mark tracking method is to mark
previously dried reinforcements with painted points at strategic

locations, as illustrated in Fig. 3. This procedure allows the determi-
nation of the position of each mark for every configuration and the
calculation of the displacements of these points between the initial and
deformed configurations. The objective of such an approach is to
monitor the behaviour of the yarns by tracking the marks in real time.
Two CCD cameras are positioned to measure and systematically register
two or more configurations: the initial, intermediate, and final one. In
fact, the calculation of the three-dimensional (3D) marker positions is
performed based on a standard network of markers, whose positions on
the left camera (xg, ), z;) are known in reference to the right camera
(X4, Y4, Za). The measurement of positions during loading is performed
by a stereo-image correlation system. The DIC system used is the GOM
ATOS system with the Aramis software. The numerical image acquisi-
tion is 1392 x 1040 pixels and the spatial resolution is less than 15 pm.
Images are recorded during the test and analysed by the Aramis soft-
ware to determine the full field displacements of markers [42]. The
focal length of objects used is 35 mm for the tests at 0°/90° and 12 mm
for the tests at 45° to increase the size of the observed area. The rigidity
in shear is less than the tensile one; thus, the displacement in shear is
much larger than the tensile one.

The angles between the marks are calculated using the variation law
of cosines @ £ (AB, BC). Thus, the shear angle at zone B is calculated as
the average of the difference in global angle. For a quantitative com-
parison, the shear angle in zone B is averaged and plotted versus
crosshead displacement. The ideal kinematic angle is also plotted.

In the evaluation, the mark tracking method for the different mea-
surements is performed in the three areas of the specimen.

2.4. Experimental results analysis

2.4.1. Tensile tests

The resulting load—displacement curves for the woven fabric are
shown in Fig. 4. Each curves are the average curves of 5 tests. They are
composed of three distinct parts. The first one is non-linear until a 2 mm
displacement. This stage corresponds to the setting up of the woven
fabric, reducing the crimp phenomenon in this direction until the yarn
is in tension. As the yarn strain begins, the stiffness becomes non-linear
and increases until a linear trend is attained. The second part corre-
sponds to the linear stage, where the tension of the fabric increases up
to the maximum load. The last part is the progressive deterioration of
the specimen until full unweaving of the fabric. The load—displacement
behaviour of the fabric will be fitted with a 4th order polynomial al-
lowing a non-linear stiffness description of the tensile test as will be
explained in Section 3.

It can be seen that the stiffness in both directions is not exactly the
same, which means that the fabric is not perfectly balanced.

To identify the rigidity of the yarns, a polynomial equation is used
to fit the experimental force-displacement curve. The method consists
of establishing the experimental trend curve and identifying the coef-
ficients of the polynomial. The expression of total polynomial beha-
viour of order 4 is thus written as

F = asu + asu + aoul + ayuy + ao 3)

Table 1

Specifications and geometric properties of 48600 C 1300 material.
Designation 48600 C 1300
Type of yarn warp T700SC 12K 50C
Type of yarn weft T700SC 12K 50C
Mass per unit length of wire 800 Tex (g/km)
Warp nominal construction 3.7 yarn/cm
Weft nominal construction 3.7 yarn/cm
Nominal weight 600 g/m?
Surface density of fabric 1.8g/cm?
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Fig. 1. Experimental setup for uniaxial tension and bias extension tests.

Z; Image processing system

The method of accounting for this non-linear behaviour involves
defining a displacement interval. The polynomial coefficients in a va-
lidity interval [0 mm, 3.9 mm] was determined from the experimental
trend curve. The total behaviour of the specimen is written in the fol-
lowing form:

F, = —170.85-u + 573-u® — 123.13-u? + 19.75-u, — 3.446 &)

2.4.2. Bias extension test

The resulting load-displacement curves for the bias extension test
are shown in Fig. 5.

The experimental shear angle is then calculated and compared to
the kinematic angle (Fig. 6), which was explained in the previous sec-
tion. Experimental and kinematic shear angles correlate well up to 21°
and then, the kinematic method overestimates the load observed from
the test. The large clamp displacement and smaller shear angles, as
shown by the experimental data, could be due to the appearance of yarn
sliding. Actually, this phenomenon is commonly observed during bias

(cco

f Instron
R’ Control

< system

extension testing [43,44]. The occurrence of sliding at the interface
between the zones makes it possible to stop the increase of shear in the
central zone [20].

