LiDAR derived forest structure data improves predictions of canopy N and P concentrations from imaging spectroscopy

Michael Ewald¹, Raf Aerts², Jonathan Lenoir³, Fabian Ewald Fasnacht¹, Manuel Nicolas⁴, Sandra Skowronek⁵, Jérôme Piat⁴, Olivier Honnay², Carol Ximena Garzón-López⁶,⁷, Hannes Feilhauer⁵, Ruben Van De Kerchove⁷, Ben Somers⁸, Tarek Hattab⁶,⁷, Duccio Rocchini¹⁰,¹¹,¹², and Sebastian Schmidtlein¹

¹Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
²Biology Department, KU Leuven, Kasteelpark Arenberg 31-2435, 3001 Leuven, Belgium
³UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, UMR 7058 CNRS), Université de Picardie Jules Verne, 1 rue des Louvels, 80037 Amiens Cedex 1, France
⁴Département Recherche et Développement, Office National des Forêts, Boulevard de Constance, 77300 Fontainebleau, France
⁵Institute of Geography, FAU Erlangen-Nuremberg, Wetterkreuz 15, 91058 Erlangen, Germany
⁶Ecology and Vegetation physiology group (EcoFiv), Universidad de los Andes, Cr. 1E No 18A, Bogotá, Colombia
⁷VITO Flemish institute for technological research, Boeretang 200, 2400 Mol, Belgium
⁸Department of Earth & Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
⁹Institut Français de Recherche pour l’Exploitation de la Mer, UMR MARBEC, Avenue Jean Monnet CS, Sète, France
¹⁰Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, TN, Italy
¹¹Center Agriculture Food Environment, University of Trento, Via E. Mach 1, 38010 S. Michele all’Adige (TN), Italy
¹²Centre for Integrative Biology, University of Trento, Via Sommarive, 14, 38123 Povo (TN), Italy

Imaging spectroscopy is a powerful tool for mapping chemical leaf traits at the canopy level. However, covariance with structural canopy properties is hampering the ability to predict leaf biochemical traits in structurally heterogeneous forests. Here, we used imaging spectroscopy data to map canopy
level leaf nitrogen (N_{mass}) and phosphorus concentrations (P_{mass}) of a temperate mixed forest. By integrating predictor variables derived from airborne laser scanning (LiDAR), capturing the biophysical complexity of the canopy, we aimed at improving predictions of N_{mass} and P_{mass}. We used partial least squared regression (PLSR) models to link community weighted means of both leaf constituents with 245 hyperspectral bands (450 - 2450 nm) and 38 LiDAR-derived variables. LiDAR-derived variables improved the model’s explained variances for N_{mass} (R^2_{cv} 0.31 vs. 0.41, % $RMSE_{cv}$ 3.3 vs. 3.0) and P_{mass} (R^2_{cv} 0.45 vs. 0.63, % $RMSE_{cv}$ 15.3 vs. 12.5). The predictive performances of N_{mass} models using hyperspectral bands only, decreased with increasing structural heterogeneity included in the calibration dataset. To test the independent contribution of canopy structure we additionally fit the models using only LiDAR-derived variables as predictors. Resulting R^2_{cv} values ranged from 0.26 for N_{mass} to 0.54 for P_{mass} indicating considerable covariation between these biochemical traits and forest structural properties. N_{mass} was negatively related to the spatial heterogeneity of canopy density, whereas P_{mass} was negatively related to canopy height and to the total cover of tree canopies. In the specific setting of this study, the importance of structural variables can be attributed to the presence of two tree species, featuring structural and biochemical properties different from co-occurring species. Still, existing functional linkages between structure and biochemistry at the leaf and canopy level suggest that canopy structure, used as proxy, can in general support the mapping of leaf biochemistry over broad spatial extents.

1 Introduction

Plant traits are important indicators of ecosystem functioning and are widely used in ecological research to detect responses to environmental change (Chapin 2003; Garnier et al. 2007; Kimberley et al. 2014) or to quantify ecosystem services (Lamarque et al. 2014; Lavorel et al. 2011). Biochemical traits like leaf nitrogen and phosphorus content respond to changing environmental conditions, such as soil nutrients or climate (Di Palo and Fornara 2013; Sardans et al. 2015) and are key factors related to important ecological processes including net primary production and litter deposition (Melillo et al. 1982; Ollinger et al. 2002; Reich 2012). Temporal trends, like increasing N:P ratios caused by nitrogen deposition can serve as indicators for ecosystem health and sustainability (Jonard et al. 2015; Talkner et al. 2015). Using leaf traits to answer questions related to ecosystem functioning often requires scaling from the leaf to the plant community or ecosystem level (Masek et al. 2015; Suding et al. 2008). Due to the fact that certain leaf biochemical traits are closely linked to the reflectance signature of leaves (Kokaly et al. 2009) the use of imaging spectroscopy has proved to be an efficient method for scaling and the prediction of these traits across large spatial scales (Homolová et al. 2013). By far, most studies relating foliage biochemistry to airborne imaging spectroscopy data
focused on leaf nitrogen (e.g. Dahlin et al., 2013; Huber et al., 2008; Martin and Aber, 1997; Wang et al., 2016). But also other biochemical leaf ingredients like chlorophyll, cellulose and lignin (Curran et al., 1997; Schlerf et al., 2010; Serrano et al., 2002) and even micronutrients like iron and copper (Asner et al., 2015; Pullanagari et al., 2016) have been successfully related to imaging spectroscopy data. Compared to leaf nitrogen, mapping of leaf phosphorus concentrations received less attention (but see Asner et al., 2015; Porder et al., 2005; Pullanagari et al., 2016).

