
HAL Id: hal-02357381
https://hal.science/hal-02357381

Submitted on 10 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model synchronization: a formal framework for the
management of heterogeneous models
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. Model synchronization: a formal framework for
the management of heterogeneous models. International Symposium on Model Based Safety Assess-
ment, IMBSA 2019, Oct 2019, Thessaloniki, Greece. �10.1007/978-3-030-32872-6_11�. �hal-02357381�

https://hal.science/hal-02357381
https://hal.archives-ouvertes.fr


Model synchronization: a formal framework for
the management of heterogeneous models

Michel Batteux1, Tatiana Prosvirnova2,3, and Antoine Rauzy4

1 IRT SystemX, Palaiseau, France
michel.batteux@irt-systemx.fr

2 Laboratoire Genie Industriel, CentraleSupélec, Gif-sur-Yvette, France
3 ONERA/DTIS, UFTMiP, Toulouse, France,

tatiana.prosvirnova@onera.fr
4 Norwegian University of Science and Technology, Trondheim, Norway

antoine.rauzy@ntnu.no

Abstract. In this article, we present the conceptual foundations and im-
plementation principles of model synchronization, a formal framework for
the management of heterogeneous models. The proposed approach relies
on S2ML (System Structure Modeling Language) as a pivot language.
We show, by means of a case study, that model synchronization can
be used to ensure the consistency between system architecture models
designed with Capella and safety models written in AltaRica 3.0.

Keywords: Heterogeneous models · model synchronization · S2ML.

1 Introduction

To face the increasing complexity of technical systems, systems engineers are
designing models. These models serve different purposes: system architecture,
control engineering, multi-physics simulation, safety analyses, performance as-
sessments. They are designed at different levels of abstraction and by different
teams. They may have also different levels of maturity. Ensuring that these mod-
els are consistent one another is one of today’s major industrial challenges. As
of today, their integration relies almost exclusively on organizational processes.

Collaborative data bases (PDM/PLM) and tools to set up traceability links
between models provide a support to manage models in version and configu-
ration, but not to ensure consistency between them. Different model transfor-
mation techniques have been proposed (e.g. [12], [18]) but they often assume a
master/slaves organization of models, which is not realistic in practice. As an
interesting alternative, two-sided model transformation based on triple graph
grammars has been proposed see e.g. [9].

In this article, we present the conceptual foundations and implementation
principles of model synchronization, a formal framework to ensure the consis-
tency of heterogeneous models. Model synchronization relies on ideas stemmed
from Cousot’s abstract interpretation [6], but its implementation is dedicated to
the problem at stake. Namely, the overall approach relies on four theses:



2 M. Batteux et al.

Thesis 1. The diversity of models is irreducible. Moreover, each model has its
own life-cycle. In other words, attempts to derive models for one purpose (e.g.
safety analyses) from models designed for another purpose (e.g. system architec-
ture), are essentially vain and even counter-productive.

Thesis 2. Heterogeneous models cannot be compared directly. Therefore, the
synchronization process is made of three steps: first, models are abstracted in
a common language; second, their abstractions are compared; third, actions are
possibly taken to adjust original models according to findings of the comparison.

Thesis 3. Systems engineering models are made of two types of constructs: be-
havioral descriptions and structuring constructs. Behavioral descriptions are spe-
cific to each engineering domain. It is thus in general impossible to perform cross-
domain comparisons. On the contrary, the structures of models reflect to some
extent the structure of the system under study. Therefore, model synchronization
focuses on structural comparisons.

Thesis 4. The overall objective of model synchronization is not to reach a perfect
matching between (the structures of) original models. Rather, it is to agree on
disagreements and to trace the possible discrepancies.

