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Abstract: We perform a theoretical and experimental study of the two-pulse photon echo area
conservation law in an optically dense medium. The experimental properties of the echo signal
are studied at 4K on the optical transition 3H6(1)→3H4(1) (793 nm) of Tm3+ in a YAG crystal
for a wide range of pulse areas of the two incoming light pulses, up to θ1 ≈ 4π and θ2 ≈ 7π
respectively, with optical depth 1.5. We analyze the experimental data by using the analytic
solution of the photon echo area theorem for plane waves. We find that the transverse Gaussian
spatial profile of the beam leads to an attenuation of the echo area nutation as function of θ1 and
θ2. Additional spatial filtering of the photon echo beam allows to recover this nutation. The
experimental data are in good agreement with the solution of photon echo pulse area theorem for
weak incoming pulse areas θ1,2 . π. However at higher pulse areas, the observations diverge
from the analytic solution requiring further theoretical and experimental studies.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The optical analogue of the spin echo [1], the photon echo [2,3] is an efficient method in modern
coherent spectroscopy [4]. It became a well-established tool to extract basic spectroscopic
parameters of optical transitions and characterize fast atomic and molecular quantum dynamics
up to the femtosecond timescale [5–10]. In applied research, the photon echo has been considered
in the 70’s as a tool for the fast storage and processing of the optical information [11–16]. More
recently, it has been shown that modified schemes of photon echo in optically dense media can
be efficiently applied for the quantum storage of photonic qubits [17–23], even if the use of
strong π-pulses could be risky [24, 25]. We take a widely used definition of optical density: the
absorption coefficient multiplied by the sample thickness.
In this broad context, the McCall-Hahn pulse area theorem provides a global description of

light pulse propagation in optically dense resonant atomic media [26]. The theorem can be seen as
a general conservation law for the pulse area and a helpful complement to the energy conservation
law. In essence, the area law is independent of the particular temporal shapes of the input pulses
and is widely used as a descriptive parameter for spin and photon echo measurements. After 50
years, the theorem continues to attract researchers’ attention [27–34]. Experimental studies of the
pulse amplitude, spatial beam profile, temporal pulse shape and medium optical thickness on the
photon echo intensity are usually described by the Maxwell-Bloch numerical simulation [35–39]
or by using area theorem for a small input pulse area [40,41]. The most general case of the photon
echo area theorem, i.e. valid for any arbitrary incoming pulse intensities, was also discussed
in [42, 43] in terms of total pulse area of all the generated signals. The analytical solution of the
photon echo pulse area was obtained in [44] for arbitrary areas of the incoming pulses. Below
we analyze these solutions and compare with new experimental results and existing numerical
calculations [36].
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It is worth noting that in the recent context of quantum information with the realization of
optical quantum memories, the photon echo area theorem could provide general understanding
of the signal propagation in optically dense samples [17, 18, 20, 45]. The small input pulse area
condition is not only a particular case of the area theorem but also a limitation for the quantum
storage fidelity [24,25]. In any case, the recent progress in the extreme field confinement achieved
for rare-earth ions embedded in photonic cavities should revive the interest in the area theorem
since large areas can be obtained with only a few photons when the so-called strong confinement
regime is targeted [46–48].

In the second section, we give a theoretical description of the photon echo pulse area theorem
in an optically dense medium. In the next section, we present the experimental results obtained
for a two-pulse photon echo sequence in a Tm3+:YAG crystal (c = 0.1 at. %). We vary the input
pulse areas up to θ1(0) ≈ 4π and θ2(0) ≈ 7π for the first and second pulses respectively. The
obtained experimental data are discussed in the light of the analytical solution for the photon
echo area theorem, including the transverse Gaussian profile of the light beam. We partially
retrieve the plane wave solution by using spatial filtering of the light beams.

2. Photon echo area theorem

We derive in this section the area theorem for the echo in a two-pulse photon echo sequence
depicted in Fig. 1. We first remind the well-known McCall-Hahn area theorem for a single pulse.

