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Abstract 24 

Hedgerows have the potential to facilitate the persistence and migration of species across landscapes, mostly 25 

due to benign microclimatic conditions. This thermal buffering function may become even more important 26 

in the future for species migration under climate change. Unfortunately, there is a lack of empirical studies 27 

quantifying the microclimate of hedgerows, particularly at broad geographical scales. 28 

Here we monitored sub-canopy temperatures using 168 miniature temperature sensors distributed along 29 

woodland-hedgerow transects, and spanning a 1600-km macroclimatic gradient across Europe. First, we 30 

assessed the variation in the temperature offset (that is, the difference between sub-canopy and 31 

corresponding macroclimate temperatures) for minimum, mean and maximum temperatures along the 32 

woodland-hedgerow transects. Next, we linked the observed patterns to macroclimate temperatures as well 33 

as canopy structure, overstorey composition and hedgerow characteristics.  34 

The sub-canopy versus macroclimate temperature offset was on average 0.10 °C lower in hedgerows than in 35 

woodlands. Minimum winter temperatures were consistently lower by 0.10 °C in hedgerows than in 36 

woodlands, while maximum summer temperatures were 0.80 °C higher, albeit mainly around the woodland-37 

hedgerow ecotone. The temperature offset was often negatively correlated with macroclimate 38 

temperatures. The slope of this relationship was lower for maximum temperatures in hedgerows than in 39 

woodlands. During summer, canopy cover, tree height and hedgerow width had strong cooling effects on 40 

maximum mid-day temperatures in hedgerows. The effects of shrub height, shrub cover and shade-casting 41 

ability, however, were not significant. 42 

To our knowledge, this is the first study to quantify hedgerow microclimates along a continental-scale 43 

environmental gradient. We show that hedgerows are less efficient thermal insulators than woodlands, 44 

especially at high ambient temperatures (e.g. on warm summer days).  This knowledge will not only result in 45 

better predictions of species distribution across fragmented landscapes, but will also help to elaborate 46 

efficient strategies for biodiversity conservation and landscape planning.  47 

Keywords: Climate change; fragmentation; macroclimatic gradient; species migration; temperature 48 

buffering; woody corridors  49 
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1. Introduction 50 

Climate change is affecting a wide range of ecosystems and their biota across the globe, leading to 51 

phenological shifts ((Fitter and Fitter, 2002)), latitudinal and elevational range changes ((Lenoir and Svenning, 52 

2015)) and evolutionary adaptations ((Hoffmann and Sgrò, 2011)). These effects are further aggravated by 53 

land-use changes ((Mantyka-Pringle et al., 2015)), leading to a range-wide increase in the extinction risk 54 

among threatened populations ((Jump and Penuelas, 2005)). In particular, habitat fragmentation is expected 55 

to impede the movements of species across the landscape, limiting their ability to closely track the shifting 56 

climatic envelopes. Strategies for improving landscape connectivity, for example, through the creation and 57 

maintenance of connecting habitats, will therefore be imperative to ensure the conservation of biodiversity 58 

under climate change ((Damschen et al., 2006)). 59 

Woody corridors (e.g. hedgerows and linear woody habitats) are among the most common examples of 60 

connecting habitats ((Baudry et al., 2000)). On a regional scale, these corridors have been repeatedly 61 

identified as a substitute habitat ((McCollin et al., 2000; Van Den Berge et al., 2018)) or dispersal route 62 

((Closset-Kopp et al., 2016; Tikka et al., 2001; Wehling and Diekmann, 2009)) for species within agricultural 63 

landscapes. Yet, at larger scales, the role of hedgerows as conservation corridors for woodland-dwelling 64 

communities is still debated, and some studies indicated that most specialist species will not benefit from 65 

hedgerows to facilitate their movements across the landscape ((Burel and Baudry, 1990; Liira and Paal, 2013; 66 