In a word, model synchronization is a pragmatic approach providing a formal
framework and concrete tools to improve current processes. Its implementation
relies on three basic constituents: first, one needs a pivot language in which
models are abstracted. S2ML (System Structure Modeling Language) [2] is an
excellent candidate for this purpose as it gathers in an organized and unified
way most of the structuring constructs found in systems engineering modeling
formalisms. Second, one needs tools to abstract original models into the pivot
language. Ideally, the abstraction process should be fully automated. It is pos-
sible however to do this part of the work by hand or in a semi-automated way.
Finally, one needs software tools to compare abstractions. The development of
these tools is justified for at least two reasons: first, they depend only on the
pivot language and are therefore reusable for the synchronization of any type of
models; second, they ensure the soundness, the completeness and the traceability
of the comparison process.

The contribution of this article is thus to present model synchronization and
to discuss its conceptual foundations and its implementation into the SmartSync
platform. We illustrate the discussion by applying the proposed approach on a
case study – an electrical power supply system borrowed from [5]. We show how
it can be used to maintain the consistency between system architecture models
designed with Capella [16] and safety models written in AltaRica 3.0 [3].

The remainder of this article is organized as follows. Section 2 introduces
the case study. Section 3 describes the model synchronization process. Section 4
discusses model comparison. Section 5 presents the SmartSync platform and
gives some experimental results. Finally, section 6 concludes this article and
discusses future works.



Model synchronization 3

2 Illustrative Example

2.1 Description

As an illustrative example, we shall consider a power supply system borrowed
from [5] and pictured Fig. 1. We shall use this case study to illustrate the different
concepts of model synchronization, i.e. to show how to ensure consistency of
heterogeneous models.

GR

TR1 TR2

DG

CBD1 CBD2

CB3

BB

CBU1 CBU2

Backup Power Supply

Primary Power Supply

Line1 Line2

Fig. 1. A power supply system

This system is in charge of supplying electrical power to the busbar BB. It
is divided into a primary power supply or a backup power supply. The primary
power supply receives the power from the grid and is itself made of two redundant
lines. Each of lines is made of a transformer TRi and two circuit breakers CBUi
and CBDi, i = 1, 2. Lines 1 and 2 are used in alternation. The passive one is in
cold redundancy with the active one. The backup power supply part is made of
the diesel generator DG and the circuit breaker CB3. It is in cold redundancy
with the primary power supply.

2.2 Models

We consider this system from two engineering point of views: the point view
of the system architect, supported by models designed in Capella [16], and the
point view of the safety analyst, supported by models written in AltaRica 3.0 [3].

Fig. 2 shows the functional architecture diagram of the power supply system,
while Fig. 3 presents its physical architecture diagram. The latter is quite similar
to the process and instrumentation diagram showed Fig. 1. Fig. 4 on the left
represents the life-cycle diagram of the operational architecture.



4 M. Batteux et al.

Fig. 2. Functional architecture of the power supply system represented with Capella.

Fig. 3. Physical architecture of the power supply system represented with Capella.

Table 1 summarizes the allocation between functions and physical compo-
nents depending on different operational phases of the system. Phase 1 corre-
sponds to the mode Line1 of the diagram Fig. 4, Phase 2 corresponds to the
mode Line2, and Emergency mode – to the mode Backup.

Fig. 4. Capella life-cycle diagram (operational architecture) and graphical representa-
tion of the AltaRica 3.0 controller of the power supply system.



Model synchronization 5

Table 1. Power supply system: functions allocation table

Phase Control elec-
trical power
delivered by
the Grid

Transform
electrical
voltage deliv-
ered by the
Grid

Control elec-
trical power
delivered to
the Busbar

Generate
backup
electrical
power

Control
power
delivered
to Busbar

Isolate
non-
functioning
parts

Phase 1
(Line1)

CBU1 TR1 CBD1 CBU2,
CBD2,
CB3

Phase 2
(Line2)

CBU2 TR2 CBD2 CBU1,
CBD1,
CB3

Emergency
mode
(Backup)