2.1. Pulse area theorems: plane wave solutions

2.1.1. McCall-Hahn area theorem

Following [26,27,44] and using the well-established Bloch-Maxwell formalism in one dimension
(propagation along z) for two-level inhomogeneously broadened atomic ensemble, the pulse area
θ1(z) follows the propagation equation known as the McCall-Hahn area theorem [26]:

∂θ1(z)
∂z

= −
1
2
α sin θ1(z), (1)

where α is the resonant absorption coefficient [42]. The solution of this equation is:

θ1(z) = 2 arctan
[
e−αz/2 tan

θ1(0)
2

]
. (2)

An important consequence of Eq. (2) is that if the incident pulse has a pulse area θ1(0) = kπ, k ∈ Z,
then the area is conserved during the propagation. This is true for even values of k as noted in the
original work [26] as well as for odd values of k. However, the latter case is much more difficult
to implement experimentally, since the initial pulse area is preserved only when θ1(0) is very
close or exactly equal to π, otherwise the pulse area converges towards the nearest even multiple
of π while propagating.

2.1.2. Photon echo area theorem

Following the same approach, the theorem was extended to a two-pulse photon echo sequence.
The pulse areas of second input pulse and photon echo follow the equations derived in [27]
and [44]:

∂θ2(z)
∂z

= −
1
2
α cos θ1(z) sin θ2(z), (3)

∂θe(z)
∂z

=
1
2
α

[
2e−2τ12/T2 sin θ1(z) sin2 θ2(z)

2
cos2 θe(z)

2
− cos θ1(z) cos θ2(z) sin θe(z)

]
, (4)
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Fig. 1. The classic two pulse echo sequence propagation through the Tm3+ doped crystal.
®k is the common wave vector of three pulses parallel to the external magnetic field. The
first signal pulse is partly absorbed by the medium, the second pulse triggers the rephasing
process which results in the photon echo emission.

where θi(z), i = 1, 2, e are the pulse areas of the first, second and echo pulses respectively, τ12 is
the delay between the incoming pulses, and T2 is the coherence lifetime of the atomic transition.
A detailed derivation of Eqs. (3) and (4) can be found in the Appendix.

Equations (1) and (3) describe the area propagation of first two pulses (see also [42]). In turn,
Eq. (4) characterizes the echo generated at t = 2τ12 when it is well separated temporally from the
first two pulses τ12 � δt1,2 (see Appendix for details). The analytical solution of Eqs. (3) and (4)
given in [44] can be rewritten in the form :

θ2(z) = 2 arctan
[
γ sech

(
β −

α

2
z
)]
, (5)

θe(z) = 2 arctan
[
e−2τ12/T2 sin θ1(0) sin2 θ2(z)

2
sinh

αz
2

]
, (6)

where sin2 θ2(z)
2 =

γ2

[cosh2(β − α
2 z) + γ2]

with β = ln{tan[ θ1(0)
2 ]} and γ = tan[ θ2(0)

2 ]/sin[θ1(0)]

for θ1(0) < π. For other values θ1(0) > π one can use a more explicit formula: sin2 θ2(z)
2
=

γ2/

[(
tan

θ1(0)
2

e−
α
2 z + cot

θ1(0)
2

e
α
2 z

)2
+ γ2

]
.

According to the solution (5) (see also [43]), at the particular case θ2(0) = π second pulse area
remains unchanged during propagation independently of the first pulse area i.e. θ2(z) = π.
The solution for the echo pulse area (6) is in agreement with the direct Maxwell-Bloch

numerical simulations given in [36]. In particular the authors considered two cases: θ2(0) = π
and θ2(0) = π/2 (T2 � τ12, θ1(0) = 0.27θ2(0), δt1 > δt2) and calculated the pulse energy
efficiency as a function of optical depth αL. The calculated energy efficiency behavior coincides
with the θ2

e(z)/θ
2
1(0) dependence depicted in Fig. 2. This agreement clearly shows the potential

of the area theorem approach to quantitatively characterize the nonlinear interaction in optically
dense media.

Let us now discuss the basic properties of the photon echo pulse area theorem in few particular
cases.

First pulse area is a multiple of π. Here we have two limiting cases are:

1. θ1(0) → (2n + 1)π, where sin2 θ2(z)
2
→

tan2[ θ2(0)
2 ]

e−αz + tan2[ θ2(0)
2 ]

and limαz→∞ θ2(z) =

(2n + 1)π,
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Fig. 2. An area counterpart of the Fig. 2 of [36], plotting the energy efficiency of the
echo pulse θ2

e/θ
2
1(0) without relaxation, i.e. T2 = ∞. The incoming pulses’ areas are

θ1(0) = 0.27π, θ2(0) = π for the solid black curve and θ1(0) = 0.27π/2, θ2(0) = π/2 for the
red dashed curve.