Wehling and Diekmann, 2008)). Indeed, many woodland specialists are slow colonizers ((Hermy et al., 1999; 67 

Verheyen et al., 2003)) and need a long time to disperse along linear woody habitats, in some cases even 68 

centuries ((Liira and Paal, 2013)). Besides, the establishment and persistence of woodland specialists in 69 

hedgerows might be severely hampered by their lower habitat quality ((de Blois et al., 2001; Liira and Paal, 70 

2013; Roy and de Blois, 2006)). Hedgerows typically have higher soil nutrient levels, favouring the growth of 71 

highly competitive ruderal species at the expense of specialized forest species ((Wehling and Diekmann, 72 

2009)). Their microclimate (i.e. sub-canopy local climate which is buffered and thus decoupled from the 73 

background climate or ‘macroclimate’; (Bramer et al., 2018)) also differs significantly from woodlands, with 74 

higher air mixing, increased incoming radiation and lower relative air humidity ((Honnay et al., 2005)).  75 
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Woodland microclimates have been abundantly studied (e.g. (Carlson and Groot, 1997; Chen et al., 1993; 76 

Chen et al., 1999; Morecroft et al., 1998; Renaud and Rebetez, 2009; von Arx et al., 2013)), and are the result 77 

of an interplay between several physical drivers (cf. (Barry and Blanken, 2016; Campbell and Norman, 1998; 78 

Geiger et al., 2009)). During the day, a large fraction of the incident solar radiation is absorbed or reflected 79 

by the leaves, needles and branches in the canopy. The amount of light reaching the woodland floor is largely 80 

governed by the leaf area index (LAI), leaf characteristics (size, shape, orientation and spectral properties) 81 

and canopy architecture. In particular, as the canopy becomes denser, more solar radiation is absorbed or 82 

reflected and less light penetrates into the woodland floor. To illustrate, dense woodlands absorb about 75-83 

90 % of the incoming solar radiation ((Bonan, 2015)). Together with the effect of shading by the canopy, this 84 

causes lower ground-layer temperatures and a diminished sensible heat flux in woodlands compared to non-85 

wooded lands. Conversely, most of the incoming solar energy is converted into latent heat via 86 

evapotranspiration, resulting in an additional cooling effect. On top of that, wind speeds are significantly 87 

reduced in woodlands due to the resistance with tree stems, branches and leaves, leading to a diminished 88 

mixing of air due to turbulence. As a result, less warm air is transported down into the woodland. During the 89 

night, the outgoing longwave (infrared) radiation from the ground surface and vegetation is partly reflected 90 

by the canopy, causing warmer night-time temperatures in woodlands compared to open lands ((Geiger et 91 

al., 2009; Morecroft et al., 1998)).  92 

Hedgerow microclimates, on the other hand, are still poorly understood and the underlying physical 93 

processes are likely more complex due to the predominant influence of edge effects. For instance, depending 94 

on their spatial configuration in the landscape, hedgerows may considerably modify local wind speeds and 95 

turbulent mixing of air masses, which could in turn affect their microclimate ((Brandle et al., 2004; Heisler 96 

and Dewalle, 1988; McNaughton, 1988; Pasek, 1988)). Empirical studies with in-situ measurements of the 97 

sub-canopy conditions inside these woody corridors are thus urgently needed. These insights are particularly 98 

relevant from an ecological point of view because these conditions directly affect the ability of species to 99 

grow, survive, reproduce and disperse in hedgerows ((de Blois et al., 2002; Deckers et al., 2004a; Harvey et 100 

al., 2005)). Hedgerow microclimates may thus largely determine the ecological function of woody corridors 101 

for species (re-)distribution ((Deckers et al., 2004b; Sánchez et al., 2009)). To illustrate, Roy and de Blois 102 
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(2006) attributed the under-representation of early-flowering and late-maturing plant species in hedgerows 103 

of southern Quebec to the unfavourable sub-canopy climate therein, in particular the higher risk of late frosts 104 

in spring and early frosts in autumn. Hedgerow microclimates have also been shown to play an important 105 

role in governing the occurrence of several invertebrate species in agricultural areas ((Gardiner and Dover, 106 