DG CB3 CBU1,
CBD1,
CBU2,
CBD2

Fig. 5 shows an excerpt of the AltaRica code for the power supply system.
There are two failure conditions of interest: loss of electrical power delivered to
the busbar and loss of isolation (of non-functioning parts). They are represented
by two observers in the AltaRica model.The structure of the model is inspired
by the phased-mission systems modeling pattern [4] and is close to the struc-
ture of the Capella model. The block Controller, which graphical representation
is sketched in Fig. 4 on the right, corresponds to the life-cycle diagram given
Fig. 4 on the left, the block Functional – to the functional architecture diagram
given Fig. 2 and the block Physical to the physical architecture diagram given
Fig. 3. The allocation of functions (see Table 1) is represented by the aggrega-
tion relation (”embeds” clause). For instance, the function SupplyPowerByGrid
aggregates the grid, the circuit breakers and the transformer of the Line 1 of the
primary power supply system in the phase 1.

System architecture and safety analyses can be seen as two faces of the same
medal. System architecture focuses on how the system works, what it should
do and should be. It is ruled by so-called architectural frameworks such as the
CESAM framework [11]. Safety analyses focus on how the system may fail and
what are the consequences of failures.

Although they consider the system at about the same level of abstraction,
models designed by system architects and safety analysts are quite different.
In particular, the former are pragmatic while the latter are formal [15], two
characteristics that we shall define formally in the next section. Ensuring the
consistency of these models is thus both extremely important and far from easy.



6 M. Batteux et al.

domain MODE {LINE1, LINE2, BACKUP}
block PowerSupplySystem
block Controller
// body of the block Controller

end
block Functional
block SupplyElectricalPowerToBusbar
block SupplyPowerByGrid
block Phase1
embeds main.Physical.PrimaryPowerSupply.GR as GR;
embeds main.Physical.PrimaryPowerSupply.Line1.CBIn as CBU1;
embeds main.Physical.PrimaryPowerSupply.Line1.TR as TR1;
embeds main.Physical.PrimaryPowerSupply.Line1.CBOut as CBD1;
Boolean vfFailed (reset = true);
assertion
vfFailed := GR.vfFailed or TR1.vfFailed or CBU1.vfFailedToClose or

CBD1.vfFailedToClose;
end
// the remainder of the block SupplyPowerByGrid

end
// the remainder of the block SupplyElectricalPowerToBusbar

end
// the remainder of the block Functional

end
block Physical
block PrimaryPowerSupply
Grid GR;
block Line1
embeds owner.GR as GR;
Boolean vfInflow, vfOutflow, vfFailed (reset = false);
CircuitBreaker CBIn, CBOut;
Transformer TR;
// the remainder of the block Line1

end
clones Line1 as Line2;
Boolean vfOutflow (reset = false);
assertion
Line1.vfInflow := GR.vfOutflow;
Line2.vfInflow := GR.vfOutflow;
vfOutflow := Line1.vfOutflow or Line2.vfOutflow;

end
// the remainder of the block Physical

end
observer Boolean LossOfBusbarPowerSupply = if (Controller.mode==LINE1) then

Functional.SupplyPowerByGrid.Phase1.vfFailed else if (Controller.mode==LINE2) then
Functional.SupplyPowerByGrid.Phase2.vfFailed
else Functional.BackupSupply.EmergencyMode.vfFailed;

observer Boolean LossOfIsolation = if (Controller.mode==LINE1) then
Functional.IsolateNonFunctioningParts.Phase1.vfFailed else if
(Controller.mode==LINE2) then Functional.IsolateNonFunctioningParts.Phase2.vfFailed
else Functional.IsolateNonFunctioningParts.EmergencyMode.vfFailed;

end

Fig. 5. Excerpt of the AltaRica code for the power supply system.

3 Model Synchronization

3.1 Models = Behaviors + Structures

Ensuring the consistency of two or more heterogeneous models requires to un-
derstand the nature and the role of each of these models. Models involved in
systems engineering serve actually very different purposes. They can be roughly
separated into two categories [15]:

– Pragmatic models that are used primarily to support the communication
amongst stakeholders.