The link between leaf biochemistry and reflectance established in optical remote sensing applications strongly depends on the observational level. At the leaf level, nitrogen concentrations, for example, are directly expressed in the spectral signal. For dried and ground samples, characteristic absorption features can be found in the shortwave infrared (SWIR) region of the electromagnetic spectrum. The absorption of radiation in the SWIR can be attributed to nitrogen bonds in organic compounds primarily of leaf proteins (Kokaly et al., 2009). In fresh leaves the nitrogen concentration is additionally strongly related to absorption in the visible part of the spectrum (VIS) (Asner and Martin, 2008), which can be attributed to the correlation between chlorophyll and leaf nitrogen (Homolová et al., 2013; Ollinger, 2011). At the canopy level, spectral reflectance is strongly influenced by canopy structure (Asner, 1998; Gerard and North, 1997; Rautiainen et al., 2004). Thus, the estimation of leaf traits from canopy reflectance is more complex due to the confounding effects of structural properties like crown morphology, leaf area index (LAI), leaf clumping or stand height (Ali et al., 2016; Simic et al., 2011; Xiao et al., 2014). Consequently, variability in canopy structure can strongly influence the accuracy of nitrogen estimations from remote sensing (Asner and Martin, 2008). On the other hand, canopy structure has been found to explain part of the relation between reflectance and canopy nitrogen. This relation is revealed by a strong importance of reflectance in the near infrared (NIR) for mapping canopy nitrogen reported by previous studies (Martin et al., 2008; Ollinger et al., 2008). Reflection in the NIR region is dominated by multiple scattering between leaves of the canopy, and thus very sensitive to variation in canopy structure (Knyazikhin et al., 2013; Ollinger, 2011). Covariation between canopy structure and nitrogen was found across different types of forest ecosystems and hence points at the existence of a functional link between canopy structure and biochemical composition. However, the foundation of this functional link has not been fully understood.

In this study, we aim at scaling leaf level measurements of mass based leaf nitrogen (N_{mass}) and phosphorus content (P_{mass}) to the canopy scale for a temperate mixed forest. To capture the forest’s diversity in terms of tree species, age distribution and canopy structure we propose to explicitly integrate information on forest structure derived from airborne laser scanning (Light Detection And Ranging, LiDAR) into the empirical models. Airborne LiDAR data can depict the 3D structure of the vegetation and has been successfully used to map forest attributes like the leaf area index and standing biomass (Fassnacht et al., 2014; Korhonen et al., 2011; Zolkos et al., 2013). The benefit of LiDAR-derived information on forest structure for mapping of canopy biochemistry has not been assessed yet. We argue that the integration of structural properties allows for a better acquisition of leaf chemical traits in heterogeneous forests canopies. We furthermore
expect that LiDAR data can help to understand expected covariation between canopy structural properties and biochemical leaf traits. Specifically, we aim at: (1.) improving predictions of N_{mass} and P_{mass} using imaging spectroscopy through the integration of LiDAR-derived information on forest structure and (2.) finding out which structural canopy properties correlate with N_{mass} and P_{mass} in canopies of mixed forests.

2 Materials and Methods

2.1 Study area

The study area is the forest of Compiègne (northern France, 49.370° N, 2.886° E), covering an area of 144.2 km². This lowland forest is located in the humid temperate climate zone with a mean annual temperature of 10.3°C and mean annual precipitation of 677 mm. The soils cover a range from acidic nutrient-poor sandy soils to basic and hydromorphic soils (Closset-Kopp et al., 2010). The forest mainly consists of even-aged managed stands of beech ($Fagus sylvatica$), oaks ($Quercus robur$, $Quercus petraea$) and pine ($Pinus sylvestris$) growing in mono-culture as well as in mixed stands, frequently intermingled with European hornbeam ($Carpinus betulus$) and ash ($Fraxinus excelsior$) (Chabrerie et al., 2008). Stands are covering a range from early pioneer stages to more than 200-year-old mature forests. As a result of thinning activities and windthrow the forest is characterized by frequent canopy gaps which are often filled by the American black cherry ($Prunus serotina$), an alien invasive tree species in central Europe. $Prunus serotina$ is in some parts also highly abundant in the upper canopy of earlier pioneer stages.

2.2 Field data

Field data were acquired from 50 north-facing field plots (25 m × 25 m) established in July 2014. Of those plots, 44 plots were randomly selected from an initial set of 64 field plots established in 2004 during a previous field study by Chabrerie et al. (2008). Six additional plots were selected to include stands in earlier stages of forest succession, aiming to cover the entire range of structural canopy complexity. The plots covered all main forest stand types including mixed tree species stands in different age classes (supplementary material, Tab. S1). In each plot we recorded the diameter at breast height for all trees and shrubs higher than 2 m.

In July 2015, we sampled leaves from the most abundant tree species making up at least 80% of the basal area in one plot. This resulted in up to five sampled species per plot. For each species in each plot, we took three independent samples, if possible from different individuals. Taller trees were sampled by shooting branches using shotguns (Marlin Model 55 Goose, Marlin Firearms Co, Madison, USA and Winchester Select Sporting II 12M, Winchester, Morgan, USA) with Buckshot 27 ammunition (27 × 6.2 mm pellets), aiming at single branches (Aerts et al., 2017). Samples from smaller trees were taken using a pole clipper. In both cases leaves from the upper part of the crown were preferably chosen. Trees growing in canopy gaps were sampled in the center of these
gaps, in order to collect the most sunlit leaves from these individuals. For broadleaved trees, each sample consisted of 10 to 15 undamaged leaves, depending on leaf size. The samples of the only coniferous tree species *P. sylvestris* consisted of at least 20 needles from both the current and the last growing season. In total, we collected 328 leaf samples from nine different tree species. Leaves were put in sealed plastic bags and stored in cooling boxes. At the end of each field day samples were weighed, and then dried at 80°C for 48 hours.

