T. Poinsot, Prediction and control of combustion instabilities in real engines, Proc. Combust. Inst, vol.36, pp.1-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01502419

E. Ranzi, A. Frassoldati, R. Grana, A. Cuoci, T. Faravelli et al., Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels, Prog. Energy Combust. Sci, vol.38, issue.4, pp.468-501, 2012.

F. N. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-höinghaus, C. K. Law et al., Advances and challenges in laminar flame experiments and implications for combustion chemistry, Prog. Energy Combust. Sci, vol.43, pp.36-67, 2014.

C. Xiouris, T. Ye, J. Jayachandran, and F. N. Egolfopoulos, Laminar flame speeds under enginerelevant conditions: Uncertainty quantification and minimization in spherically expanding flame experiments, Combust. Flame, vol.163, pp.270-283, 2016.

K. Kumar and C. Sung, Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures, Combust. Flame, vol.151, issue.1-2, pp.209-224, 2007.

A. M. Ferris, A. J. Susa, D. F. Davidson, and R. K. Hanson, High-temperature laminar flame speed measurements in a shock tube, Combust. Flame, vol.205, pp.241-252, 2019.

S. D. Tse, D. L. Zhu, and C. K. Law, Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres, Proc. Combust. Inst, vol.28, pp.1793-1799, 2000.

J. Jayachandran and F. N. Egolfopoulos, Effect of unsteady pressure rise on flame propagation and near-cold-wall ignition, Proc. Combust. Inst, vol.37, issue.2, pp.1639-1646, 2019.

M. Faghih and Z. Chen, The constant-volume propagating spherical flame method for laminar flame speed measurement, Sci. Bull, vol.61, issue.16, pp.1296-1310, 2016.

M. Metghalchi and J. C. Keck, Laminar burning velocity of propane-air mixtures at high temperature and pressure, Combust. Flame, vol.38, pp.143-154, 1980.

B. Lewis and G. Elbe, Determination of the speed of flames and the temperature distribution in a spherical bomb from time pressure explosion records, J. Chem. Phys, vol.2, pp.283-290, 1934.

N. Hinton, R. Stone, and R. Cracknell, Laminar burning velocity measurements in constant volume vessels -Reconciliation of flame front imaging and pressure rise methods, Fuel, vol.211, pp.446-457, 2018.

R. R. Burrell, J. L. Pagliaro, and G. T. Linteris, Effects of stretch and thermal radiation on difluoromethane/air burning velocity measurements in constant volume spherically expanding flames, Proc. Combust. Inst, vol.37, issue.3, pp.4231-4238, 2019.

B. Lewis and G. Elbe, Combustion, Flames and Explosions of Gases, 1961.

D. Bradley and A. Mitcheson, Mathematical solutions for explosions in spherical vessels, Combust. Flame, vol.26, pp.201-217, 1976.

E. F. Fiock, C. F. Marvin, F. R. Caldwell, and C. H. Roeder, Flame speeds and energy considerations for explosion in a spherical bomb, National advisory committee for aeronautics Report, issue.682, 1940.

A. Lefebvre, H. Larabi, V. Moureau, G. Lartigue, E. Varea et al., Formalism for spatially averaged consumption speed considering spherically expanding flame configuration, Combust. Flame, vol.173, pp.235-244, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01611235

A. Moghaddas, K. Eisazadeh-far, and H. Metghalchi, Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures, Combust. Flame, vol.159, issue.4, pp.1437-1443, 2012.

K. Saeed and C. R. Stone, The modelling of premixed laminar combustion in a closed vessel, Combust. Theor. Model, vol.8, issue.4, pp.721-743, 2004.

C. C. Luijten, E. Doosje, J. A. Van-oijen, and L. P. De-goey, Impact of dissociation and end pressure on determination of laminar burning velocities in constant volume combustion, Int. J. Therm. Sci, vol.48, issue.6, pp.1206-1212, 2009.

Z. Chen, M. P. Burke, and Y. Ju, Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames, Combust. Theor. Model, vol.13, issue.2, pp.343-364, 2009.

A. Omari and L. Tartakovsky, Measurement of the laminar burning velocityusing the confined and unconfined spherical flame methods -A comparative analysis, Combust. Flame, vol.168, pp.127-137, 2016.

C. C. Luijten, E. Doosje, and L. P. De-goey, Accurate analytical models for fractional pressure rise in constant volume combustion, Int. J. Therm. Sci, vol.48, issue.6, pp.1213-1222, 2009.

E. Van-den and . Bulck, Closed algebraic expressions for the adiabatic limit value of the explosion constant in closed volume combustion, J. Loss. Prev. Process Ind, vol.18, issue.1, pp.35-42, 2005.

M. Jafargholi, G. K. Giannakopoulos, C. E. Frouzakis, and K. Boulouchos, Laminar syngas-air premixed flames in a closed rectangular domain: DNS of flame propagation and flame/wall interactions, Combust. Flame, vol.188, pp.453-468, 2018.

