, To quantify the climatic space, we used the package hypervolume (version 194 2.0.11) (Blonder and Harris, p.1, 2018.

, Using the above metrics, for each NPA, we calculated: (1) the stable unique fraction 1); and (3) the gain of future climatic space

, Schematic figure to illustrate the concept of climatic space or hypervolume 212 for baseline (blue; 1960-1990) and future (red; 2050, average for 2041-2060) conditions in 213 a given protected area. We estimated: (1) the stable climatic space (i.e. intersection of 214 baseline and future climatic spaces, as a proportion of the baseline hypervolume); (2) the 215 loss of climatic space (i.e. proportion of baseline climatic space that is no longer 216 represented in the future); and (3) the gain of novel climatic space (i.e. the proportion of 217 future climatic space that was not represented under current climate). (B) Climatic space 218 showing the interactions of five bioclimatic variables: (1) Max Temperature of

, Range (TAN); (4) Annual Precipitation (AP); and (5) Precipitation Seasonality (PS)

F. Figueroa and V. Sánchez-cordero, Effectiveness of natural protected areas to 718 prevent land use and land cover change in Mexico, Biodiversity and Conservation, vol.719, p.3223, 2008.

J. Gallo-reynoso, Factors affecting the population status of Guadalupe fur seal, 1994.

. Phd and . Dissertation, University of California, p.199

V. Graham, J. B. Baumgartner, L. J. Beaumont, M. Esperón-rodríguez, and A. Grech, , p.723, 2019.

, Prioritizing the protection of climate refugia: designing a climate-ready protected 724 area network, Journal of Environmental Planning and Management, pp.1-19

C. S. Grierson, S. R. Barnes, M. W. Chase, M. Clarke, D. Grierson et al., Jellis, p.726

G. J. Jones, J. D. Knapp, S. Oldroyd, G. Poppy, and G. , One hundred important 727 questions facing plant science research, New Phytologist, vol.192, pp.6-12, 2011.

S. Guevara, J. Laborde, and G. Sánches-ríos, La deforestación, pp.85-108, 2004.

A. C. Instituto-de-ecología and E. Union,

A. Guisan, B. Petitpierre, O. Broennimann, C. Daehler, and C. Kueffer, Unifying niche 732 shift studies: insights from biological invasions, Trends in Ecology & Evolution, vol.29, pp.260-269, 2014.

L. Hannah, Annals of the New York Academy 735 of Sciences 1134, pp.201-212, 2008.

L. Hannah, L. Flint, A. D. Syphard, M. A. Moritz, L. B. Buckley et al., , 2014.

, Fine-grain modeling of species' response to climate change: holdouts, stepping-738 stones, and microrefugia, Trends in Ecology & Evolution, vol.29, pp.390-397

O. J. Hardy and B. Sonké, Spatial pattern analysis of tree species distribution in a 740 tropical rain forest of Cameroon: assessing the role of limited dispersal and niche 741 differentiation, Forest Ecology and Management, vol.197, issue.1-3, pp.191-202, 2004.

S. Harrison and R. Noss, Endemism hotspots are linked to stable climatic refugia, Annals of Botany, vol.743, pp.207-214, 2017.

K. Henein and G. Merriam, The elements of connectivity where corridor quality is 745 variable, Landscape Ecology, vol.4, issue.2-3, pp.157-170, 1990.

O. Hoegh-guldberg, L. Hughes, S. Mcintyre, D. Lindenmayer, and C. Parmesan, , p.747

H. P. Possingham and C. Thomas, Assisted colonization and rapid climate 748 change, 2008.

G. Hutchinson, A Treatise on limnology, 1957.

N. Ishwaran, A. Persic, and N. H. Tri, Concept and practice: the case of UNESCO 751 biosphere reserves, International Journal of Environment and Sustainable 752 Development, vol.7, pp.118-131, 2008.

. Iucn, The World Conservation Union, Benefits Beyond Boundaries: Proceedings of 754 the Vth IUCN World Parks Congress, 2003.

. Iucn,

G. Keppel, K. P. Van-niel, G. W. Wardell-johnson, C. J. Yates, M. Byrne et al., , p.757

A. G. Schut, S. D. Hopper, and S. E. Franklin, Refugia: identifying and 758 understanding safe havens for biodiversity under climate change, Global Ecology 759 and Biogeography, vol.21, pp.393-404, 2012.

G. Keppel and G. W. Wardell-johnson, Refugial capacity defines holdouts, 761 microrefugia and stepping-stones: a response to Hannah et al. Trends in Ecology & 762 Evolution, vol.30, pp.233-234, 2015.

A. K. Knapp, C. Beier, D. D. Briske, A. T. Classen, Y. Luo et al., , p.764

S. D. Smith, J. E. Bell, and P. A. Fay, Consequences of more extreme 765 precipitation regimes for terrestrial ecosystems, AIBS Bulletin, vol.58, pp.811-821, 2008.

P. Legendre and L. F. Legendre, Numerical ecology, p.767, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00530195

U. K. Oxford,

N. P. Lemoine, Climate change may alter breeding ground distributions of eastern 769 migratory monarchs (Danaus plexippus) via range expansion of Asclepias host 770 plants, PloS one, vol.10, 2015.

