M. E. Merchant and H. Ernst, Chip formation, friction and high quality machined surfaces, Transactions of American Society for Metals, vol.29, pp.299-378, 1941.

B. W. Shaffer and E. H. Lee, The theory of plasticity applied to a problem of machining, Journal of Applied Mechanics, vol.18, pp.405-413, 1951.

W. F. Hastings and P. L. Oxley-;-f, Minimum work as a possible criterion for determining the frictional condition at the tool/chip interface in machining, 1975.

G. Boothroyd, Temperatures in orthogonal metal cutting, Proc. Inst. Mech. Eng, vol.177, pp.789-802, 1963.

G. Johnson, W. Cook, and R. , A constitutive model and data for metals subjected to large strains, high strain rates an high temperatures, Proceeding of the 7th Int. Symposium on Ballistics, pp.541-54, 1983.

P. L. Oxley, Mechanic of machining: an analytical approach to assessing machinability, 1989.

D. I. Lalwani, Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model, Journal of materials processing Technologies, pp.5305-5312, 2009.

L. Xiong, J. Wang, Y. Gan, B. Li, and N. Fang, Improvement of algorithm and prediction precision of an extended Oxley's theoretical model, The International Journal of Advanced Manufacturing Technology, vol.77, pp.1-13

G. Rossum, Python reference manual, 1995.

M. Newville, A. Nelson, T. Stensitzki, A. Ingargiola, and D. Allan, LMFIT: nonlinear least-square minimization and curve-fitting for Python, Astrophysics Source Code Library

K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quarterly of applied mathematics, vol.2, issue.2, pp.164-168, 1944.

D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, Journal of the society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.