Y. Yamamoto and T. Tachibana, Burning velocities of dimethyl ether (DME)-nitrous oxide (N2O) mixtures, Fuel, vol.217, pp.160-165, 2018.

F. Wu and C. K. Law, An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers, Combust. Flame, vol.160, issue.12, pp.2744-2756, 2013.

G. Rozenchan, D. L. Zhu, C. K. Law, and S. D. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proc. Combust. Inst, vol.29, issue.2, pp.1461-1470, 2002.

G. Wang, Y. Li, W. Yuan, Y. Wang, Z. Zhou et al., Investigation on laminar flame propagation of n-butanol/air and n-butanol/O2/He mixtures at pressures up to 20 atm, Combust. Flame, vol.191, pp.368-380, 2018.

B. Galmiche, F. Halter, and F. Foucher, Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-octane/air mixtures, Combust. Flame, vol.159, issue.11, pp.3286-3299, 2012.

M. Goswami, R. J. Bastiaans, L. P. De-goey, and A. Konnov, Experimental and modelling study of the effect of elevated pressure on ethane and propane flames, Fuel, vol.166, pp.410-418, 2016.

R. T. Hermanns, A. Konnov, R. J. Bastiaans, L. P. De-goey, K. Lucka et al., Effects of temperature and composition on the laminar burning velocity of CH4 +H2 +O2 +N2 flames, vol.89, pp.114-121, 2010.

J. Natarajan, Y. Kochar, T. Liuwen, and J. Seitzman, Pressure and preheat dependence of laminar flame speeds of H2/CO/CO2/O2/He mixtures, Proc. Combust. Inst, vol.32, pp.1261-1268, 2009.

Y. Wu, B. Rossow, V. Modica, X. Yu, L. Wu et al., Laminar flame speed of lignocellulosic biomass-derived oxygenates and blends of gasoline/oxygenates, Fuel, vol.202, pp.572-582, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01611181

M. Akram and S. Kumar, Experimental studies on dynamics of methane-air premixed flame in meso-scale diverging channels, Combust. Flame, vol.158, pp.915-924, 2011.

Z. Liu, M. J. Lee, and N. I. Kim, Direct prediction of laminar burning velocity using an adapted annular stepwise diverging tube, Proc. Combust. Inst, vol.34, pp.755-762, 2013.

P. Versailles, G. Bourque, A. Durocher, and J. M. Bergthorson, Measurements of the reactivity of premixed, stagnation, methane-Air flames at gas turbine relevant pressures, Proceedings of ASME Turbo Expo, 2018.

Z. Zhao, J. P. Conley, A. Kazakov, and F. L. Dryer, Burning Velocities of Real Gasoline Fuel at 353 K and 500 K, SAE Technical Paper, 2003.

A. G. Gaydon and H. G. Wolfhard, Flames: Their Structure, Radiation and Temperature, 1978.

M. Slack and A. Grillo, High temperature rate coefficient measurements of CO+O chemiluminescence, Combust. Flame, vol.59, pp.189-196, 1985.

J. M. Samaniego, F. N. Egolfopoulos, and C. T. Bowman, CO2* Chemiluminescence in Premixed Flames, vol.109, pp.183-203, 1995.

V. Nori and J. Seitzman, Evaluation of chemiluminescence as a combustion diagnostic under varying operating conditions, 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.

D. Bradley, P. H. Gaskell, and X. J. Gu, Burning velocities, markstein lengths, and flame quenching for spherical methane-air flames: A computational study, Combust. Flame, vol.104, issue.1-2, pp.176-198, 1996.

F. Parsinejad, J. C. Keck, and H. Metghalchi, On the location of flame edge in Shadowgraph pictures of spherical flames: a theoretical and experimental study, Exp. Fluids, vol.43, issue.6, pp.887-894, 2007.

R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics, 1989.

G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer et al., Z. Qin

M. Kopp, M. Brower, O. Mathieu, E. Petersen, and F. Güthe, CO2* chemiluminescence study at low and elevated pressures, Appl. Phys. B, vol.107, issue.3, pp.529-538, 2012.

A. E. Dahoe, Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions, J. Loss. Prev. Process Ind, vol.18, issue.3, pp.152-166, 2005.

Z. Chen, X. Qin, B. Xu, Y. Ju, and F. Liu, Studies of radiation absorption on flame speed and flammability limit of CO2 diluted methane flames at elevated pressures, Proc. Combust. Inst, vol.31, pp.2693-2700, 2007.

E. Varea, V. Modica, A. Vandel, and B. Renou, Measurement of laminar burning velocity and Markstein length relative to fresh gases using a new postprocessing procedure: Application to laminar spherical flames for methane, ethanol and isooctane/air mixtures, Combust. Flame, vol.159, issue.2, pp.577-590, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01670652

K. Eisazadeh-far, A. Moghaddas, J. Al-mulki, and H. Metghalchi, Laminar burning speeds of ethanol/air/diluent mixtures, Proc. Combust. Inst, vol.33, issue.1, pp.1021-1027, 2011.