Back from the field, leaves were milled prior to the analysis. \(N_{\text{mass}}\) was measured applying the Dumas method using a vario MACRO element analyzer (Elementar Analysensysteme, Hanau, Germany). \(P_{\text{mass}}\) was measured using an inductively coupled plasma-optical emission spectrometer (ICP-OES) (Varian 725ES, Varian Inc., Palo Alto, CA, USA). For each field plot, we calculated community weighted mean values for \(N_{\text{mass}}\) and \(P_{\text{mass}}\), taking the basal area of each species in the corresponding plot as the weight. The relative basal area is a good approximation for relative canopy cover of the tree species co-occurring in a forest stand (Cade, 1997; Gill et al., 2000). The relative canopy cover corresponds to the contribution of each species to the reflectance signal of a mixed forest canopy. Although field samples were collected one year after the acquisition of remote sensing data, we consider our field data set as a solid basis for the prediction of \(N_{\text{mass}}\) and \(P_{\text{mass}}\). Previous studies indicate that in temperate tree species there are no remarkable differences in leaf chemical contents between two consecutive years (Reich et al., 1991; Smith et al., 2003). Furthermore, \(N_{\text{mass}}\) in deciduous broadleaved species typically shows only little variation during the mid-growing season (McKown et al., 2013; Niinemets, 2016; Reich et al., 1991) and remains stable under drought conditions (Grassi et al., 2005; Wilson et al., 2000). The latter point is noteworthy, because the early summer of 2015 was dryer compared to the year 2014.

2.3 Remote sensing data

We used airborne imaging spectroscopy data (284 bands, 380 nm – 2500 nm) acquired by the Airborne Prism Experiment (APEX) spectrometer with a spatial resolution of 3 m × 3 m, and airborne discrete return LiDAR data with an average point density of 23 points per m\(^2\), both covering the entire study area. APEX data were acquired on July 24, 2014 (9:56 – 11:25 UTC + 2h) at a flight height of 5400 m by the Flemish Institute of Technology (VITO, Mol, Belgium). The data, consisting of 12 flight lines, were delivered geometrically and atmospherically corrected using the standard processing chain applied to APEX recorded images (Sterckx et al., 2016; Vreyse et al., 2016). Bands from both ends of the spectra and bands disturbed by water absorption were deleted prior to the analysis. In total, we included 245 spectral bands between 426 nm and 2425 nm for subsequent analyses. We applied a Normalized Differenced Vegetation Index (NDVI) mask in order to exclude values from pixels with bare soil and ground vegetation (Asner et al., 2015). For this purpose, we calculated NDVI values for each pixel and excluded pixels with a NDVI below 0.75. For all remaining pixels we applied a brightness normalization to reduce the influence of canopy shades on the spectral signal (Feilhauer et al., 2010).

LiDAR points were recorded in February 2014 at leaf-off conditions by Aerodata (Lille,
France) using a Riegl LMS-680i with a maximum scan angle of 30° and a lateral overlap of neighboring flight lines of 65%. Average flight height during LiDAR data acquisition was 530 m resulting in a beam diameter of about 0.265 m. The LiDAR data were delivered including a classification of ground and vegetation returns and a digital terrain model (DTM). Height values of LiDAR points were normalized, by subtracting values of the underlying DTM. Vegetation returns were then aggregated into a grid with a cell size of 3 m × 3 m, taking the grid matrix of the imaging spectroscopy data as reference. For each pixel we calculated 19 different LiDAR-derived variables based on point statistics resulting in 19 raster layers. Calculated LiDAR-derived variables included basic summary statistics (e.g. maximum height) based on the height values of LiDAR points in each grid cell and inverse penetration ratios representing the fractional vegetation cover within given height thresholds (Tab. 1) (Ewald et al., 2014). Penetration ratios were calculated using the following formula:

\[v_{ch_{12}} = \frac{n_{h_2} - n_{h_1}}{n_{h_2}} \]

where \(v_{ch_{12}}\) is representing the vegetation cover within the height thresholds \(h_1\) and \(h_2\) (\(h_1 < h_2\)) within one grid cell. \(n_{h_1}\) and \(n_{h_2}\) represent the sum of all LiDAR points below the given height thresholds \(h_1\) and \(h_2\), respectively.

Table 1 Variables calculated from LiDAR point clouds in 3 m × 3 m resolution. For the use in partial least squares regression models, variables were aggregated into a grid with a cell size of 24 m × 24 m, by calculating mean and standard deviation.

<table>
<thead>
<tr>
<th>LiDAR Metric</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>min_h_mean; min_h_sd</td>
<td>Basic statistics</td>
</tr>
<tr>
<td>Maximum</td>
<td>max_h_mean; max_h_sd</td>
<td>based on the height values of LiDAR points</td>
</tr>
<tr>
<td>Mean</td>
<td>mean_h_mean; mean_h_sd</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>sd_h_mean; sd_h_sd</td>
<td>vegetation LiDAR</td>
</tr>
<tr>
<td>Variance</td>
<td>var_h_mean; var_h_sd</td>
<td></td>
</tr>
<tr>
<td>Coefficient of variation</td>
<td>cov_h_mean; cov_h_sd</td>
<td></td>
</tr>
<tr>
<td>10th percentile</td>
<td>perc10_h_mean; perc10_h_sd</td>
<td></td>
</tr>
<tr>
<td>25th percentile</td>
<td>perc25_h_mean; perc25_h_sd</td>
<td></td>
</tr>
<tr>
<td>50th percentile</td>
<td>perc50_h_mean; perc50_h_sd</td>
<td></td>
</tr>
<tr>
<td>75th percentile</td>
<td>perc75_h_mean; perc75_h_sd</td>
<td></td>
</tr>
<tr>
<td>90th percentile</td>
<td>perc90_h_mean; perc90_h_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 0.5m – 2m</td>
<td>fcover_0.5_2_mean; fcover_0.5_2_sd</td>
<td>Inverse penetration ratios representing an estimate for fractional cover of the vegetation within given height thresholds</td>
</tr>
<tr>
<td>Fractional cover 0.5m – 60m</td>
<td>fcover_0.5_60_mean; fcover_0.5_60_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 2m – 6m</td>
<td>fcover_2_6_mean; fcover_2_6_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 2m – 60m</td>
<td>fcover_2_60_mean; fcover_2_60_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 6m – 10m</td>
<td>fcover_6_10_mean; fcover_6_10_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 6m – 60m</td>
<td>fcover_6_60_mean; fcover_6_60_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 10m – 20m</td>
<td>fcover_10_20_mean; fcover_10_20_sd</td>
<td></td>
</tr>
<tr>
<td>Fractional cover 20m – 60m</td>
<td>fcover_20_60_mean; fcover_20_60_sd</td>
<td></td>
</tr>
</tbody>
</table>

From both imaging spectroscopy and LiDAR raster layers, we extracted values from all pixels overlapping with the 50 field plots to be used as input to the statistical models. For each plot, we calculated the weighted mean values of 245 hyperspectral bands and
19 LiDAR-variables (Tab. 1) from the extracted cell values, using the percent overlap of each cell with the plot area as weight. Similarly, we calculated the weighted standard deviation for LiDAR-derived variables which represent a measure of spatial heterogeneity of these variables.