2. θ1(0) → 2mπ, where sin2 θ2(z)
2
→

tan2[ θ2(0)
2 ]

eαz + tan2[ θ2(0)
2 ]

and limαz→∞ θ2(z) = 2πm,

where n,m = 0, 1, 2, ....
These two cases satisfy the condition limαz→∞{θ1(z)+ θ2(z)} = 2π(n+m), demonstrating
an asymptotic formation of optical solitons after interacting with the second pulse. This
situation actually corresponds to the McCall-Hahn theorem [26,42] due to the absence of
photon echo in these cases (due to re-absorption).

Echo in an optically thin medium When αz � 1, Eq. (6) simplifies as:

θe(z) = e−2τ12/T2αz · sin θ1(0) sin2 θ2(0)
2

. (7)

This solution was studied earlier in [3, 41, 49].

Standard photon echo (π/2,π)-excitation This is the most popular case of the photon/spin
echo spectroscopy with θ1(0) = π/2, θ2(0) = π (which gives β = 0, γ = ∞ in Eq. (6), and
θ2(z) = π) so we can obtain the simplified solution:

θe(z) = 2 arctan
[
e−2τ12/T2 sinh

αz
2

]
. (8)

The echo pulse area is continuously amplified in the medium by the factor sinh(αz2 ) with
the asymptotic values for the gain: sinh αz

2 →
1
2 exp αz

2 and the echo area θe(z) → π in the
limit αz → +∞. In this limit, the total area of the three pulses θ1(z) + θ2(z) + θe(z) → 2π,
when the first pulse is completely absorbed and the area of the second pulse remains π.
This also ensures the absence of any secondary echo pulse.
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Weak first pulse (θ1(0) � π) This case typically corresponds to quantum memory schemes
based on the photon echo in ensembles [19, 50]. Assuming θ1(0) � π, Eq. (6) leads to:

θe(z) = 2 arctan
[
e−2τ12/T2θ1(0) sin2 θ2(z)

2
sinh

αz
2

]
, (9)

An intense echo can also be retrieved when θ2(0) = π despite the small incoming pulse
area. In that case, we obtain from Eq. (9):

θe(z) = 2 arctan
[
e−2τ12/T2θ1(0) sinh

αz
2

]
. (10)

This expression shows that the echo pulse tends to a π-pulse in a sufficiently large optical
depth. Area and energy efficiencies can be greater than unity [36, 43, 51]. This comes
from pulse echo amplification in an inverted medium and leads to quantum noise when the
photon echo is considered as a memory [25].
We see that initial condition θ1(0) � 1 does not guarantee that the small echo pulse area
θe(z) � 1 condition is maintained though propagation because of the echo amplification by
the gain term sinh αz

2 . Equation (9) gives the appropriate condition for the weak first pulse
approximation θ1(0) < 1/

(
sin2 θ2(z)

2 sinh αz
2

)
at any position z ≤ L. In the special case

θ2(0) = π and τ12 � T2, this translates into the condition θ1(0) < 1/
(
sinh αL

2
)
≈ 2e−αL/2

leading to the solution of Eq. (9) [25]:

θe(z) = 2e−2τ12/T2θ1(0) sin2 θ2(z)
2

sinh
αz
2
. (11)

Non-optimal photon echo generation (θ2(0) , π) The echo pulse amplification can be sup-
pressed by the spatially dependent factor sin2(θ2(z)/2) for z > 2β/α if the input pulse area
of the second light pulse θ2(0) , π. For sufficiently large input pulse area of the first pulse
θ1(0) > 1 in Eq. (6) and θ2(0) , π, we have the following asymptotic decrease of the echo
pulse area:

θe(z) = 2 arctan

[
e−2τ12/T2 sin θ1(0)

γ2 sinh αz
2

[γ2 + cosh2(β − αz
2 )]

]
αz�1

�

2 arctan

[
2 exp (−2τ12/T2 + 2β)

tan2[ θ2(0)
2 ]

sin[θ1(0)]
exp

(
−
αz
2

)]
. (12)

Equation (12) shows that echo signal is generated and propagates only at the entrance
of the atomic medium. We also find in Eq. (12) that an optical soliton is formed at
z/α � 1 [26,42] if θ2(0) > π. A wide range of interesting physical effects associated with
the soliton formation is however beyond the scope of this paper. Equation (12) shows that
in optically dense media, the echo pulse area can take any values in the interval [−π, π]
starting from zero, it peaks at some value of z and then decays to zero with z →∞. The
fact that area of each echo pulse is less than π does not contradict with the McCall-Hahn
area theorem [26, 40] predicting 2π pulse formation, when θ1(0) + θ2(0) > π. It only
means that one needs to consider also higher order echos (after the primary echo) which
are also exciting the medium.