Model synchronization 7

– Formal models that are used primarily to calculate indicators or to perform
simulations.

The latter encode eventually mathematical objects. Their syntax and their se-
mantics must be perfectly defined. They are written in modeling languages such
as Modelica [8], Matlab Simulink [10] or AltaRica [3]. On the contrary, the former
can only be understood by referring to the system under study. They are often
written in standardized graphical notations such as SysML [7] or Capella [16].
For this reason, they have no formal syntax and even less a formal semantics.

Note that formal languages could be used to design pragmatic models (the re-
verse is indeed not true). However, there is an epistemic gap between pragmatic
and formal models: as the former aim primarily at supporting the communica-
tion, they keep a lot of knowledge implicit. Making this knowledge explicit would
overload them uselessly. Even if we restrict our attention to formal models, their
underlying mathematical frameworks can be very different, e.g. systems of or-
dinary differential equations for Modelica and Simulink and guarded transition
systems for AltaRica. This is the reason why, comparing behaviors described by
heterogeneous models is essentially meaningless: the comparison should focus on
the structural part of models.

Systems engineering modeling formalisms and languages are actually made
of two parts: an underlying mathematical model, that aims at describing behav-
iors, and a structuring paradigm that makes it possible to organize models, i.e. to
design them by assembling parts into hierarchical descriptions. The structural
parts of SysML and Capella are stemmed from prototype-oriented program-
ming [13], although without clearly acknowledging it. Modelica and Simulink
rely on object-orientation. AltaRica 3.0 relies on a combination of both.

3.2 Model Synchronization Principle

As already said, two models, possibly written into two different languages, can-
not in general be compared directly, see [17] for an interesting survey on model
comparison techniques. Therefore, the synchronization process is made of three
steps: first, models are abstracted in a common language; second, their abstrac-
tions are compared; third, actions are possibly taken to adjust original models
according to findings of the comparison. This third step is called concretization,
according to the abstract interpretation terminology. This process is illustrated
Fig. 6.

It is worth noticing that different abstractors and comparators can be defined.
The choice of the abstractors and the comparators to apply depends on the
system under study and the level of maturity of the project.

3.3 System structure modeling language (S2ML)

Describing the structure of a system is fully part of the modeling process. It
helps to design, to share, to maintain and eventually to synchronize models.



8 M. Batteux et al.

Abstractor 
A1

Abstractor
A2

Model A Model B

Comparator K
Abstraction A’ Abstraction B’

Concretization
C1

Concretization
C2

Fig. 6. Model synchronization: principle.

S2ML aims at providing a structuring paradigm of systems engineering mod-
eling languages. It gathers and unifies concepts from object-orientation [1] and
prototype-orientation [13]. Due to space limitations, we shall only sketch here
S2ML ideas. The reader interested in a more detailed presentation should refer
to our article [2].

As heterogeneous models can be essentially compared by their structure,
S2ML is a perfect candidate as a pivot language for the abstraction.

S2ML relies on only eight constructs:

– Three types of basic objects: ports, connections and blocks.
– Three structural relations: composition, inheritance and aggregation.
– Two mechanisms making possible to reuse modeling elements: the proto-

type/clone and the class/instance mechanisms.

Ports are basic objects of models, e.g. variables, events, parameters. They
have a basic type such as Boolean, integer, real or some enumerated value.

Connections are used to describe relations between ports, e.g. equations,
transitions, assertions.

Blocks are containers to compose ports, connections and other blocks. They
are prototypes in the sense of object-oriented theory.

Attributes are pairs (name, value) used to associate information to ports,
connections and blocks.

The most important and the simplest structural relation is the composition:
a container (prototype or class) composes an element if this element “is part of”
the container. The inheritance and the aggregation are respectively “is-a” and
“uses” types of relation.