To validate the theory of three shear areas, the mark tracking
method is used to calculate the shear angles in zones A, B, and C, as
shown Fig. 2. The calculation is done in the lower and upper part of the
sample to sure that the deformation is symmetric. For a displacement
value from 0 mm to 15 mm, both shear angles in the lower and upper
part and for each area A, B and C are equivalent. It also can be noted
that the shear angles in area A (supposed to be unsheared) is not equal
to 0°. Furthermore, for a displacement of 15mm, the average shear
angle in zone B, supposed to be in pure shear, is equal to 20°, whereas in
zone C, supposed to be half sheared, the average shear angle is ap-
proximately 8°. The verification of the domain of validity of the kine-
matic hypothesis, in which the shear angle in the half-sheared zone C is
half the value of the one in the central zone (pure shear), is followed.
However, the two zones A near the tabs, supposed to be unsheared,
show a slight shearing (Fig. 7).

w Zone A
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LLLLLLL
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w C L c
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Fig. 2. a) Scheme of bias extension test and b) experimental specimen.
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Fig. 3. Marking of woven 48600 C 1300.
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Fig. 4. Results of tensile test of 48600 C 1300 in warp and weft directions.
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Fig. 5. Results of bias extension test of 48600 C 1300.

2.4.3. Shear force during bias extension test

The calculation of shear force measured in the uniaxial bias exten-
sion test per unit length, Fj, can be predicted by the normalisation
theory for the rate-independent fabric, using the relationships between
the unit torque Cs and the normalised shear force Fy:

Cs(1) = Fa)cos(pyand ¢s (L) = By (g) cos(y)

Based on recent reviews [45], the normalised shear force can be cal-
culated as:

€0 T T T T T T T T

—©— Measured shear angle
80 Theorelical shear angle

40

Shear angle (°)
w
[=]

0 1 1 L 1 1 1 1 L 1
0 5 10 15 20 25 30 35 40 45 50
Displacement (mm)

Fig. 6. Theoretical and measured shear angles for 48600 C 1300.
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We also assume that the function F; can be approximated by a fifth
degree polynomial:
FEan(p) =asy’ + a7 + a7> + ;p* + ayy + qp

Hence, for five different values of y, we can determined the coef-
ficients of the polynomial, assuming F;; (0) = 0.
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For the woven 48600 C 1300, the normalised shear force is ex-
pressed as the following equation:

Fy (y) = 2.8450-y° — 3.7092-y* + 1.8682-y° — 0.4168-y2 + 0.0514-y  (8)

Fig. 8 shows the non-linear curve shear force against the shear
angle. It can be subdivided into three main phases. In the first stage,
called placing, the shear load is relatively small (near 0 N-mm~!) and



60 T T T

alpha1
S50 [ | = = =petal

alpha2
T40f | == alpha3
© = alphad
e = = = alpha7
&30F P
5 alphab
2 = = = alpha6
» 20

20 25 30 35 40 45 50
Displacement (mm)

Fig. 7. Evolution of shear angle in pure shear zone, semi-sheared zones, and attachment zones during bias extension test.

increases linearly until 21°, with the fibre rotating and moving freely. In
the second stage (transitional zone), the shear rigidity of the fabric and
the external load increase sharply, and the fibre yarns begin to be in
contact. In the third stage (locking), the limit of the shear angle is
reached. Several woven characterisation studies indicate that the shear
resistance increase significantly above the locking angle due to yarn
compression [46,47]. In these tests, the average critical shear angle is
Yo = 38,

The shear modulus G;3 is a characteristic variable. Understanding
the shear modulus is paramount in any study on the shear behaviour of
composite reinforcing fabrics. This modulus can be expressed as a
function of the angle (y). Here, (y) is in radians. To identify this para-
meter, we used the trend curve of the normalised force Fy (y). The shear
stress is obtained by a direct division of the different values of the force
normalised by the thickness of the woven fabric e = 0.62mm. The
shear stress 7(y) comes out as

T(y) = 4.588-y° — 5.9826-y* + 3.0133-y> — 0.6723-y% + 0.0829-y )

Then, the shear modulus is calculated from the derivative of the
regression equation determined from the data point on the shear stress
versus the shear angle plot.