For prediction we aggregated the pixels of the imaging spectroscopy and LiDAR raster layers to a grid with a pixel size of $24\,\text{m} \times 24\,\text{m}$, calculating the mean and the standard deviation (for LiDAR-derived variables only) of all aggregated cells. This finally resulted in a dataset containing 245 spectral bands and 38 LiDAR-derived variables (mean and standard deviation).

2.4 Model calibration and validation

For both response variables, N_{mass} and P_{mass}, we built predictive models using the extracted values from the raster layers at plot locations as predictors. We calculated partial least squares regression (PLSR) models with a step-wise backward model selection procedure implemented in the R package autopls \cite{R Core Team 2016, Schmidtlein et al. 2012}. The number of latent variables was chosen based on the lowest root mean squared error (RMSE) in leave-one-out cross-validation. Before model calibration predictors were normalized, dividing each predictor variable by its standard deviation.

To test the benefit of LiDAR-derived data for the prediction of community weighted means of N_{mass} and P_{mass} at the canopy level we fit two sets of models for each response variable, one incorporating the hyperspectral bands only and a second one using a combination of hyperspectral bands and LiDAR-derived variables as predictors. To test the independent contribution of LiDAR data on the predictions, we additionally fit a third set of models for both N_{mass} and P_{mass} including only LiDAR-derived variables as predictors. N_{mass} values were natural log transformed prior to the model calculations.

The model calculations and predictions were embedded in a resampling procedure with 200 permutations, in order to reduce the bias in model predictions, yielding to a better comparison between the three sets of models. In each permutation, a subsample of 40 out of the 50 field plots was randomly drawn without replacement and used for model calibration and validation. Each model was used to generate a prediction map with a grid size of $24\,\text{m} \times 24\,\text{m}$, resulting in 200 prediction maps for each response variable and each of the three predictor combinations used, respectively. From these maps we calculated a median prediction map and the associated coefficient of variation (CV), representing the spatial uncertainty of model predictions \cite{Singh et al. 2015}.

For the assessment of the predictive performance of the models, we calculated the mean Pearson r-squared as well as the absolute and normalized root mean squared error (RMSE) between predicted and observed values of each data subset. The same performance measures were calculated for each data subset in leave-one-out cross-validation data. For N_{mass}, r-squared values and RMSE were calculated based on the log-transformed dataset. The normalized RMSE was calculated by dividing the RMSE by the mean value in the response dataset. r-squared and RMSE values were used to compare the performances of models using only hyperspectral bands or a combination of hyperspectral bands and LiDAR-derived variables as predictors, for N_{mass} and P_{mass} respectively.
Model performance is affected by the number of variables included, in the case of a PLSR the number of latent variables. To check for such an effect we grouped the corresponding models according to the number of latent variables included and compared the r-squared values for each group separately (supplementary material, Fig. S1).

3 Results

Field plots were located in forest stands with heights ranging from 3 to 40 m and LAI values ranging from 1.7 to 5.9 (supplementary material, Tab. S2). Plot-wise community weighted mean values for N_{mass} and P_{mass} ranged from 13.8 to 25.4 g·kg$^{-1}$ and from 0.82 to 1.93 g·kg$^{-1}$, respectively. N_{mass} of P. serotina and P. sylvestris were significantly different from all other species (supplementary material, Fig. S2 and, Tab. S3). Contrary, we observed no differences in measured N_{mass} between F. sylvatica, Q. robur and C. betulus. P_{mass} differed significantly between all species except between C. betulus and Q. robur (supplementary material, Fig. S2). Models combining structural vegetation attributes, derived from airborne LiDAR, with imaging spectroscopy improved predictions of community weighted mean values for N_{mass} and P_{mass} compared to models using imaging spectroscopy data solely (Tab. 2, Fig. 2). In the combined N_{mass} models, hyperspectral bands had a significantly higher contribution ($p < 0.001$) to the variance explained, compared to LiDAR-derived variables (Fig. 1). By contrast, in P_{mass} models, LiDAR-derived variables showed a significantly higher contribution ($p < 0.001$). With respect to the selected spectral bands we observed only marginal differences between models including LiDAR-derived variables and models not including them (Figs. 3, 4, 5, 6).

Table 2: Results of PLSR models for N_{mass} and P_{mass} from 200 bootstraps. Predictors: used predictor variables being either, hyperspectral bands (HS) or LiDAR-derived variables; # LV: mean number of latent variables; # Var: mean number of selected predictor variables; R^2_{cal}: mean coefficient of determination in calibration; R^2_{cv}: mean coefficient of determination in validation; RMSE$_{cal}$: average root mean squared error in calibration; RMSE$_{cv}$: average root mean squared error in leave-one-out cross-validation.