Prototypes and classes are containers. As suggested by their names, proto-
types have a priori a unique occurrence in the model. It is however possible to
clone a prototype. Classes are on-the-shelf, reusable modeling elements. Strictly
speaking, they are not part of the models. Rather, they are instantiated into
models. Respective advantages and drawbacks of prototypes and classes are dis-
cussed in reference [2].



Model synchronization 9

The S2ML+X paradigm consists in designing domain specific modeling lan-
guages as the combination of S2ML with a given underlying mathematical frame-
work (the X). We applied already this principle to design AltaRica 3.0, but also to
design languages for constraint solving and combinatorial optimization, Boolean
reliability models, hierarchical graph representations, hierarchical Markov chains
and process algebras (themselves used to describe business processes).

In the S2ML+X paradigm, models are seen as scripts. S2ML provides com-
mands to declare modeling elements. The actual model is obtained by executing
these commands. This process works in two steps:

– First, the model is rewritten into a hierarchy of blocks. Each block of the hi-
erarchy may compose ports and connections. This step is called instantiation
in the S2ML jargon.

– Second, the hierarchy is removed to get a model made of only one block
composing ports and connections. This step is called flattening in the S2ML
jargon.

In the framework of model synchronization, the rewriting process is stopped
after instantiation, as we are interested in keeping hierarchical, i.e. structural,
information.

Note that the abstraction of original models into S2ML models can vary
significantly from one model to the other one. It depends on the objectives of
the synchronization as well as on the modeling formalism used to design the
source model.

4 Model Comparison

A key step of model synchronization consists in comparing the two instantiated
S2ML models.

4.1 Instantiated S2ML models

S2ML models to be compared are instantiated, i.e. they are made of three types
of objects: ports, connections and blocks. Ports and blocks are uniquely identi-
fied by their name. Connections are structured terms involving constants, ports
and operators. They may also have some attributes. However, they are just con-
sidered as (anonymous) sets of ports in the comparison process. Finally, blocks
can compose ports, connections and other blocks. All objects may have some
attributes but we shall not consider them here. A model is just a block, possibly
rooting a hierarchy of blocks.

Formally, a model is thus a quintuple 〈P,C,B,n, r〉 where:

– P and B are two disjoint finite sets of symbols called respectively ports and
blocks.

– C is a multiset of connections, i.e. of subsets of P .
– n is a composition relation, i.e. a subset of B × (P ∪ C ∪B) verifying:



10 M. Batteux et al.

– For each object o ∈ P ∪C ∪B, there exists at most one block b ∈ B such
that bno. b is called the parent of o.

– r ∈ B is the unique block with no parent, moreover for all object o ∈
P ∪ C ∪B, rn?o, where n? denotes the transitive closure of n.

We denote by M the set of instantiated S2ML models defined as above.

4.2 Matchings

We can now define mappings from models to models. For the sake of model
comparisons, we are especially interested in structure preserving mappings.

A mapping α from the model M : 〈PM , CM , BM ,nM , rM 〉 to the model
N : 〈PN , CN , BN ,nN , rN 〉 is structure preserving if the following conditions
hold.

– For any block b ∈ BM and any object o ∈ PM ∪ CM ∪ BM , bnMo ⇒
α(b)nNα(o).

– For any connection c = {p1, . . . , pk} ∈ CM , α(c) ⊇ {α(p1), . . . , α(pk)}, more-
over for all p ∈ PM , if p 6∈ c then α(p) 6∈ α(c).

A structure preserving mapping is injective if the following condition holds.

– For any two objects o, o′ ∈ PM ∪ CM ∪BM , o 6= o′ ⇒ α(o) 6= α(o′).

Injective structure preserving mappings can be seen as projections.
Now, let M , N1 and N2 be three models. N1 and N2 are matched by M

if there exist two injective structure preserving mappings α1 : M → N1 and
α2 : M → N2. The model M catches the commonalities between N1 and N2.
Building such models M is the objective of the comparison process.