In summary, Fig. 3 shows the photon echo pulse area as a function of the second incoming
pulse area θ2(0) for different optical depths of the medium αL. We examine the previously

                                                             Vol. 27, No. 20 | 30 Sep 2019 | OPTICS EXPRESS 28987 



0

0.2

0.4

0.6

0.8
1 2 3

0.5

aL=2

aL=10

1 2 3

0.5

a
aL=10
L=2

(b)(a)

Fig. 3. 3D plot of the photon echo area theorem solution Eq. (6) θe(θ2(0), αL) for (a)
θ1(0) = 0.1π (weak first pulse case) and (b) θ1(0) = π/2 as function of the incoming second
pulse area θ2(0) (in the units of π) and optical density αL of the medium. The insets in
(a) and (b) show the cross sections at αL = 2 (red dashed curve) and αL = 10 (blue solid
curve).

discussed cases: θ1(0) � π with θ1(0) = 0.1π in Fig. 3(a) and θ1(0) = π/2 in Fig. 3(b). For a
given optical density αL, the photon echo pulse area θe(θ2(0)) undergoes a series of oscillations
peaking at θ2(0) = (2n + 1)π. It is interesting to note that the positions of the maxima are
independent of θ1(0). The peak widths, however, become sharper at higher optical densities.
The insets in Figs. 3(a) and 3(b) show the cross sections at αL = 2 and αL = 10 and reveal
these tendencies. The non-linear nature of the process in an optically dense (αL � 1) medium
causes the echo to form practically only when the second incoming pulse area is an odd multiple
of π. For θ2(0) , (2n + 1)π, the echo area is maximum at a specific optical depth and then
decreases with the increase of αL. On the contrary, for θ2(0) = π the echo area asymptotically
tends towards π which could lead to area efficiency |θe(L)/θ1(0)|2 > 1 only limited by finite
optical density αL, relaxation time T2 and non-ideality of π-pulse.

Below we experimentally test the photon echo area theorem in more general conditions, namely
high incoming pulse areas θ1(0) > π, θ2(0) > 2π and different spatial filtering profiles.

2.2. Including the transverse Gaussian beam profile

In our experiments, the light beams have a Gaussian profile so the field in the atomic medium
is described by E(t, r) = E0(t)e−(r/r0)

2 where r is the transverse coordinate and r0 the beam
radius. A complete study of the Maxwell-Bloch equations in two dimensions z and r is a complex
problem well beyond the scope of this work. Indeed, the two-level dynamics induces additional
highly non-linear terms in the field master equation (paraxial Helmholtz equation with a source
term). We extend in a simple manner the photon echo area Eqs. (1), (3) and (6) derived for plane
waves to include the transverse spatial beam profile and give a quantitative explanation of the
experimental data. For the sake of simplicity, we assume the geometrical optics approximation
i.e. neglect diffraction effects (similar to the studies of the resonators stability presented by
Siegman in [52]). This assumption is valid for a sufficiently large beam cross-section πr2

0 � Lλ
(λ is the wavelength of light). However, it should be noted that in our experimental conditions,
the inequality is not fulfilled (πr2

0 = 0.3Lλ) to favour large pulse areas. So diffraction effects
could play a considerable role in our case.

We include the transverse spatial coordinates r of the incoming pulses in the photon echo areas
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θ1,2,e(r, z). Assuming that the input pulse areas θ1(r, 0), θ2(r, 0) have Gaussian spatial profiles
at the entrance of the atomic medium z = 0, we obtain for the echo pulse area Eq. (6) in the
geometrical optics limit:

θe(r, z) = 2 arctan
[
e−2τ12/T2 sin θ1(r, 0) sin2 θ2(r, z)

2
sinh

αz
2

]
. (13)

Experimentally, the medium is imaged onto a detector with a magnification factor M. The
measured detector signal is proportional to the field intensity averaged over the active detection
surface. This latter can be connected to the theoretically calculated θe(r, L) (see Eq. (13)) by

〈θ2
e(L)〉rm =

2π
S

∫ rm

0
rdr |θe(r, L)|2, (14)

where rm is the cutoff radius and S = πr2
m the surface of collection. The measurement depends

on the spatial filtering procedure (pinhole in our case) and the local echo pulse area θe(r, L).