2 T T T T T T T T 0.2

=@ Shear stress (MPa)
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0
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Fig. 9. Comparison of shear stress, shear rigidity, and normalised shear force.
G (¥) = 22.9438-y* — 23.9304-y> + 9.0399-y2 — 1.3447-y + 0.0829
(10)

The procedure for shear modulus determination of the 48600 C
1300 fabric starts by plotting the graph shown in Fig. 9. The shear angle
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Fig. 8. Normalised shear force versus shear angle of woven fabric 48600 C 1300.



is in radians and there are two vertical axes. The vertical axis on the left
is in MPa and serves as a common scale for shear stress and shear ri-
gidity. The right scale is for the normalised shear force with a unit of N/
mm. All three curves are drawn as a function of the shear angle in
radians as an independent quantity. These results are the graphical
representation of Egs. (8) and (10).

3. Numerical modelling based on hybrid discrete hypoelastic
model

3.1. Principle of the approach used

The hybrid discrete hypoelastic model of the fabric is built using a
mesh of non-linear connectors and membrane elements (Fig. 10). The
linear element represents the contribution of yarns in tension. The as-
sociated constitutive law is non-linear elastic with K (u), the connector
stiffness, and automatically captures the evolution of the orientation of
the principal load paths as the yarns rotate. The membrane/shell ele-
ments consider only the shear resistance of the fabric and have a zero
tensile stiffness. The proposed model includes the following parameters:
the element dimension [, and the stiffness of connectors (F, u). Eqy,
E3), G2, and e are respectively the in-plane stiffness, shear modulus,
and the thickness of the hypoelastic continuous elements.

3.2. Tension behaviour of non-linear connector elements

The linear elements take into consideration the tensile contribution
of the yarns of the fabric material behaviour and associated axial con-
nectors, whose behaviour is non-linear K (u). This approach consists of
considering the beginning of the force-displacement curves identified
experimentally in Section 2.4.

The non-linear stiffness associated with the connector level is cal-
culated from the resulting behaviour based on the equivalent model of
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Fig. 11. Comparison of uniaxial tensile warp direction (experimental versus
non-linear digital).

the test specimen F,. The limits of the force and displacement of the
connectors (F, U;) are defined from the following formulations:
1 1 X Y

U= —uy, b= ——F, N=—, andn = —
TN n+1 I Iy 11)

Here, X and Y are respectively the length and width of the specimen.
Simulated numerical tensile tests in the commercial software Abaqus/
Explicit are used. The tests are carried out on specimens of dimensions
150 x 50 mm with an imposed displacement U = 39 mm, speed of
2mmmin~}, and dimension of the mesh element /[, = 1 mm. The
number of connectors in the Y and X directions are respectively
N = 150 and n = 50. To avoid extraction of the finite elements, the
travel and load limits supported by the non-linear axial connectors are
set as Ucpay = 0.026 mm and Fey,, = 215.47 N. Fig. 11 shows a com-
parative result between the numerical and experimental responses. An
examination of the tendency curve clearly shows the reproduction of

Hypoelastic
membrane element

Connectors
(non-linear tension)

Fig. 10. Discretisation of the fabric.



the digital approach by the experimental tensile behaviour.
3.3. Shearing behaviour of continuous element

The incorporation of the in-plane shear behaviour in a membrane
element for the finite element is based on the hypoelastic model. The
formulation of hypoelasticity is an objective derivative of the Cauchy
stress tensor. It is a function of the current state of the stresses and the
rate of deformation. It is commonly used for all non-linear behaviour
types. It is necessary to define the form and guarantee the objectivity of
the derivative quantities g¥. The hypoelastic models are used while
considering large deformations and non-linearities, both geometric and
material [18,48].

g'=gD 12)

Here, D and ( are the strain tensor and Eulerian constitutive tensor
Cauchy stress, respectively. gV is also the objective derivative of g
defined to avoid stress change due to rigid body rotations in g = dg/dt.