<table>
<thead>
<tr>
<th>Response</th>
<th>Predictors</th>
<th>#LV</th>
<th>#Var</th>
<th>R^2_{cal}</th>
<th>R^2_{cv}</th>
<th>RMSE$_{cal}$</th>
<th>RMSE$_{cv}$</th>
<th>RMSE$_{cal}$</th>
<th>RMSE$_{cv}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[%]</td>
<td>[%]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_{mass}*</td>
<td>HS</td>
<td>5.8</td>
<td>98</td>
<td>0.47</td>
<td>0.31</td>
<td>0.09</td>
<td>0.09</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>HS & LiDAR</td>
<td>5.7</td>
<td>43</td>
<td>0.55</td>
<td>0.41</td>
<td>0.08</td>
<td>0.09</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>LiDAR</td>
<td>3.5</td>
<td>8</td>
<td>0.39</td>
<td>0.26</td>
<td>0.09</td>
<td>0.10</td>
<td>3.1</td>
<td>3.4</td>
</tr>
<tr>
<td>P_{mass}</td>
<td>HS</td>
<td>6.3</td>
<td>42</td>
<td>0.59</td>
<td>0.45</td>
<td>0.15</td>
<td>0.18</td>
<td>13.1</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>HS & LiDAR</td>
<td>6.9</td>
<td>38</td>
<td>0.73</td>
<td>0.63</td>
<td>0.13</td>
<td>0.14</td>
<td>10.8</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>LiDAR</td>
<td>3.7</td>
<td>9</td>
<td>0.62</td>
<td>0.54</td>
<td>0.15</td>
<td>0.17</td>
<td>12.6</td>
<td>14.0</td>
</tr>
</tbody>
</table>

*natural log-transformed
Figure 1 Relative contribution of hyperspectral bands (HS) and LiDAR variables to the variance explained in PLSR models for \(N_{mass} \) and \(P_{mass} \) expressed as proportion of the total VIP (Variable Importance in Projection) score.

For \(N_{mass} \) the average \(R^2_{cv} \) values resulting from leave-one-out cross-validation for each bootstrap model increased from 0.31 to 0.41 whereas the mean relative RSME decreased only moderately (see Tab. 2) when adding LiDAR-derived variables. Models fitted by LiDAR-derived predictors solely resulted in a mean \(R^2_{val} \) value of 0.25. The most important LiDAR-derived variables in the models predicting of \(N_{mass} \) were, according to VIP values, related to the horizontal variation of canopy cover (fcover_05_60_sd, fcover_2_6_sd, fcover_6_10_sd, fcover_6_60_sd) (Figs. 7, 8). The most important spectral bands were located in the VIS and the SWIR between 2000 and 2400 nm, irrespective of whether only imaging spectroscopy or a combination of imaging spectroscopy and LiDAR data was used (Fig. 3).

For \(P_{mass} \), average \(R^2_{cv} \) values resulting from leave-one-out cross-validation for each bootstrap model increased from 0.45 to 0.63 and the mean relative RSME decreased from 15.3 to 12.5 (see Tab. 2), when LiDAR-derived predictors were included. Models fitted by LiDAR-derived predictors solely resulted in a mean \(R^2_{val} \) value of 0.54. Regression coefficients for the most important LiDAR-derived predictors, according to the relative VIP, indicated a negative relation between \(P_{mass} \) and the fractional cover of trees larger than 6 m (fcover_6_60_mean) (Figs. 7, 8). Moreover, important LiDAR-derived variables indicated a negative relation of \(P_{mass} \) to the stand height (max_h_mean, perc90_h_mean, mean_h_mean) (Figs. 7, 8). Additionally, fcover_2_6_mean, related to the cover of shrubs, was the most important variable in \(P_{mass} \) models using LiDAR-derived variables solely (Fig. 8). Important hyperspectral bands were distributed across the whole spectrum with a pronounced peak around 730 nm (Fig. 4). The permutation of the calibration data according to the main forest types revealed that the success of \(N_{mass} \) and \(P_{mass} \) models was strongly dependent on two forest types being included (Fig. 9). \(N_{mass} \) models showed poor predictive performances when \(P. sylvestris \) stands were not included in the calibration dataset. Similarly, the absence of \(P. serotina \) dominated stands resulted in poor predictive performance of \(P_{mass} \) models. This observation was consistent regardless of whether hyperspectral or LiDAR data were used as predictors. Additionally, model performances were strongly influenced by the variance in canopy.
Figure 2 Mean predicted values resulting from 200 model predictions displayed against observed values for N_{mass} and P_{mass} of 50 field plots. Error bars represent lower and upper quantiles of the predictions. The figures show results from models using hyperspectral bands (HS, top), LiDAR-derived predictors (LiDAR, bottom) and a combination of both (HS & LiDAR, middle). The coloring highlights different forest types represented by dominant tree species.

P_{mass} models performed better with increasing variance in both structural properties. This contrasted with N_{mass} where the performance of imaging spectroscopy models decreased with increasing variation in canopy height and gap fraction. The performance of N_{mass} models was less affected by structural variation, when including LiDAR-derived variables (Fig. 10).
Figure 3 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and LiDAR-derived variables resulting from 200 PLSR models for the prediction of N$_{mass}$. The top panel is showing the results from models using hyperspectral bands only, bottom panels display results from models using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate the range between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP values of used LiDAR variables. For simplification LiDAR variables were grouped into four classes representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD).

Figure 4 Mean VIP (Variable Importance in Projection) values of hyperspectral bands and LiDAR-derived variables resulting from 200 PLSR models for the prediction of P$_{mass}$. The top panel is showing the results from models using hyperspectral bands only, bottom panels display results from models using a combination of hyperspectral bands and LiDAR-derived predictors. Gray areas indicate the range between the 10th and the 90th percentiles. The bottom right panel is displaying mean VIP values of used LiDAR variables. For simplification LiDAR-derived variables were grouped into four classes representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD).
Figure 5 Mean PLSR Coefficients of hyperspectral bands and LiDAR-variables resulting from 200 model calculations for predicting N\textsubscript{mass}. The top panel is showing the results from models using hyperspectral bands only, bottom panels display results from models using a combination of hyperspectral bands and LiDAR-derived variables. Gray areas indicate the range between the 10th and the 90th percentile. The bottom right panel is displaying mean PLSR coefficients of used LiDAR-derived variables. For simplification LiDAR-derived variables were grouped into four classes representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD). LiDAR variables are displayed in ascending order by variable importance.