3. Experimental results and discussion

3.1. Experimental setup

The crystal under investigation is 0.1 at.%Tm3+:Y3Al5O12 (YAG) that has been well studied as an
optical quantum memory medium [53–55] due to the 3H6(1) →3H4(1) transition at 793 nm. The
inhomogeneous broadening is ∆inh ≈ 20 GHz. The 2× 3× 8 mm3 crystal is cooled down to 4K in
a Montana Instruments cryostat. The optical density αL along the 8 mm long dimension reaches
1.5 at the central frequency. The crystal is placed in a moderate 600 G magnetic field pointing
along the [001] crystal axis. The field is provided by two pairs of 25 mm permanent NdFeB
magnets (at 30 mm from the crystal). In this configuration, the optical transition coherence
lifetime is increased to T2 = 189 µs.

The light beams are generated by a single frequency continuous Ti:Sapphire laser. The beams
pass through an acousto-optic modulator (AOM1) that temporally shapes the incoming pulses
of the two-pulse photon echo sequence. We use a single mode fiber for mode filtering. Lens
L1 focuses the light on the crystal with a waist r0 = 24.3µm. Light propagates along the [11̄0]
crystallographic axis and is polarized along the [001] crystalline axis. The details of the mutual
orientation of the crystal axes and electric and magnetic fields are shown in Fig. 1. The crystal
is imaged outside the cryostat with a 75 mm lens L2, with a magnification factor M = 4. This
results in a Gaussian beam with waist rp = Mr0 = 97 µm in the crystal image plane.
To study the effect of the spatial beam profile on the photon echo area theorem we perform

two types of experiments, without spatial filtering (NoSF-experiment) and with spatial filtering
(SF-experiment). With these two experiments, we evaluate how different degrees of spatial
inhomogeneity affect the characteristic nutation of the detected echo pulse depending on the
incoming pulse areas θ1(0) and θ2(0). In the NoSF-experiment, the detector is directly placed in
the crystal image plane (see Fig. 4). In the SF-experiment, analogous to the works [30, 36], a
50 µm pinhole (rm = 25 µm) is placed in the crystal image plane. This pinhole selects the most
intense light field coming from the center of the Gaussian profile such that E(t, rm) = 0.93E(t, 0).
Then the lens pair L3 and L4 focuses the light transmitted by the pinhole onto AOM2 that
temporally gates the echo signal and thus isolates the avalanche photodetector from the intense
excitation pulses. A higher sensitivity avalanche photodetector is used for the SF experiment to
compensate for the lower signal obtained after spatial filtering. Lenses L5 and L6 focus the light
on the detector.

3.2. McCall-Hahn area theorem verification

We start by verifying the McCall-Hahn area theorem for a single pulse excitation. For this
purpose, we carry out the experiment with spatial filtering (rp = 97µm and rm = 25µm) to be as
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Fig. 4. Scheme of the experimental setup when spatial filtering is used (SF-experiment).
Single frequency continuous Ti:Sp laser emits light at 793 nm wavelength (3H4 →

3H6
transition). The 0.1 at.%Tm3+:YAG crystal is placed inside the cryostat at 4K. The incoming
pulses are detected before the crystal by a reference detector Thorlabs DET10A and the photon
echo is detected by avalanche photodetector Thorlabs APD120A. Acousto-optic modulators
AOM1 andAOM2 are driven by an arbitrarywaveform generator RIGOLDG5352. The lenses
L1-L6 have the following focal lengths (in mm) f1 = 75, f2 = 75, f3 = 35, f4 = 200, f5 = 200
and f6 = 25.4.

close as possible to the plane wave case. The pulse duration is δt = 2µs and we vary the pulse
amplitude to control the input area θ1(0, 0).
The obtained experimental dependence of the normalized value AD ∼

∫
dt

√
UD(t) (where

UD(t) is the detector signal) on the pulse area of input signal is depicted as black squares in
Fig. 5. The experimental data AD are in good agreement with theoretical curve 〈θ2

e(rm)〉
1/2 from

Eq. (14) obtained in [26].
To fit the experimental data we used two fitting parameters, the scaling coefficients for x and y

axis.