Note that instantiated S2ML models together with structure preserving map-
pings form a category, see e.g. [14] for an introduction. The notion of matching
defined here is inspired from the notion of pullback in category theory.

5 Experiments

5.1 SmartSync platform

The SmartSync platform supports model synchronization. It is based on S2ML as
a pivot language for the abstraction. It works as illustrated Fig. 7. The objective
is to check the consistency of two models of the same system possibly written in
two different languages.

This works in three phases.
The first phase consists in abstracting original models into S2ML. As of

today, this is done manually but this could be automated.
The next phase consists in comparing model abstractions. It involves de-

signers of both models. It aims at establishing a structure preserving matching
between the elements of the two abstract models This matching is concretely en-
coded by means of a two columns table (one per model). In a first step, elements



Model synchronization 11

Fig. 7. Models synchronization process.

are automatically matched by traversing down the structure of each model and
according to identifiers. Elements that could not be matched are highlighted.
It is then possible to match elements “by hand”. It is also possible to indicate
that an element should not be matched because it is specific to its model. The
automatic matching process is then launch again. This process is iterated until
no progress can be done anymore.

At the end of the second phase, a (possibly empty) list of inconsistencies is
obtained. This list is the input for the third phase, which consists in doing some
“homework” on each original model so to solve the problems.

The whole process can be itself iterated.

5.2 Case study: a power supply system

We apply our model synchronization framework to the case study presented in
Section 2. We present a collaborative design of the power supply system. The
collaboration is between two teams: system architecture and safety analyses.
Each team performs different activities.

The first activity is modeling which is performed independently by members
of both teams using different modeling languages and tools. System architecture
models designed with Capella and safety models written in AltaRica 3.0 are
given in Section 2.2.

The second activity is model synchronization, i.e. the verification of consis-
tency between models that ensures that both models are describing the same
system. This activity is performed by the members of both teams and involves
the SmartSync platform.

First, both models are abstracted, i.e. transformed into S2ML. For AltaR-
ica 3.0 the transformation is straightforward, as the language uses S2ML as
its structural paradigm. State and flow variables, events and parameters are
abstracted to S2ML ports; transitions and assertions are transformed into con-
nections; different structural constructs like inheritance, cloning, instantiation,
etc. are transformed into their equivalents in S2ML.

For Capella functional and physical architecture diagrams the transformation
is also quite simple: blocks are transformed into S2ML blocks, ports into S2ML



12 M. Batteux et al.

ports and connections between ports are transformed into S2ML connections
between corresponding S2ML ports. The allocation table (see Table 1) is trans-
formed as follows: each functional S2ML block aggregates (via the ”embeds”
clause) the corresponding allocated physical S2ML blocks.

In the next step, the abstractions are compared and a report is generated.
This report is analyzed by members of both teams. All the differences are listed
in the matching file, which makes it possible to establish the correspondence
between the two models. Table 2 shows the matching file of the first iteration. The

Table 2. Power supply system architecture and safety models matching, iteration 1.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

port forget LossOfBusbarPowerSupply
port forget LossOfIsolation
block FunctionalPart Functional
block OperationalPart.StateMachine Controller
block PhysicalPart Physical

first column is the element type (port, block, aggregated block or connection).
The second column is the name of the element of the first model, the third
column is the name of the corresponding element in the second model. When
there is no correspondence, the keyword ”forget” is used. It is possible to add
a fourth column with comments to justify matching decisions. The following
differences are detected:

– Different names of blocks (e.g. the block FunctionalPart in the Capella model
corresponds to the block Functional in the AltaRica 3.0);

– Elements of the safety model not represented in the system architecture
(e.g. observers LossOfBusbarPowerSupply and LossOfIsolation represent the
failure conditions and do not have any equivalent in the Capella model).