v_ of 4 or T
2= 9(5@'e0)e o

Q is the rotation of the initial orthogonal frame to the so-called
rotating frame where the objective derivative is made [9]. The objective
derivative used is a rotational derivative of Green-Naghdi (GN). We
remain in the general framework of an objective derived based on a
rotation R with the associated basis {GN, ,}. The principle is involved
using the formula for updating the constraints, taking care to provide
the projection tensor behaviour based on {GN,,}. For this, a manip-
ulation is necessary because the latter is of known form only in the
projection in {F, 5} [49]. This manipulation consists of a change in the
behaviour matrix basis between the current fibre directions {F; >} and
the current orientations of GN axes. It is then necessary to determine
the corresponding rotation tensor R, which is the tensor obtained from
polar decomposition of the gradient such as

R=EFU" 14

where U is the right stretch tensor. The GN basis, denoted as GN, ,, is
updated by the transportation of the initial basis, GNY,, by the rotation
tensor R:

G-Nltfz =R G-Nfz (15)

The current fibre directions F; >, in the warp and weft directions are
obtained from the deformation gradient tensor F:

_ _E.GN,
IIE. GN{, |l a16)

=12

where F, and GNy, are assumed to coincide initially (Fig. 12).

When both directions of fibre axes F, > and GN;; are determined, it
is then possible to transform the strain increment from the current
software working axes (GN) to yarn frame, because the two fibre axes
directions F, > do not remain orthogonal after deformation. Therefore, it
is necessary to generate a new local orthogonal frame, where each of
the two fibre axes will be defined [50]. Additionally, we construct two
orthogonal frames, where each frame is based on one of the fibre axes.
The first angle is 6, between GN, and F,. The second, 6,, is the angle
between GN, and F,. These angles can be determined within the user
subroutine via the deformation, which leads to the construction of two
transformation matrices between this material basis and the GN one

[T](GNI,ZlFI,z):

cos 61_2 sin 91'2 ]

T : = .
[ ](GNLz,FLz) [_ sin 91,2 cos 91‘2

aa7)

The current fibre directions F, , can be calculated from the initial
fibre axes Fﬁz and from the deformation gradient such as
EED, FGNY,
Ero=e g ==t
IFE |l [IFGNy, I (18)

The increments of deformations are provided by Abaqus at the end
of each loop, which makes it possible to calculate the deformation in-

crements with respect to the two bases (El, %) and (E 2 "fjﬁ) using
the principles of base change defined as

[deli, iy = [T217 [deON [T;2] a9)

where

1!
[1] = [Tll Tzl] with T} = cosfy; Tj = —sind,; TI = sinb, and T} = cosb,,
3 1

(20)

Large deformation

Fig. 12. Material axes and GN axes after deformation.
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22] with T} = cos0y; T# = —sinb,; T? = sin6, and T} = cosb,.
4

(21

Then, the in-plane shear angle is defined as the change in the angle
between the warp and weft yarns and specifically, here, it is defined by
Eq. (2) in the bias test. Next, the constitutive law [C], r,), can be ap-
plied for each warp and weft fibre directions and solved for incremental
stress in the fibre frames using

[dolr = [Clp [de]r and [do]g, = [ClE, [de]r, (22)
where
E, 00 00 0
[Clm=|0 00 |and[C]sp,=|0 Ex O |.
0 0 Gp 00 Gp 23)

Here, (E11,E»;) and Gy, are the elastic tensile modulus and the in-
plane shear modulus. The hypoelastic model has been implemented in a
VUMAT user subroutine in Abaqus/Explicit.

The increments of the constraints are then cumulated according to
the classical formulation of Hughes and Winget [48]:

(O-Fl)n+1 (O-lll)n + (do-Fl)n+2
(@)™ = (o))" + (dofy yr+

(01)"*! = (o))" + (dUu + doj? )HZ

Finally, the stresses in the two directions of the fibres are calculated
and then projected into the GN base by the transformation

@™y = [L1[olon [LTT + (L1016 (LI 29

3.4. Validation of continuous elements according to elementary tests

For the validation of the hypoelastic model applied to continuous
elements, we carried out a comparative study with the results of Khan
[51] on a 3D quadrilateral membrane element with reduced integration
(M3D4R). Three elementary tests were carried out on a single
1 X 1 mm element with bidirectional fibres: (i) 45° simple shear test,
(ii) traction followed by 45° simple shear, and (iii) traction followed by
rigid body rotation [51].