3.3. Photon echo area theorem with Gaussian beams

In the NoSF-experiment, the entire beam going through the sample is collected on the detector.
In this experiment no external magnetic field is applied to the crystal so the coherence lifetime
T2 = 76µs is shorter, optical density at the line center is αL = 1.5, with α = 187.5 m−1 and
L = 8 mm. We vary the amplitude of the second light pulse (and thus the input area θ2(r, 0)),
while maintaining constant the first pulse area θ1(0, 0). The pulse durations are δt1 = δt2 = 2µs
and the delay between the pulses is τ12 = 8µs. Fig. 6 shows the experimental data for three
different input areas of the first pulse: θ1(0, 0) ≈ 0.3π, 0.7π and 1.4π. The nutation behavior of
the echo signal as a function of θ2(0, 0) is significantly damped for the first and second cases
(see black squares and red circles in Fig. 6) and almost absent in the third case of the highest
θ1(0, 0) ≈ 1.4π (see blue triangles in Fig. 6). This is due to averaging over the transverse spatial
profile of the detected echo signal as UD(t) ∼

∫ ∞
0 Ie(r, t)rdr , since rm � r0 (see Eq. (14)).

Figure 6 also shows the theoretical calculations of the photon echo signal characterized by the
value 〈θ2

e(rm)〉
1/2 (see Eq. (14)) in these experimental conditions. To obtain these curves, we

use only two fitting parameters, namely two scaling factors for the horizontal (absolute value of
the incoming pulse area) and vertical axis (normalized value AD). The horizontal scaling factor
is proportional to the experimentally measured Rabi frequency which in this experiment was
≈ 320 kHz, which is approximately 3 times lower than in the SF-experiment.
The experimental and theoretical dependencies in Fig. 6 are in a good agreement for the

small incoming pulse area θ2(0, 0) < 1.3π for all three curves with different values of pulse area
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θ1(0, 0) = 0.3π, 0.7π, 1.4π. As expected, the experimental behavior of echo signal deviates
from the theoretical solution Eq. (14) at higher pulse area θ2(0, 0). One reason for this is that
the experimentally detected pulse intensities cannot be expressed in terms of pulse areas for
θ1(0), θ2(0) > π due to the transverse oscillating spatial behavior. Moreover, we observe an
increased optical nutation period at higher input pulse area θ2(0, 0) as compared to the theoretical
curves. This non-obvious nonlinear effect of multi-pulse excitation deserves a special study and
is beyond the scope of this paper. Perspectives are discussed in the conclusion.

3.4. Photon echo area theorem with spatially filtered beams

To retrieve the echo nutation, we perform the SF-experiment using a pinhole for the detection as
depicted in Fig. 4 with estimated Gaussian beam radius rp = 97µm at the pinhole location. We
realize two sets of measurements by collecting the echo signal for varying incoming pulse areas
θ1(0, 0) and θ2(0, 0). In this section, the experimental parameters are rp = 97µm, rm = 25µm,
L = 8mm, α = 187.5m−1, T2 = 189µs, the measured Rabi frequency of the transition Ω ≈ 900
kHz. They are also used for the numerical calculations from Eqs. (6) and (14). The pulse
durations are δt1 = 5µs, δt2 = 2 µs and the time delay between the exciting pulses is τ12 = 20µs.

Figure 7 shows the experimental and theoretical echo signal dependencies as a function of the
second pulse area for two different values of the first pulse input area. Again, we also use two
fitting parameters (scaling factors for both axis). The horizontal scaling factor is the same as
for single pulse dependence in Fig. 5. Each pair (experimental data set and theoretical curve)
corresponds to a given value of the first pulse incoming area θ1(0, 0). Figure 7 shows that
spatial filtering reveals the nutation and significantly reduces the damping. The particular case
of θ1(0, 0) < 1 was experimentally studied earlier in [30] for θ2(0, 0) < 2π where the obtained
results were satisfactorily described by the plane wave solution (Eq. (9)).
We note that both theoretical curves and experimental data, exhibit a series of damped
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Fig. 6. Three experimental (symbols, normalized value AD ∼
∫

dt
√

UD(t) where UD(t) is
the detector signal) and the corresponding theoretical (lines, normalized value ∼ 〈θ2

e(rm)〉
1/2

from Eq. (14)) dependencies of the photon echo pulse signal as a function of the incoming
area of the second pulse. Each set corresponds to a different initial area of the first incoming
pulse. Black squares and black line correspond to θ1(r = 0, z = 0) = θ1(0, 0) ≈ 0.3π, red
circles and red line to θ1(0, 0) ≈ 0.7π, blue triangles and blue line to θ1(0, 0) ≈ 1.4π.