The produced matching file is used to compare again the abstractions of the
system architecture and safety models. In the next iteration of the compari-
son, new differences are detected. They are analyzed again and the matching
file is populated with new matching information summarized in Table 3. Other
differences are detected:

– Different names of ports (e.g. the port Busbar.input in the Capella model
corresponds to the port Busbar.vfInflow in the AltaRica 3.0 model);

– Elements of system architecture model not represented in the safety model
(e.g. the port PhysicalPart.input has no correspondence in the safety model);

– Different structural decomposition (e.g. in the Capella model the block Grid
belongs to the block PhysicalPart whilst in the AltaRica 3.0 it belongs to
the block PrimaryPowerSupply).



Model synchronization 13

Table 3. Power supply system architecture and safety models matching, iteration 2.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

block FunctionalPart Functional

block SupplyElectricalPowerToBusbar SupplyElectricalPowerToBusbar

block GenerateBackupElectricalPower BackupSupply
block SupplyElectricalPowerFromGrid SupplyElectricalPowerByGrid
... ... ...

block PhysicalPart Physical

block Busbar Busbar

port input vfInflow

block Grid PrimaryPowerSupply.GR
port input forget
port output vfOutflow
block BackupPowerSupply BackupPowerSupply

port output vfOutflow
port forget vfFailed
block DieselGenerator DG
block CB CB

port input vfInflow
port output vfOutflow
port forget fail close
... ... ...

block PrimaryPowerSupply PrimaryPowerSupply

block Line1 Line1

port input vfInflow
port output vfOutflow
port forget vfFailed
block CBD CBOut
block CBU CBIn
... ... ...

As we can see it is quite simple to establish the correspondence between
system physical architecture PhysicalPart and the block Physical of the safety
model: each Capella block has a corresponding block in the AltaRica 3.0 model,
almost each port of the Capella model has a corresponding port in the AltaRica
3.0 model, there are ports in the AltaRica 3.0 model which do not have any
correspondence in the Capella model (state variables, events, some flow variables
representing failures). Obviously, it is possible in the abstraction step of the
safety model not to consider state variables and events as they represent the
internal behavior of components and are not expected to have any equivalence
in the architecture model.

Concerning the operational part, it is not so obvious to establish the cor-
respondence between the state chart diagram given Fig. 4 on the left and the
AltaRica 3.0 model of the Controller sketched in the same figure on the right.



14 M. Batteux et al.

For the functional part, the correspondence is not so easy: the functional
decomposition of the architecture model is finer than that of the safety model.
However, the established correspondence is given in the following table.

Type Model1 (Capella) Model2 (AltaRica 3.0)

block SystemArchitecture PowerSupplySystem

block FunctionalPart Functional

block SupplyElectricalPowerToBusbar SupplyElectricalPowerToBusbar

block SupplyElectricalPowerFromGrid SupplyPowerByGrid

block ControlElectricalPowerDeliveredByGrid.
Phase1

Phase1

block ControlElectricalPowerDeliveredToBusbar.
Phase1

Phase1

block TransformElectricalVoltageDeliveredByGrid.
Phase1

Phase1

... ... ...

Models are then compared again. When no more differences are detected, the
structural consistency between system architecture and safety models is verified.
The matching file establishes the correspondence between the two models. In case
of inconsistencies detection, the initial models need to be adjusted.

6 Conclusion

In this article, we presented model synchronization – a formal framework for
management of heterogeneous models. This framework is based on S2ML (Sys-
tem Structure Modeling Language). We showed that this framework can be used
to ensure the consistency of heterogeneous models, designed within different for-
malisms and different modeling environments.

To support model synchronization, we developed the SmartSync platform,
which relies on S2ML as a pivot language. With SmartSync, we studied the
electrical power supply system. We checked consistency between system archi-
tecture and safety models. The process of making models consistent is iterative
and involves representatives of the engineering disciplines at stake. The Smart-
Sync platform helps not only to check the consistency between models, but also
to detect inconsistencies within models and to support the dialog between stake-
holders.

