Color Imaging with Multimodal Three-Photon Microscopy


To cite this version:
Lamiae Abdeladim, Pierre Mahou, Willy Supatto, Emmanuel Beaurepaire, Khmaies Guesmi, et al.. Color Imaging with Multimodal Three-Photon Microscopy. Optics and photonics news, Optical Society of America - OSA Publishing, 2018. hal-02359554

HAL Id: hal-02359554
https://hal.archives-ouvertes.fr/hal-02359554
Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Color Imaging with Multimodal Three-Photon Microscopy

In-depth imaging of intact biological tissues, with subcellular resolution and molecular specificity, is a key enabling technology in neuroscience and other fields of biology. Two-photon (2P) microscopy, the reference technique for tissue studies, delivers 3-D fluorescence at depths of few hundreds of micrometers inside scattering environments such as the brain. The strong performance of 2P stems from the robust confinement of multiphoton excitation and the use of near-infrared excitation in the 0.7-to-1.2-µm range. Reaching larger depths, however, is hampered by light scattering that ultimately degrades excitation confinement, resulting in a severely reduced signal-to-noise ratio at depths of a few scattering lengths.

A recently introduced and promising approach for deeper fluorescence microscopy relies on the use of three-photon (3P) excitation in the short-wavelength infrared (SWIR) range, near 1.3 µm or 1.7 µm. The 3P excitation provides better confinement than 2P excitation, and these two SWIR windows offer a good compromise between reduced scattering and minimal water absorption. Yet 3P imaging has thus far been restricted to monochrome imaging, because of the large spectral gap between the wavelength windows of interest. Given that many applications require visualizing interactions between cells or tissue components labeled with different fluorophores, multicolor laser sources enabling efficient two-color 3P imaging constitute an important research target.

To meet this challenge, we developed a novel source emitting concomitant femtosecond pulses at 1.3 µm and 1.7 µm. We showed that the 1.7-µm pulse provides efficient 3P excitation of red fluorophores (RFPs), while the 1.3-µm pulse targets the green fluorescent protein GFP.

Our strategy was to design a MHz-rate optical parametric amplifier (OPA) providing µJ-range pulses at 1.7 µm, and to frequency-double the 2.6 µm idler beam to obtain a second output at 1.3 µm. This scheme provided unmatched performance, optimized for multichannel 3P microscopy (less than 70 fs, 1.25 MHz and µJ pulse energy in each beam).

The laser outputs were then routed onto a custom-built multiphoton microscope, optimized to work in this excitation wavelength range. GFP, RFP and third-harmonic generation (THG) signals were picked up on three independent detectors. We could then record dual-color multimodal three-photon 3-D images of both fixed and live neural tissues. In particular, we obtained the first in-depth images of live adult zebrafish brains with two distinctively labeled cell populations. This work should open many perspectives in neuroscience, developmental biology and biomedical sciences.

REFERENCES