oscillations. The agreement is quite accurate at low input pulse area θ2(0, 0) < 2π. However,
at higher θ2(0, 0), the experimental curves are strongly damped as compared to the theoretical
prediction. The curves are stretched in the large area region showing a clear non-harmonic
behavior. The increase of the nutation period is an interesting feature that we see much more
clearly than in the NoSF-experiment. This general discrepancy indicates the limitations of the
geometrical optics approximation that we assumed in averaging over the beam profile. This issue
will be also discussed in the conclusion.

We also study the experimental echo signal (black squares in Fig. 8) as a function of the first
pulse area θ1(0, 0). The solid line is the theoretical fit (see Fig. 8) following a similar procedure to
Fig. 7. As before, we plot the theoretical value 〈θ2

e(rm)〉
1/2 (from Eq. (14)) and the experimental

data as
∫

dt
√

UD for constant θ2(0, 0) = 1.1π. Again, the theory coincides with the observed
data at small input pulse area θ1(0, 0) < π and only qualitatively describes the nutation at higher
θ1(0, 0) values where the observed oscillations are strongly damped.

Both dependencies of echo signal on θ2(0, 0) and θ1(0, 0) demonstrate quite similar features for
increasing θ2(0, 0) and θ1(0, 0). Namely, we observe the oscillation stretching of the experimental
curve (longer periods at higher areas). The similar pattern indicates common physical effects in
the observed nutation taking place in an optically dense medium.

4. Discussion and conclusion

We have performed theoretical and experimental studies of two-pulse photon echo in the optically
dense medium. We have used the optical transition 3H6(1)→3H4(1) (793 nm) of a Tm ion-doped
YAG crystal cooled at 4K. Herein, the echo area has been studied as a function of incoming
pulse areas of the first θ1(0, 0) and second θ2(0, 0) pulses up to 4π and 7π, respectively. We have
observed that inhomogeneous beam intensity profile leads to the strong damping of the expected
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Fig. 7. Experimental (symbols, normalized value AD ∼
∫ √

UDdt) and theoretical (lines,
normalized value ∼ 〈θ2

e(rm)〉
1/2 from Eq. (14) with r0 = 97µm, rm = 25µm) dependencies

of the primary photon echo signal on the incoming area of the second pulse. Black squares
and black solid line correspond to θ1(0, 0) = 0.25π, red circles and red dashed line correspond
to θ1(0, 0) = 0.4π. See text for details.
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Fig. 8. Experimental (squares, normalized AD ∼
∫ √

UDdt) and theoretical (〈θ2
e(rm)〉

1/2

from Eq. (14) with r0 = 97µm, rm = 25µm) dependencies of primary photon echo signal on
the first incoming pulse area θ1(0, 0) with constant θ2(0, 0) = 1.1π. See text for details.
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nutation. Subsequent experiments with spatial filtering allowed us to retrieve the nutation.
To analyze the experimental data we have developed a theoretical approach based on the

photon echo area theorem. We applied the theorem for two-dimensional Maxwell-Bloch model
with spatial transverse inhomogeneity of the light beams considered in the geometrical optics
approximation. This model satisfyingly describes the data for relatively small incoming pulse
areas θ1(0, 0), θ2(0, 0) < 2π and provides a qualitative agreement of the observed echo signal
nutation at higher input pulse areas. In this region the theorem also predicts the energy efficiency
of the echo in agreement with Maxwell-Bloch simulations presented in [36].
We also note that the geometrical optics approximation cannot describe the self-focusing

and de-focusing of the beams propagating in an optically dense and spectrally selective atomic
medium. Including the non-linear diffraction in the paraxial Helmholtz equation is a complex
analytical task which is beyond the scope of this work. Atomic dipole-dipole interactions, as
instantaneous spectral diffusion [56–58], cannot be also completely discarded.
Finally, the photon echo pulse area theorem provides a useful and general tool to study the

light-atom interactions [59–62] revealing fundamental processes that play a role in many quantum
optical memory protocols realized in the optically dense media [19, 63–66].