Some questions about the comparison of heterogeneous models remain open.
As future works, we plan to improve the SmartSync platform, notably by devel-
oping new comparison algorithms and abstraction methods.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag, New-York, USA
(1998)

2. Batteux, M., Prosvirnova, T., A.Rauzy: From models of structures to structures
of models. In: 4th IEEE International Symposium on Systems Engineering, ISSE
2018. Rome, Italy (October 2018)



Model synchronization 15

3. Batteux, M., Prosvirnova, T., A.Rauzy: Altarica 3.0 in 10 modeling patterns. In-
ternational Journal of Critical Computer-Based Systems (IJCCBS) 9, 133 (2019).
https://doi.org/10.1504/IJCCBS.2019.10020023

4. Batteux, M.B., Prosvirnova, T., Rauzy, A., Yang, L.: Reliability assessment of
phased-mission systems with AltaRica 3.0. In: 3rd International Conference on
System Reliability and Safety (ICSRS 2018). Barcelone, Spain (Nov 2018)

5. Bouissou, M., Bon, J.: A new formalism that combines advantages of fault-trees and
Markov models: Boolean Logic Driven Markov Processes. Reliability Engineering
and System Safety 82, 149–163 (2003)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximations of fixpoints. In: Pro-
ceedings of the 4th ACM-Sigplan Symposium on Principles of Programming
Languages, POPL’77. pp. 238–252. ACM, Los Angeles, California, USA (1977).
https://doi.org/10.1145/512950.512973

7. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann. The MK/OMG Press, San Francisco, CA
94104, USA (2011)

8. Fritzson, P.: Principles of ObjectOriented Modeling and Simulation with Modelica
3.3: A CyberPhysical Approach. Wiley-IEEE Press, Hoboken, NJ 07030-5774, USA
(2015)

9. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: Correctness,
completeness and invertibility. Softw. Syst. Model. 14(1), 241–269 (Feb 2015).
https://doi.org/10.1007/s10270-012-0309-1

10. Klee, H., Allen, R.: Simulation of Dynamic Systems with MATLAB and Simulink.
CRC Press, Boca Raton, FL 33431, USA (February 2011)

11. Krob, D.: CESAM: CESAMES Systems Architecting Method: A Pocket Guide.
CESAMES, http://www.cesames.net (January 2017)

12. Mauborgne, P., Deniaud, S., Levrat, E., Bonjour, E., Micaëlli, J.P., Loise, D.:
Operational and system hazard analysis in a safe systems requirement engineering
process application to automotive industry. Safety Science 87, 256–268 (August
2016)

13. Noble, J., Taivalsaari, A., Moore, I.: Prototype-Based Programming: Concepts,
Languages and Applications. Springer-Verlag, Berlin and Heidelberg, Germany
(1999)

14. Pierce, B.C.: Basic Category Theory of Computer Scientists. Foundations of Com-
puting, MIT Press, Cambridge, MA 02142-1315, USA (1991)

15. Rauzy, A., Haskins, C.: Foundations for model-based systems engineering
and model-based safety assessment. Journal of Systems Engineering (2018).
https://doi.org/10.1002/sys.21469

16. Roques, P.: MBSE with the ARCADIA Method and the Capella Tool. In: 8th
European Congress on Embedded Real Time Software and Systems (ERTS 2016).
Toulouse, France (Jan 2016), https://hal.archives-ouvertes.fr/hal-01258014

17. Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD 2013 - Proceedings of the 1st International Conference
on Model-Driven Engineering and Software Development, Barcelona, Spain, 19 -
21 February, 2013. pp. 265–277 (2013). https://doi.org/10.5220/0004311102650277

18. Yakymets, N., Julho, Y.M., Lanusse, A.: Sophia framework for model-based safety
analysis. In: Actes du congrès Lambda-Mu 19 (actes électroniques). Institut pour
la Mâıtrise des Risques, Dijon, France (October 2014)