J. Lenoir, J. Gégout, P. Marquet, P. De-ruffray, and H. Brisse, A significant 772 upward shift in plant species optimum elevation during the 20th century, Science, vol.773, issue.320, pp.1768-1771, 2008.

J. Lenoir and J. C. Svenning, Climate-related range shifts-a global multidimensional 775 synthesis and new research directions, Ecography, vol.38, pp.15-28, 2015.

J. Lenoir, T. Hattab, and G. Pierre, Climatic microrefugia under anthropogenic climate 777 change: implications for species redistribution, Ecography, vol.40, issue.2, pp.253-266, 2017.

S. Loarie, P. Duffy, H. Hamilton, G. Asner, C. Field et al., The velocity of 779 climate change, Nature, vol.462, pp.1052-1055, 2009.

J. R. Mawdsley, R. O'malley, and D. S. Ojima, A review of climate-change adaptation 781 strategies for wildlife management and biodiversity conservation, Conservation 782 Biology, vol.23, pp.1080-1089, 2009.

C. M. Mccain and R. K. Colwell, Assessing the threat to montane biodiversity from 784 discordant shifts in temperature and precipitation in a changing climate, Ecology 785 Letters, vol.14, pp.1236-1245, 2011.

B. Mccune, J. Grace, and D. Urban, Analysis of ecological communities, MjM Software, vol.787, 2002.

. Design,

E. Mcdonald-madden, M. C. Runge, H. P. Possingham, and T. G. Martin, Optimal 789 timing for managed relocation of species faced with climate change, Climate Change, vol.790, issue.5, pp.261-265, 2011.

F. Médail and K. Diadema, Glacial refugia influence plant diversity patterns in the 792, 2009.

M. Basin, Journal of Biogeography, vol.36, pp.1333-1345

M. Meinshausen, S. J. Smith, K. Calvin, J. S. Daniel, M. Kainuma et al., , p.794

K. Matsumoto, S. Montzka, S. Raper, and K. Riahi, The RCP greenhouse gas 795 concentrations and their extensions from 1765 to 2300, Climatic Change, vol.109, pp.213-796, 2011.

N. Mimura, Vulnerability of island countries in the South Pacific to sea level rise and 798 climate change, Climate Research, vol.12, pp.137-143, 1999.

N. Mimura, L. Nurse, R. Mclean, J. Agard, L. Briguglio et al., Small islands. Climate Change, vol.800, pp.687-716

R. A. Mittermeier, N. Myers, J. B. Thomsen, G. A. Da-fonseca, and S. Olivieri, , p.802, 1998.

, Biodiversity hotspots and major tropical wilderness areas: approaches to setting 803 conservation priorities, Conservation Biology, vol.12, pp.516-520

A. T. Moles, S. E. Perkins, S. W. Laffan, H. Flores-moreno, M. Awasthy et al., , p.805

L. Sack, A. Pitman, J. Kattge, and L. W. Aarssen, Which is a better predictor of 806 plant traits: temperature or precipitation, Journal of Vegetation Science, vol.25, p.1180, 2014.

R. J. Nicholls and A. Cazenave, Sea-level rise and its impact on coastal zones, Science, vol.809, pp.1517-1520, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00991281

D. Nogués-bravo, M. B. Araújo, M. Errea, and J. Martinez-rica, Exposure of global 811 mountain systems to climate warming during the 21st Century, vol.17, pp.420-428, 2007.

M. S. O'donnell and D. A. Ignizio, Bioclimatic predictors for supporting ecological 814 applications in the conterminous United States, US Geological Survey Data Series, vol.815, p.691, 2012.

R. Ohlemüller, Running out of climate space, Science, vol.334, pp.613-614, 2011.

A. Figure, Location of the 40 protected areas of Mexico and histograms indicating the number of species recorded of seven major taxonomic groups within three kingdoms: 1) vascular plants (Tracheophytes); 2) fungi; and 3) animals (amphibians, arthropods, birds, mammals, and reptiles) (see details on Table A4.3). Protected areas are indicated as follows: 1) Alto Golfo de California y delta del río Colorado; 2) El Pinacate y Gran Desierto de Altar; 3) Janos; 4) Isla Guadalupe; 5) Bahia de los Angeles

, San Pedro Mártir; 7) Complejo lagunar Ojo de Liebre; 8) El Vizcaíno; 9) Mapimí

L. Sierra-de and . Laguna, Archipielago de Revillagigedo, vol.11

, Islas Marias; 14) Marismas Nacionales; 15) Sierra del Abra-Tanchipa; 16) Sierra Gorda de Guanajuato; 17) Sierra Gorda; 18) Barranca de Metztitlán; 19) Chamela-Cuixmala; 20) Sierra de Manantlán; 21) Zicuirán Infiernillo; 22) Mariposa Monarca

H. Sierra-de, Tehuacán-Cuicatlán; 25) Los Tuxtlas; 26) Pantanos de Centla; 27) Los Petenes; 28) Ría Celestún; 29) Ría Lagartos; 30) Tiburón Ballena, vol.24

, Sian Ka'an; 32) Arrecifes de Sian Ka'an; 33) Calakmul; 34) Lacan-Tún, vol.35

, Montes Azules; 36) Volcán Tacaná; 37) El Triunfo; 38) La Encrucijada; 39) Selva el Ocote; and 40) La Sepultura