2008)), and may effectively contribute to the survival of birds and mammals, for example, by providing a 107 

shelter for these species during extreme climatic events ((Oliver et al., 2017; Pereira and Rodríguez, 2010)). 108 

Furthermore, several recent studies have highlighted the role of microclimates in shaping species distribution 109 

under contemporary climate change ((Keppel and Wardell-Johnson, 2015); Suggitt et al., 2018). For instance, 110 

evidence suggests that tree canopies may effectively buffer understorey environments against climate 111 

extremes and support microclimates that may moderate the response of sub-canopy species to 112 

macroclimatic warming ((Davis et al., 2019; De Frenne et al., 2013; De Frenne et al., 2019; Lenoir et al., 2017)). 113 

Understanding and quantifying how micro-environmental conditions in hedgerows vary across space and 114 

time is thus key to predict species distribution patterns and colonization dynamics in linear habitats, 115 

particularly under an altering macroclimate. Yet, to our knowledge, a continental-scale characterization of 116 

hedgerow microclimates is still lacking. 117 

To address this knowledge gap, we monitored sub-canopy temperatures using 168 miniature temperature 118 

sensors distributed along woodland-hedgerow transects, and spanning a 1600-km latitudinal gradient from 119 

northern France to central Norway. The macro-ecological gradient along which these sites were selected 120 

ensured that the large-scale climatic conditions of temperate Europe were adequately captured in our study. 121 

In each site, we recorded sub-canopy (microclimate) temperatures using six miniature data loggers spread 122 

across an edge-to-core gradient, and corrected these for the corresponding ambient free-air (macroclimate) 123 

temperatures obtained from weather stations. More specifically, we calculated the magnitude of the 124 

temperature offset for daily mean, maximum and minimum temperature values as microclimate 125 

temperatures minus macroclimate temperatures; negative values thus denote cooler temperatures below 126 

tree canopies, while positive values denote warmer understorey temperatures. We focus on temperature 127 

offsets rather than absolute values to facilitate among-region comparisons across Europe, because 128 

macroclimate-microclimate temperature differences are most relevant for species’ responses to climate 129 
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change, and because temporal temperature changes due to anthropogenic climate change are also expressed 130 

against a baseline. Next, we assessed the variation in the magnitude of the temperature offset along the 131 

woodland-hedgerow transects, and linked the observed patterns to ambient macroclimate temperatures as 132 

well as canopy structure and composition (canopy cover, height and total cover of shrub and tree layer, 133 

shade-casting ability) and hedgerow characteristics (hedgerow width and vertical structure). Finally, we also 134 

computed the diurnal temperature range for each sensor as daily maximum minus minimum temperatures, 135 

and related this to the same set of environmental variables. 136 

Specifically, we tested the following hypotheses: 137 

H1: Hedgerows provide lower buffering against temperature extremes than woodland interiors; maximum 138 

temperatures in hedgerows are higher than in adjacent woodland patches, while minimum temperatures are 139 

lower. 140 

H2: The thermal buffering capacity of woodlands and hedgerows depends on ambient macroclimate 141 

temperatures. 142 

H3: Temperature conditions inside hedgerows are governed by structural site characteristics such as canopy 143 

cover, tree height, corridor width, etc. In this regard, we expect that wider hedgerows with a taller and denser 144 

tree canopy are more effectively buffered against temperature extremes than narrower hedgerows with 145 

contrasting features. 146 

Our study is unique in the sense that it is, to our knowledge, the first to quantify the sub-canopy microclimate 147 

of hedgerows at a continental extent. The outcomes of this study will help us to better understand and 148 

predict colonization dynamics of woodland-dwelling species in woody corridors, particularly in the face of 149 

climate change. Not only will this strengthen our ability to forecast future species distributions along linear 150 

habitats, but it will also contribute to more-informed landscape planning and conservation decision-making, 151 

including the preservation, establishment and management of connecting habitats in agricultural landscapes. 152 