For the three cases, the elongation is twice the length of the element

(% = 2), the thickness of the membrane is 1 mm, the tensile rigidity E;

for both directions (i = 1, 2) is 34 500 MPa, and there is no shear ri-
gidity.

Strains after extension in the first direction (e;), the final shear angle
(vg), and the final stresses are extracted from the numerical simulation
(Table 2) and compared to Khan’s results [51].

Three elementary tests were performed and found to have a good
agreement with the literature. First, it is observed that the shear angle
for tests 1 and 2 are 45°, whereas for test 3, it is 0°. These results are
consistent with the physical deformation of the fabric. For a simple
shear test, the shear angle is 45°, and for a rigid rotation it is 0°.
Therefore, the unit cell is well deformed for the shear test whereas for
rigid rotation, it is not. Second, it is observed that for a simple tension
test (tests 2 and 3) in the fibre direction, the strain output is 0.69, which
corresponds to the large strain theory. Third, it is observed that the
stresses for simple shear computed for directions 1 and 2 are not equal
to zero. Direction 2 is constrained (no displacement in direction 2 is
allowed), which implies stresses in both directions. The values of the
stresses are equivalent to Khan’s value. For the tensile step (test 3), only
the fibres in direction 1 are deformed. The stress in direction 1 is
2.45E + 04 MPa, whereas in direction 2 it is 0 MPa.

Elementary tests allow the calculation of stresses, strains, and shear
angles of a hypoelastic deformed fabric. The tension stresses obtained
correspond exactly to the expected solutions in the case of a law linking

the Cauchy constraints and the logarithmic deformations. This ap-
proach permits the calculation of the real characteristic, and the mag-
nitudes of the output are equal to those in the literature. It describes
well the behaviour in tension and there is no tension related to the
rotation of rigid body. This approach is for rigid body rotations.

3.5. Validation of the hybrid discrete method according to elementary tests

In order to validate the hybrid discrete method, simple shear ele-
mentary test is carried out on a 1 X 1mm unit cell with a 1 mm
thickness with 4 connectors. The difference with the validation of
continuous element is that the membrane has no shear rigidity and has
very low tensile rigidities: E; and E, are equal to 3.9 MPa. The tensile
rigidity is modelled by a linear connector stiffness equal to 12 250 MPa.

The output results are presented in Table 3. The computed shear
angle is equal to 45° and the computed stresses are 2.45E + 04 MPa and
1.23E + 04 MPa for direction 1 and direction 2, respectively. By com-
paring with the previous elementary tests on a hypoelastic continuous
cell only, both approaches provide the same result qualitatively and
quantitatively, validating the hybrid discrete hypoelastic approach on
an elementary application.

3.6. Identification of the shear behaviour parameters

The material parameters of the continuous elements are the Young
modulus, thickness, and in-plane shear rigidity (E, e, and G, respec-
tively). Our fabric is considered to be balanced (E;; = Ej5). Finite
element analyses of the bias-extension test are performed within an
optimisation loop in order to determine the characteristics of the
membrane elements. The identification of the parameters is then car-
ried out using the inverse method by comparing the force-displacement
curve obtained from the maximum loading test. The maximum shear
angle is determined by the angle between two connectors, each char-
acterising a yarn direction. Two variants of this model have been tested.
The first model is a hybrid hypoelastic behaviour of the shell with the
in-plane shear rigidity G;, considered constant. The second one, with a
non-linear shear modulus G, has been determined in Section 2.

The bias extension test parameters used for the numerical bias test
are presented in Table 4.

Fig. 13 shows that the hypoelastic discrete hybrid model followed
the woven fabric behaviour up to the displacement of 21 mm, which
corresponds to the beginning of the appearance of sliding in the bias
tests. From this value, the two numerical and experimental curves di-
verge. Another numerical simulation of the bias extension test was
carried out using the discrete hypoelastic hybrid model, where the
shear modulus is not constant. This study made it possible to demon-
strate the different shear zones according to the literature. A compar-
ison between the experimental and numerical values (normalised load
and shear angle) presented in Fig. 14 shows that they are in perfect
agreement before the sliding begins and when reaching the locking

Table 2
Computed results for elementary tests on continuous element.