Figure 6 Mean PLSR Coefficients of hyperspectral bands and LiDAR-derived variables resulting from 200 model calculations for predicting P\textsubscript{mass}. The top panel is showing the results from models using hyperspectral bands only, bottom panels display the results from models using a combination of hyperspectral bands and LiDAR-derived variables. Gray areas indicate the range between the 10 th and the 90 th percentile. The bottom right panel is displaying mean PLSR Coefficients of used LiDAR-derived variables. For simplification LiDAR-derived variables were grouped into four classes representing the vegetation cover (Fractional cover), the horizontal variability of vegetation cover (Fractional cover SD), LiDAR height metrics (Height), and the horizontal variability of LiDAR height metrics (Height SD). LiDAR variables are displayed in ascending order by variable importance.
4 Discussion

In this study we showed that LiDAR-derived information on canopy structure improved predictions of \(N_{\text{mass}} \) and \(P_{\text{mass}} \) based imaging spectroscopy instructurally heterogeneous forest stands. This finding is in accordance with previous studies using optical remote sensing data, which report a strong contribution of NIR reflectance for the prediction of \(N_{\text{mass}} \) in forest canopies (e.g. Martin et al., 2008; Ollinger et al., 2008; Wang et al., 2016), that can be attributed to canopy structural properties (Knyazikhin et al., 2013; Ollinger, 2011). Similarly, Badgley et al. (2017) found gross primary production on a global level to be strongly related to structure-sensitive NIR reflectance. These results point at the existence of functional links between the biochemical and structural composition of forest canopies.

An ecological explanation of such linkages follows from the economic theory (Bloom et al., 1985). The economic theory states that investments in the photosynthetic ma-
Figure 8 Mean VIP values (left) and mean PLSR coefficients (right) resulting from 200 PLSR models for the prediction of N_{mass} (top) and P_{mass} (bottom) for the ten most important LiDAR-derived variables in models using LiDAR-derived predictors only. Error bars indicate the range between the 10th and 90th percentiles.

The machinery of plants will be realized only when the benefit of these investments exceeds the anticipated costs. As a result, plant traits with small cost-to-benefit relationship are favored under resource limitation, leading to a functional convergence of structural and physiological traits. At the leaf level, for example, the negative correlation between leaf mass per area and leaf nitrogen or phosphorus concentration can be attributed to functional convergence (Díaz et al., 2016; Shipley et al., 2006; Wright et al., 2004). Ecological theory suggests that, similar to the leaf level, functional convergence can also be expected at the canopy level (Field, 1991) leading to linkages between structural and biochemical canopy properties. In temperate and boreal forest ecosystems, links between structure and biochemistry are expressed at both the leaf and the canopy level. For example, broadleaved and coniferous trees show notable structural differences at the canopy level which are expressed in different crown geometry, branching architecture and leaf angle distribution (Ollinger, 2011). Both, leaf and canopy structural prop-
Figure 9 Predictive performances of N_{mass} and P_{mass} models using permuted calibration datasets according to occurring forest types. In each data permutation one forest type was excluded from the calibration dataset. Numbers above the bars represent the number of field plots included in each calibration dataset. HS: models using hyperspectral data; HS & LiDAR: models using a combination of hyperspectral and LiDAR data; LiDAR: models using LiDAR data only.

Figure 10 Predictive performances of N_{mass} and P_{mass} models depending on the variance of canopy gap fraction and canopy height included in the calibration dataset. Points represent the results from 200 model repetitions using permuted calibration data. Lines and values in each panel represent results from univariate linear regression between displayed variables. Top panels are showing the results from models using imaging spectroscopy data (HS) only, bottom panels the results from models using a combination of imaging spectroscopy and LiDAR data.

Properties have shown to influence spectral reflectance in similar ways, resulting in higher reflectance of broadleaved canopies \cite{knyazikhin2013,ollinger2011}. At the same time, broadleaved trees are characterized by higher N_{mass} compared to coniferous tree species \cite{giusew2004,han2005,mcneil2008,serbin2011}.

\textbf{15}
Figure 11 Map sections showing forest types represented by their dominant tree species, a canopy height model (both in the middle) and median predictions of canopy level N_{mass} (top) and P_{mass} (bottom) from models using hyperspectral bands (HS), LiDAR-derived predictors (LiDAR) or a combination of both (HS+LiDAR).

[Image of maps showing forest types and predictions]

Furthermore, case studies show that forest canopy N_{mass} or P_{mass} can be also related to other structural properties, such as stand density, above ground biomass or crown-closure (Craven et al., 2015; Gökkaya et al., 2015; Sardans and Peñuelas, 2015; Vilà-Cabrera et al., 2015).

In the specific context of this study, the success of N_{mass} and P_{mass} predictions was strongly dependent on the presence of two forest types that exhibited biochemical and structural differences compared to the co-occurring forest types. N_{mass} predictions depended on the presence of *P. sylvestris* stands in the calibration dataset. *Pinus sylvestris* was the only coniferous species in our study and was characterized by significantly lower N_{mass} than all other species. In contrast, P_{mass} predictions were mainly driven by *P.*
serotina, which was the species characterized by the highest P_{mass} concentrations in our study area. Structural differences between $P. \text{serotina}$ and the other tree species in our study area mainly arise from its growth strategy and habitat preferences. $Prunus \text{serotina}$ is an early successional tree species with significantly smaller growth heights compared to other tree species predominant in our study area. $Prunus \text{serotina}$ is often a dominant species in young stands and often occurs in mature stands with sparse canopies or in canopy gaps. Our results suggest that species differences in structural and/or optical properties can serve as a surrogate to predict canopy chemistry using remote sensing, at least across small study extents, where differences in leaf nutrient concentrations can often be explained by differences between species (Craven et al., 2015; McNeil et al., 2008). For larger environmental gradients, differences between species are often superimposed by the high intra-specific variability of leaf biochemicals (Asner et al., 2012; Mellert and Göttlein, 2012; Vilà-Cabrera et al., 2015), which respond to strong variation in climate and soil properties (Sardans et al., 2015; Sun et al., 2015). The fact that our results were strongly dependent on the occurrence of two species is limiting the transferability of our findings to other study areas or broader spatial extents. However, functional differences (e.g. between broadleaved and coniferous species or between early and late successional species) that are manifested in structural and biochemical properties (Craven et al., 2015; Kusumoto et al., 2015; Sardans and Peñuelas, 2015; Vilà-Cabrera et al., 2015) suggest that canopy structure can serve as a surrogate for predicting biochemical properties also in different study contexts.