2. Materials and methods 153 

2.1. Study area 154 
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This study was conducted in agricultural landscapes of seven regions spanning a latitudinal gradient of ca. 155 

1600 km within the temperate forest biome of Europe (Fig. 1a). The mean annual temperature (MAT) across 156 

the study regions ranged from 5.18 (Tartü, Estonia) to 10.3 °C (Gontrode, Belgium) and the mean annual 157 

precipitation (MAP) from 606 (Tartü, Estonia) to 1066 mm (Trondheim, Norway) (long-term average values 158 

from 1970-2000 for MAT and MAP; (Fick and Hijmans, 2017)). 159 

In each region, we selected four distinct sites of paired woodland-hedgerow combinations (Table A.1), 160 

located on a similar soil type (Luvisol or Cambisol; (IUSS Working Group WRB, 2015)) to maximize 161 

comparability. These sites were located at a median distance of 4 km from each other, but not closer than 162 

1 km to avoid potential spatial autocorrelation effects. All hedgerows were at least 50 years old, structurally 163 

diverse (preferably with shrub and tree layer) and surrounded by open and treeless habitats (e.g. farmland, 164 

rotational grassland or road). Furthermore, the hedgerows were connected to an ancient woodland (here 165 

woodland that existed before 1850), whereof the canopy was mainly composed of broadleaf species. 166 

However, in regions with a hemi-boreal climate such as Estonia and Norway, a higher occurrence of 167 

coniferous species was unavoidable. Across all regions, the woodland canopies mainly consisted of Fraxinus 168 

excelsior (present in 31.0 % of all woodlands), Fagus sylvatica (23.8 %), Carpinus betutlus (17.9 %), Quercus 169 

robur (16.7 %) and Acer pseudoplatanus (15.5 %) (cf. Table A.2 for an overview of the most dominant tree 170 

and shrub species in each of the study regions).  171 

2.2. Microclimate and macroclimate 172 

In this study, we considered sub-canopy microclimates to represent the small-scale climatic variations that 173 

are experienced by organisms living in the understorey of woody habitats such as forest-floor plants, small 174 

mammals, birds, insects, fungi, soil biota, etc. In general, these conditions comprise a wide range of climatic 175 

variables including temperature, precipitation, humidity and wind. Here we specifically focussed on sub-176 

canopy temperatures given their role in modulating the response of biotic communities to macroclimatic 177 

warming ((De Frenne et al., 2013)). The macroclimate was defined as the climate of a large geographic area, 178 

which is characterized by a network of meteorological stations established in open-field conditions (e.g. in 179 
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short grasslands, ca. 2 m above ground level), thus excluding the effect of woodland canopies (sensu (World 180 

Meteorological Organization, 2008)). 181 

To quantify the microclimate in each woodland-hedgerow site, the air temperature was recorded at a two-182 

hourly interval between September 1, 2017 and September 1, 2018 using miniature temperature sensors 183 

(type HOBO 8K Pendant Temperature/Alarm Data Logger – UA-001-08; accuracy at 0-50 °C: ±0.53 °C; 184 

resolution at 25 °C: 0.14 °C) installed exactly in the middle of the hedgerow. In each of the four sites within a 185 

given region, we deployed six temperature sensors along a hedgerow-to-woodland interior transect (Fig. 1b). 186 

All sensors were mounted in a radiation shield at 1 m height above the soil surface, attached to a tree trunk 187 

and oriented towards the north to avoid direct incoming solar radiation on the shield. For each sensor, we 188 

computed daily mean, minimum and maximum temperature values as well as the diurnal temperature range 189 