Appendix

The photon echo area theorem was obtained in [44]. Here we present a derivation of the
theorem in terms of Bloch vector variables (u, v,w), complex light field envelope E(t, z) =
ε(t, z) exp[i(kz − ωt)] + c.c. and Rabi frequency Ω(t, z) = (2d/~)ε(t, z). We start from the usual
reduced set of Maxwell-Bloch equations [42] for the light field and atomic polarization:

(
∂

∂z
+

∂

c ∂t

)
Ω(t, z) = i

µ

2
〈P12(t, z,∆)〉, (15)

∂

∂t
u(t, z,∆) = −∆v(t, z,∆) − γu(t, z,∆), (16)

∂

∂t
v(t, z,∆) = ∆u(t, z,∆) − γv(t, z,∆) −Ω(t, z)w(t, z,∆), (17)

∂

∂t
w(t, z,∆) = Ω(t, z)v(t, z,∆), (18)

where µ = 4πNd2ω/~c and 〈...〉 ≡
∫ ∞
−∞

G(∆)...d∆ is the averaging over the inhomogeneous
broadening.
The formal solution of Eqs. (16) and (17) can be written as:

P12(t, z,∆) = [u(t, z,∆) − iv(t, z,∆)] = P12(t0, z,∆)e−(i∆+γ)(t−t0)−

i
∫ t

t0

dt ′Ω(t ′, z)w(t ′, z,∆)e−(i∆+γ)(t−t
′). (19)

Substituting the solution for P12(t, z,∆) in Eq. (15) and integrating it over the time period of
the specific pulse [t0, t0 + τ12], (where t0 = te − τ12/2, te is the time of the echo emission, τ12 is
the time delay between the pulses) we get:

∂

∂z
θ(z) = i

µ

2

[∫ t0+τ12

t0

dt〈P12(t0, z,∆)e−(i∆+γ)(t−t0)〉−

i
∫ t0+τ12

t0

dt
∫ t

t0

dt ′Ω(t ′, z)〈w(t ′, z,∆)e−(i∆+γ)(t−t
′)〉 (20)
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We are especially interested in the formation of a primary photon echo with emission time
te = 2τ12 in the limit of a sufficiently large time delay between the two incoming light pulses
τ12 � δti (where δti is a temporal duration of the i-th input light pulses).

After the action of the two light pulses, the atomic variables P12 and w acquire several compo-
nents characterized by different spectral properties. Two components of the coherence P12 describe
the dephasing of the atomic coherence P1e−i(∆−iγ)t and P2e−i(∆−iγ)(t−τ12) (the free induction decay
terms after the first and the second pulses) and the only component characterizing the coherence
rephasing determining the emission of the primary echo P3e−i∆(t−2τ12)e−γt at time t = 2τ12. In
the limit of ∆ → 0, these atomic coherences take the forms: P1 → −i sin θ1(z) cos2 θ2(z)/2,
P2 → −i cos θ1(z) sin θ2(z) and P3 → (−i)ve(t0, z, 0) = −i sin θ1(z) sin2 θ2(z)/2 [3, 42]. The
echo field is irradiated initially by the rephasing polarization P3 and highly modified during
propagation by the acquired atomic inversion w.

Herein, after the two pulses exit the medium, the atomic inversion w contains two components
w = w1 + w2 characterized by different spectral properties. In the limit of ∆ → 0, we have
w1 → w0 cos θ1(z) cos θ2(z) and w2 → −w0 sin θ1(z) sin θ2(z)e−γτ12 cos∆τ12 as studied in [67].
Here we assume that the input light pulses are well separated with the time delay between
pulses being much larger than the temporal duration of the light pulses. With the averaging
over inhomogeneous broadening of atomic transition 〈...〉 in Eq. (15), only those components
of polarization P12 and w will participate in the echo formation due to their rephasing at the
time of the echo emission. Namely the terms P3 and w1 affect the echo field emission while
the other terms disappear after the averaging over the inhomogeneous broadening in the limit
τ12 � δte (where δte is a temporal duration of the echo pulse δte ∼ δt). Taking into account
these properties of different spectral components in the averaged polarization and inversion, we
can write for the averaged atomic coherence

〈P12(t0, z,∆)e−(i∆+γ)(t−t0)〉 |echo � e−2γτ12 〈P3(t0, z,∆)e−i∆(t−2τ12)〉, (21)
〈w(t0, z,∆)〉 � 〈w1(t0, z,∆)〉. (22)
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