Mapping N_{mass}

Predicting forest canopy N_{mass} using imaging spectroscopy has a long history. Compared to previous studies, which often report good (e.g. Smith et al., 2003; Townsend et al., 2003; Wang et al., 2016) or even excellent (e.g. Martin et al., 2008; Singh et al., 2015) predictive performances, our models performed poorly. We attribute this mainly to the high structural diversity of the forest stands used for model calibration. This high structural diversity was, for example, expressed by strong variation of LAI values even within stands of the same forest type (i.e. ranging from 1.8 to 6.1 for $F. \text{sylvatica}$ stands). Canopy structure strongly affects reflectance (Gerard and North, 1997; Rautiainen et al., 2004) and a high variability in LAI has been found to hamper predictions of leaf biochemistry at the canopy level (Asner and Martin, 2008). Furthermore, we included stands of different age classes, with canopy heights ranging between 2 and 40 meters, which also increases variation in canopy reflectance, especially in the VIS (Roberts et al., 2004). Our results suggest, that including LiDAR data can help to diminish these effects of structural heterogeneity, when mapping N_{mass} (see Fig. 10).

In part, the weak predictive performance of our N_{mass} models can be attributed to the relatively low data range of N_{mass} in our study area (cf. Asner et al., 2015; Huber et al., 2008; Martin et al., 2008; Singh et al., 2015; Smith et al., 2003; Wang et al., 2016). The range was especially low for all broadleaved species, with no significant differences between the two main species ($F. \text{sylvatica}, Q. \text{robur}$), which were predominant in 36 of 50 field plots (including mixed broadleaf). Furthermore, the weak model performance
can, presumably, also be attributed to the usage of mass related nitrogen measures, because spectral reflectance is more closely linked to leaf biochemistry on an area basis (Grossman et al., 1996; Roelofsen et al., 2014).

Furthermore, the performance of the N_{mass} models may also be explained by the fact that image acquisition and leaf sampling were from different years. Although previous studies suggest, that there is only low variation of N_{mass} in temperate forest species between two consecutive years and during one growing season (McKown et al., 2013; Niinemets, 2016; Reich et al., 1991; Smith et al., 2003), we cannot be 100% sure that relative differences between the species in our study area were stable between the years. Fajardo and Siefert (2016) found different patterns in N_{mass} between coniferous and broad leaf species in the course of one growing season. However, they also found that overall species rankings concerning N_{mass} were stable throughout a growing season.

The most important spectral bands selected in our N_{mass} models were situated in the visible part of the spectrum. A high contribution of the VIS region for N_{mass} prediction, using imaging spectroscopy, was also observed by Asner et al. (2015) and Singh et al. (2015). In our study the importance of bands in the VIS can be attributed to differences in reflectance between coniferous and broadleaved forest stands in this spectral region. (see supplementary material Fig. S4). These differences may arise from light absorption of chlorophyll but may also be due to other leaf pigments, like carotenoids and anthocyanins, that also have absorption characteristics in the VIS (Ollinger, 2011; Ustin et al., 2009). Moreover, structural canopy properties such as LAI or leaf angle distribution also influence reflectance in the VIS, albeit to a lower extent than leaf pigments (Jacquemoud et al., 2009). This is in accordance to previous studies that report the importance of the VIS region to discriminate between species (Fassnacht et al., 2016; Roberts et al., 2004).

VIP values indicated only a minor contribution of spectral bands located in the NIR and SWIR, which is contrary to results of previous studies using image spectroscopy (Homolová et al., 2013). According to Ollinger (2011) NIR reflectance is especially important in datasets with only little variance in the VIS reflectance. The high variance in the VIS reflectance (see supplementary material Fig. S3) observed in this study may thus be an explanation for the minor contribution of NIR and SWIR bands. Additionally, any signal in the infrared reflectance may be strongly disturbed, by the high variability of canopy gaps in the field plots used for this study (Ollinger, 2011).

For mapping N_{mass}, important LiDAR-derived variables were mainly connected to the horizontal variation of canopy cover ($fcover_{6 _10 _sd}$, $fcover_{6 _60 _sd}$, $fcover_{2 _6 _sd}$). These three variables represent the variation of the fractional vegetation cover between different height thresholds, in one $24m \times 24m$ pixel. They can thus be interpreted as indicators for spatial heterogeneity of the canopy. The most important LiDAR-derived variable for predicting canopy level N_{mass} was the spatial variation of fractional vegetation cover between 6 and 10 m height ($fcover_{6 _10 _sd}$), which is related to the occurrence of shrubs or small trees in the understory. Low values either indicate little vegetation present between 6 and 10 m height, as it can be observed in mature forest stands with closed canopies, or very dense homogeneous vegetation, as it can be observed in earlier successional stages. High values indicate heterogeneous, typically old-grown forest stands with gaps that are filled by young trees. Similarly, $fcover_{6 _60 _sd}$ is
related to the horizontal heterogeneity of the tree canopy cover, that was highest in *P. sylvestris* stands (supplementary material, Fig. S5). Moreover fcover_2_6 also was highest in *P. sylvestris* stands, indicating that LiDAR-derived variables helped to accentuate differences in N$_{\text{mass}}$ between *P. sylvestris* and broadleaved species.

In summary, N$_{\text{mass}}$ predictions were strongly dependent on the presence of the only coniferous tree species, *P. sylvestris*. Stands of *P. sylvestris* were characterized by lower N$_{\text{mass}}$ and higher spatial variation of canopy cover compared to broadleaved forest stands. These structural differences could be well captured by LiDAR data (supplementary material, Fig. S5). Hence, integrating LiDAR-derived information improved models based on imaging spectroscopy data solely. The poor performance of models, using hyperspectral data solely, can be attributed to the high structural heterogeneity in the study area, in terms of LAI and stand ages. Our results suggest, that LiDAR data can help to diminish the effect of canopy heterogeneity when mapping forest N$_{\text{mass}}$ using imaging spectroscopy.