(daily maximum minus minimum temperature). 190 

Macroclimate temperature data were obtained for each study site from nearby weather stations (using the 191 

following sources: Meteo France, Royal Meteorological Institute of Belgium, Deutscher Wetterdienst, 192 

Swedish Meteorological and Hydrological Institute, Estonian Weather Service and Norwegian Meteorological 193 

Institute; Table A.3). For each weather station, we extracted the daily mean, minimum and maximum 194 

temperature for the same period of September 1, 2017 to September 1, 2018.  195 

2.3. Site characteristics 196 

At each sensor location, canopy cover was estimated using a convex spherical crown densiometer (Forestry 197 

Suppliers, Model A), and calculated as the proportion of 96 points that was intersected by vegetation. In 198 

addition, we identified all woody species in the shrub (1-7 m) and tree layer (> 7 m) in a 2-m circular plot 199 

around each sensor (Fig. 1c), and estimated their percentage cover relative to the plot area.  The height of 200 

the shrub and tree layer was determined with an ultrasound distance-measuring instrument (Haglöfs Vertex 201 

IV). The total cover of the shrub and tree layer was computed as the sum of the cover percentages of all 202 

individual species occurring these layers, allowing values to exceed 100 % due to overlaps. To characterize 203 

the canopy composition, we calculated the shade-casting ability (SCA) of all canopy species per plot (including 204 

both shrub and tree species) as the cover-weighted average of the SCA scores ((sensu Maes et al., 2019; 205 

http://www.onsetcomp.com/products/data-loggers/ua-001-08
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Verheyen et al., 2012)). These scores range between ‘1’ (very low SCA) and ‘5’ (very high SCA), and are listed 206 

for all canopy species in Table A.4. Both canopy structure and composition are expected to differ significantly 207 

between hedgerows and adjacent woodlands (see Fig. A.1), and will likely play a key role in explaining 208 

dissimilarities in microclimatic conditions between both habitat types. Finally, we also measured the width 209 

of the hedgerows as the perpendicular distance to the outermost edges of the shrub and tree crows (sensu 210 

(Corbit et al., 1999)) (Fig. 1c). The vertical structure was categorized visually as one-storied low, one-storied 211 

high, two-storied, multi-storied or diffuse (Fig. 1d). An overview of all inventoried site characteristics is given 212 

in Table A.5. 213 

 214 
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Fig. 1. Study area and experimental setup (a) Map showing the distribution of the seven study regions across 215 

Europe (Country codes: FR = France, BE = Belgium, WG = Western Germany, EG = Eastern Germany, SS = 216 

Southern Sweden, ES = Estonia, NO = Norway). The light grey area represents the temperate forest biome, 217 

while the dark grey area shows the boreal forest biome (following (Olson et al., 2001)) (b) Schematic 218 

representation of a study site, consisting of a hedgerow connected to an ancient woodland patch. 219 

Temperature sensors (white circles) were mounted at fixed distances (relative to the forest-hedgerow 220 

ecotone) along a transect going from 50 m inside the woodland patch towards 50 m along the hedgerow. 221 

This set-up was repeated four times per region. (c) Vertical profile of a hedgerow. Hedgerow width was 222 

measured as the distance between the outermost edges of the perpendicular projection of the shrub and 223 

tree canopies, while the shrub and tree layer were defined as all woody vegetation between 1-7 m and > 7 m, 224 

respectively (d) Schematic overview of the five classes used to characterize the vertical hedgerow structure. 225 

2.4. Data analysis 226 

To test our hypotheses, we adopted a multilevel mixed-effect modelling approach. We fitted univariate linear 227 

mixed-effect models (LMM) with restricted maximum-likelihood model estimation ((Zuur et al., 2009)) using 228 

the ‘lmer’ function of the ‘lme4’ package ((Bates et al., 2015)) in R Version 3.5.1 ((R Core Team, 2019)). In 229 

these models, a random intercept term ‘sensor ID’ was included to account for temporal autocorrelation in 230 

temperature measurements of the same temperature sensors. In addition, two random intercept terms 231 

