D. K. Chattopadhyay and K. V. Raju, Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci, vol.32, pp.352-418, 2007.

O. Bayer, Das Di-Isocyanat-Polyadditionsverfahren (Polyurethane), Angew. Chem, vol.59, pp.257-272, 1947.

E. Delebecq, J. Pascault, B. Boutevin, and F. Ganachaud, On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane, Chem. Rev, vol.113, pp.80-118, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825156

H. Engels, H. Pirkl, R. Albers, R. W. Albach, J. Krause et al., Polyurethanes: versatile materials and sustainable problem solvers for today's challenges, Angew. Chem. Int. Ed, vol.52, pp.9422-9441, 2013.

P. Krol, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers, Prog. Mater Sci, vol.52, pp.915-1015, 2007.

H. Sardon, A. C. Engler, J. M. Chan, J. M. Garcia, D. J. Coady et al., Organic acid-catalyzed polyurethane formation via a dual-activated mechanism: unexpected preference of N-activation over O-activation of isocyanates, J. Am. Chem. Soc, vol.135, pp.16235-16241, 2013.

H. Sardon, A. Pascual, D. Mecerreyes, D. Taton, H. Cramail et al., Synthesis of polyurethanes using organocatalysis: a perspective, Macromolecules, vol.48, pp.3153-3165, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365260

L. Maisonneuve, O. Lamarzelle, E. Rix, E. Grau, and H. Cramail, Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s, Chem. Rev, vol.115, pp.12407-12439, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01365096

S. Schmidt, B. S. Ritter, D. Kratzert, B. Bruchmann, and R. Muelhaupt, Isocyanate-free route to poly(carbohydrate-urethane) thermosets and 100% bio-based coatings derived from glycerol feedstock, Macromolecules, vol.49, pp.7268-7276, 2016.

H. Tomita, F. Sanda, and T. Endo, Structural analysis of polyhydroxyurethane obtained by polyaddition of bifunctional five-membered cyclic carbonate and diamine based on the model reaction, J. Polym. Sci., Part A: Polym. Chem, vol.39, pp.860-867, 2001.

M. Blain, L. Jean-gerard, R. Auvergne, D. Benazet, S. Caillol et al., Rational investigations in the ring opening of cyclic carbonates by amines, Green Chem, vol.16, pp.4286-4291, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064226

O. Lamarzelle, P. Durand, A. Wirotius, G. Chollet, E. Grau et al., Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis, Polym. Chem, vol.7, pp.1439-1451, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01364916

S. Neffgen, H. Keul, and H. Höcker, Ring-opening polymerization of cyclic urethanes and ring-closing depolymerization of the respective polyurethanes, Macromol. Rapid Commun, vol.17, pp.373-382, 1996.

S. Neffgen, J. Kusan, T. Fey, H. Keul, and H. Höcker, Synthesis and thermal properties of [n]-polyurethanes, Macromol. Chem. Phys, vol.201, pp.2108-2114, 2000.

S. Neffgen, H. Keul, and H. Höcker, Poly(tetrahydrofuran)-blockpoly(trimethylene urethane): synthesis and characterization. Macromol. Rapid Commun, vol.20, pp.194-199, 1999.

J. Kusan, H. Keul, and H. Höcker, For instance, the ring-opening polymerization of dimethylene urethane is a thermodynamically unfavored process: Lebedev, B.; Veridusova, V.; Höcker, H.; Keul, H. Thermodynamics of aliphatic cyclic urethanes, of their ring-opening polymerization, and of corresponding polyurethanes, Macromol. Chem. Phys, vol.34, issue.17, pp.1114-1125, 2001.

D. J. Darensbourg, M. W. Holtcamp, G. E. Struck, M. S. Zimmer, S. A. Niezgoda et al., Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide, J. Am. Chem. Soc, vol.121, pp.107-116, 1999.

L. Fournier, C. Robert, S. Pourchet, A. Gonzalez, L. Williams et al., Facile and efficient chemical functionalization of aliphatic polyesters by cross metathesis, Polym. Chem, vol.7, pp.3700-3704, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404194

S. P. Mcmanus, C. A. Larson, and R. A. Hearn, The synthesis of aminoalcohols from epoxides and ammonia, Synth. Commun, vol.3, pp.177-180, 1973.

L. R. Hawkins and R. A. Bannard, Ammonolysis of 1,2-epoxycyclohexane and trans-2-bromocyclohexanol, Can. J. Chem, vol.36, pp.220-227, 1958.

, As CHU has three stereogenic centers, it is obtained as a mixture of four stereoisomers (two pairs of diastereomers) (Figure S8) with a molar ratio of about 6:4 (Figure S11). The detailed stereochemistry analysis of CHU is summarized in the supporting information

V. Chiono, P. Mozetic, M. Boffito, S. Sartori, E. Gioffredi et al., Polyurethane-based scaffolds for myocardial tissue engineering, Interface Focus, vol.4, 2014.

D. A. Evans, T. C. Britton, and J. A. Ellman, Contrasteric carboximide hydrolysis with lithium hydroperoxide, Tetrahedron Letters, vol.28, pp.6141-6144, 1987.

H. Deng, Z. Shen, L. Li, H. Yin, and J. Chen, Real-time monitoring of ring-opening polymerization of tetrahydrofuran via in situ Fourier transform infrared spectroscopy, J. Appl. Polym. Sci, p.40503, 2014.

J. M. Messman and R. F. Storey, Real-time monitoring of the ringopening polymerization of rac-lactide with in situ attenuated total reflectance/Fourier transform infrared spectroscopy with conduit and diamond-composite sensor technology, J. Polym. Sci., Part A: Polym. Chem, vol.42, pp.6238-6247, 2004.

T. J. Schwartz, S. D. Lyman, A. H. Motagamwala, M. A. Mellmer, and J. A. Dumesic, Selective hydrogenation of unsaturated carboncarbon bonds in aromatic-containing platform molecules, ACS Catal, vol.6, pp.2047-2054, 2016.