Mapping P$_{\text{mass}}$

Mapping leaf phosphorus with remote sensing has received much less attention compared to N$_{\text{mass}}$. Earlier mapping attempts were based on hyperspectral indices (Mirik et al., 2005), radiative transfer models (Porder et al., 2005) and empirical models (Asner et al., 2015; Gökkaya et al., 2015). Gökkaya et al. (2015) achieved excellent predictive performances mapping P$_{\text{mass}}$ in a boreal mixed forest using Hyperion imaging spectroscopy data. Asner et al. (2015) successfully mapped P$_{\text{mass}}$ along a broad environmental gradient using airborne hyperspectral data and partial least squares regression. Contrary to N$_{\text{mass}}$, P$_{\text{mass}}$ has no characteristic absorption features in the used wavelength range and thus the success of mapping P$_{\text{mass}}$ can be rather attributed to correlations to other canopy properties. For many plant species, P$_{\text{mass}}$ is positively correlated with N$_{\text{mass}}$ (Elser et al., 2010; Güsewell, 2004) or leaf mass per area (Wright et al., 2004). For temperate tree species, Sardans et al. (2015) found a negative correlation between above ground biomass and leaf N:P ratio, due to higher P retention with increasing age.

Important bands for the prediction of P$_{\text{mass}}$ were located throughout the whole range of the spectra. Asner et al. (2015) and Gökkaya et al. (2015) found similar results with important bands located in the VIS, SWIR and NIR regions. The most important selected LiDAR-derived variables were related to the cover of shrubs and the cover of trees (fcover_2_6_mean, fcover_6_60_mean). While the shrub cover was positively related to P$_{\text{mass}}$, tree canopy cover had an negative relationship, both indicating higher P$_{\text{mass}}$ in very young and very open stands. We furthermore observed a negative relation between P$_{\text{mass}}$ and LiDAR-derived variables related to vegetation height (e.g. max_h_mean, perc90_h_mean, mean_h_mean). These variables are correlated to the mean height of all LiDAR vegetation points and indicate that taller stands are related to lower P$_{\text{mass}}$. The observation of higher P$_{\text{mass}}$ in younger stands reflects the observation that earlier successional stages are often characterized by higher P$_{\text{mass}}$ (Chai et al., 2015; Eichenberg et al., 2015). Relations between important LiDAR-derived variables and P$_{\text{mass}}$ can also be well explained by species-specific differences within the study area. *Prunus serotina*,

19
for which we observed highest P_{mass} values, is a characteristic species of young and early-
succesional stands in the forest of Compiègne. The observed negative relation between
canopy cover and P_{mass} can also be explained by species-specific differences, particularly
between P. serotina, P. sylvestris and F. sylvatica (see supplementary material,
Fig. S5). $Fagus sylvatica$, for which we observed smallest P_{mass}, is forming most dense
canopies in Mid-Europe, while P. sylvestris, characterized by higher P_{mass} than most of
the native broadleaved species, is forming very sparse canopies. $Prunus serotina$ most
frequently occurred in forest stands with sparse canopy cover and good light conditions
(Starfinger et al., 2003).

In summary, P_{mass} predictions were driven by one tree species occurring in young or
open forest stands. Existing covariation between canopy structure and P_{mass} was better
captured by LiDAR data than by imaging spectroscopy. The relative importance of
structural properties for mapping P_{mass} is not surprising, as phosphorus is not expected
to be directly represented in the spectral signal of plant canopies.

5 Conclusion

In this study we used a combination of imaging spectroscopy and airborne LiDAR data
for mapping canopy N_{mass} and P_{mass} in a forest characterized by a high structural
heterogeneity. For both, N_{mass} and P_{mass}, LiDAR-derived variables improved predic-
tions based on imaging spectroscopy solely. This highlights the importance of structural
properties for remote sensing of biochemical variation in forest canopies. For N_{mass} the
poor performance of hyperspectral data alone can be attributed to the high structural
heterogeneity in the study area, in terms of LAI and stand ages. LiDAR data helped
to capture this heterogeneity and hence improve model performances. Both, N_{mass} and
P_{mass} results were strongly influenced by the presence of only two tree species featuring
structural and biochemical properties different from their co-occurring tree species. This
limits the transferability of identified linkages between canopy structure and biochem-
istry to other study settings. However, in the case of N_{mass}, the known covariation with
structural properties existing at the leaf and canopy level suggests that canopy struc-
ture used as proxy, can support the mapping of N_{mass} also for different study settings.
Information on canopy structure derived from airborne LiDAR can help to understand
existing functional links.

Acknowledgements

This study is part of the project DIARS (Detection of invasive plant species and as-
seessment of their impact on ecosystem properties through remote sensing) funded by
the ERA-Net BiodivERsA, with the national funders: ANR (Agence Nationale de
la Recherche); BelSPO (Belgian Federal Science Policy Office); and DFG (Deutsche
Forschungsgemeinschaft). Michael Ewald is funded through the DFG research grant
SCHM 2153/9-1. The authors would like to thank the Office National des Forêts for
granting permission for leaf sampling and for providing the airborne LiDAR data. We
also wish to thank Luc Croisé, Fabien Spicher, Anthony Viaud and Jens Warrie for their help during field work. Finally, we would like to thank the anonymous reviewers for their detailed feedback, which greatly helped to improve earlier versions of the manuscript.

References

Chabrerie, O., Verheyen, K., Saguez, R., Decocq, G., 2008. Disentangling relationships between habitat conditions, disturbance history, plant diversity, and American black
cherry *Prunus serotina* Ehrh.) invasion in a European temperate forest. Diversity and Distributions 14, 204–212. doi:10.1111/j.1472-4642.2007.00453.x

Simic, A., Chen, J.M., Noland, T.L., 2011. Retrieval of forest chlorophyll content using canopy structure parameters derived from multi-angle data: the measurement con-