Khan’s stress tensor [51]

on
oK = 1922
912) Mpa

Test no. 51 ve () Computed stress tensor

o
of = 1022
912) Mpa

1 - 45
123E+O4 123E+O4
2 0.69 45 2.45E + 04 2.45E + 04
123E+O4 oK = 123E+04
3 0.69 0 2. 455 + 04 2. 45E + 04
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Table 3
Computed results for elementary tests on a single cell of the discrete hybrid
method.

Test no. 73] Computed stress tensor
on
aof = on
%12 MPa
1 45 245E + 04
of =4{1.23E + M4
0
Table 4
Numerical input for bias extension test.
Element size  Element Elastic modulus in both In-plane shear
Lo (mm) thickness directions rigidity
e (mm) El, E2 (MPa) G12 (MPa)
2.69 0.01 39 1.5

angle. After this angle, the curves diverge because the numerical model
does not consider the transverse compaction of the locks, which gen-
erates friction. A study on the sensitivity of the thickness to the nor-
malised numerical values of shear forces and angles shows the in-
dependence of the results. Therefore, the actual value of the thickness
of the fabric is equal to 0.62 mm.

4, Application of hemispherical composite forming

To evaluate and show the potential of discrete hypoelastic approach
with the VUMAT subroutine, a hemispherical forming was simulated in
Abaqus/Explicit for comparison with the experimental results of
hemispherical dome forming. The hybrid elements were automatically
generated using Python scripts. The modelling case was created using
three parts (the punch, blank holder, and die). The punch has a dia-
meter of 50 mm, and the die has a hole diameter of 55.4 mm; hence,
there is a gap of 2.7 mm between the punch and die. The curvature
radius that links the vertical and horizontal surface of the die is 6 mm to
prevent a severe curvature of the preform during forming. The total
force applied on the holder is 238.45N. The fabric part represents the
hybrid discrete elements and is the only deformable body in the si-
mulation, with the punch, holder, and die parts represented by analy-
tical rigid bodies.

For the balanced woven fabric of 48600 13000 C and to minimise
the calculation time, the numerical symmetry is considered. The fabric
is represented as a quarter model with xy and yz planes and the friction
coefficient between the fabric and die is set as 0.2, which is the average

50

150

a)

-y

value used by Khan [51]. The contact condition is general (where all
bodies are prevented from penetrating other bodies according to the
‘general’ contact rules in Abaqus).

The material characteristics and process parameters mostly used for
numerical forming simulations are detailed in Table 5.

Two different orientations were tested: the first one with the fibre
orientated at 0° and the second one at 45°.

5. Results and discussions

The woven fabric forming simulation was performed using the hy-
brid discrete hypoelastic approach presented above. The computed
deformed shape was compared with the experimental shape in Fig. 15.
The woven fabric was initially oriented at 0°/90°. After forming, the
numerical simulation results and deformed fabrics were compared. A
good correlation was observed between the results (Fig. 15a). The
analysis is based on the position of borders of the sample. The contours
of numerical and experimental deformed shapes are plotted in both X
and Y directions as shown in Fig. 15b. It can be observed that the shapes
of the contour of the experiments and numerical simulation are almost
similar with a maximum gap in the X and Y directions of 8 mm and
10 mm respectively. This difference can be attributed to the difference
between the real boundary conditions of the blank holder and the
considered boundary conditions of the model. Moreover, in Fig. 15a, it
was observed that on the free edges some fibres were slipping, making
the post-treatment more difficult. The border profile corresponds when
an assembly of the deformed numerical shape and experimental shape
is performed. Both the model and experiment identified the same zone
with high shear angles, as shown in Fig. 15.

Fig. 16 shows the deformed shape of the preformed fabric obtained
from the forming simulation of a hemispherical model with a fibre
orientation of 45°. The simulation results were compared with experi-
mental values using real thickness and non-linear in-plane shear. In the
same way as the preform oriented to 0°, the experiment and numerical
results were assembled to compare the border shape and the shear
angle. The shear angles were measured at 4 points (red points in
Fig. 16a) with a marker tracking method of surface woven fabric. This
measurement was only conducted on the flat face of the fabrics because
there was only one camera (perpendicular to the initial preformed
fabric) during the experiments. In the simulation, the shear angles were
measured at the same position and the blank boundary was plotted, as
shown in Fig. 16¢c. The gap between the simulated and experimental
angles was less than 1°; therefore, the accuracy of the simulation is
satisfactory.

This approach predicts the deformation of a two-dimensional fabric
for 0°/90° and * 45° fibre orientations with good accuracy. The nu-
merical shear angles are equivalent to the experimental ones for both

N W s O,

b)

Fig. 13. Simulation and experimentation of bias extension test: a) sample geometry and deformed mesh for a 40 mm displacement and b) experimental and

numerical load—displacement curves.
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Table 5
Numerical input for hemispherical forming.
Element type Element size Element thickness Elastic stiffness/rigidity In-plane shear rigidity
Lo (mm) e (mm) G12 (MPa)
Connectors 2.69 - K (Eq. (4)) -
Membrane 2.69 0.62 E, =E; =3.9MPa (Eq. (10))

High shear angle zones in
simulation and experiment
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Fig. 15. Numerical and experimental results of dome forming with 0°/90° initial orientations of tows: a) shear angle and b) contour.

orientations. Therefore, the algorithm using the hypoelastic law with an
objective derivative describes well the rotation of fibres. Moreover, the
shear behaviour, represented by a non-linear equation, is not sensitive
to the real thickness, as shown in Fig. 14. Thus, the real behaviour can
be input in the model instead of a numerical one in order to have a
more realistic simulation. Furthermore, this approach shows a good
behaviour for out-of-plane displacement as observed in the hemispheric
forming. Because the connector and membrane element are both con-
nected by nodes and both connectors and membrane edges will be

strained in a straight way, both networks will be superimposed for
every load. It has also been noted that when a shear load occurs, the
non-linear rigidity of the connectors acts as a damper on the membrane
element response. The non-linear hypoelastic hybrid approach is also
able to predict stresses on the fibres, using the load inside the con-
nectors, as demonstrated by Labanieh [52]. It also allows the de-
termination of the stress tensor inside the continuous elements. These
findings could be very useful for pre-impregnated materials because
stresses due to the matrix could be computed and analysed.
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experimental and numerical shear angle.

6. Conclusions

In this study, both experimental and numerical investigations were
carried out. The methodology and the numerical model developed in
this study allow the forming of dry woven fabrics. The main aim is to
propose a simulation uncoupling the shear behaviour and tensile be-
haviour of the fabric. This simulation was developed via a linear con-
nector element for the tensile behaviour and continuous membrane
element for the shear behaviour. To obtain a more accurate model, a
non-linear trend behaviour was used for tension and shear, and a hy-
poelastic behaviour was used to follow the rotation of the fibre during
forming. With this discrete hypoelastic model, shear angles and locking
angles are predicted and can be used for designing complex parts
without generating defects.

First, the experimental study allows the characterisation of the
fabric in tension and shear by using the mark tracking method during
tensile tests and bias extension tests. Second, a methodology was de-
veloped to identify, from previous tests, the non-linear behaviour of the
fabric. Two 4th order polynomial equations were identified to model
the non-linear stiffness of the connector and the non-linear shear ri-
gidity of the membrane element. Third, a highly accurate numerical
model was developed to analyse the fabric deformation. This model
involved the assembly of the non-linear tension behaviour of a linear
connector element with the non-linear shear behaviour of a hypoelastic
membrane element. This model was validated with some elementary
tests found in the literature. A numerical model of the fabric forming
process using a hemispherical punch was presented in the last section of

this paper. It provided numerical results that were close to the experi-
mental ones. Thus, the model was also validated in a more complex
way.

The non-linear hypoelastic discrete model was developed for ma-
terials having two orthogonal directions of strong anisotropy. This
model was able to predict fibre stresses and to determine, with high
precision, the shear angles based on the modification of the orientation
of the wires in large deformation. It was validated in different config-
urations, showing its ability to describe the composite behaviour and
the high accuracy of shear angle prediction. Moreover, the proposed
approach can be used to model the behaviour of pre-impregnated fab-
rics with unbalanced fabrics.
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