‘region’ and ‘site’ (nested within ‘region’) were also included to account for the hierarchical structure of the 232 

dataset and spatial autocorrelation between temperature measurements of the same geographical region or 233 

study site. All model assumptions were checked graphically prior to the analyses ((Zuur et al., 2009)), but 234 

transformations were not considered necessary following these procedures. 235 

First, we assessed how the magnitude of the temperature offset as well as diurnal temperature range in 236 

woodlands and hedgerows changed as a function of distance to the woodland-hedgerow ecotone. We fitted 237 

LMMs with ‘temperature offset’ (for daily mean, minimum and maximum temperatures of a full year; 238 

calculated as the temperature from our sensors minus the temperature from the corresponding weather 239 

stations) and ‘diurnal temperature range’ as response variables and the categorical variable ‘distance’ 240 
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(relative to the ecotone) as a fixed effect. This procedure was then repeated for summer (June, July, and 241 

August) and winter (December, January and February) temperatures. Next, we used a post-hoc (Tukey 242 

Multiple Comparisons) test to compare the temperature data of the different sensors along the woodland-243 

hedgerow transects with the ‘glht’ function of the ‘multcomp’ package ((Hothorn et al., 2008)). 244 

Second, we assessed how macroclimate temperatures influenced the variation in the magnitude of the 245 

temperature offset in woodlands and hedgerows. As above, we fitted LMMs with ‘temperature offset’ (for 246 

daily mean, minimum and maximum temperatures of a full year) as response variable and the interaction 247 

between ‘macroclimate temperatures’ and ‘habitat type’ (‘woodland’ or ‘hedgerow’) as fixed effect. If the 248 

interaction term tested significant, the dataset was split according to the factor variable ‘habitat type’, and 249 

the effect of macroclimate temperatures was analysed for woodlands and hedgerows separately. This 250 

procedure was again repeated for summer and winter temperatures. 251 

Third, we tested the effect of canopy structure and composition (canopy cover, height and total cover of the 252 

tree and shrub layer, shade-casting ability) as well as hedgerow width and vertical structure (see Table A.5) 253 

on the magnitude of the temperature offset and diurnal temperature range, specifically for hedgerows. For 254 

each of the temperature metrics (daily mean, minimum and maximum temperature offsets and diurnal 255 

temperature range) and for each period (full year, summer and winter), we ran a series of separate univariate 256 

LMMs with ‘temperature offset’ as response variable and the single site characteristics as fixed effects. For 257 

categorical predictor variables, we subsequently used a post-hoc (Tukey Multiple Comparisons) test to 258 

compare the temperature data among the different categories of this variable. 259 

3. Results 260 

3.1. Variation in temperature buffering along hedgerow-to-woodland interior gradient 261 

Across all regions, yearly mean and maximum temperatures were on average 0.102 ± 0.049 °C (mean ± SE) 262 

and 0.506 ± 0.195 °C higher in hedgerows than in woodlands, while minimum temperatures were 0.239 ± 263 

0.409 °C lower (Table A.6). In summer, mean and maximum temperatures were 0.202 ± 0.048 °C and 0.800 264 

± 0.241 °C higher in hedgerows compared to woodlands, whereas minimum temperatures were 0.336 ± 265 

0.187 °C lower (Table A.7). In winter, mean and maximum temperatures were only 0.025 ± 0.003 °C and 266 
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0.207 ± 0.021 °C higher in hedgerows, while minimum temperatures were 0.095 ± 0.082 °C lower (Table A.8). 267 

The diurnal temperature range was 0.685 ± 0.014 °C higher in hedgerows than in woodlands across the whole 268 

year. During summer and winter, the diurnal temperature range was respectively 1.04 ± 0.026 °C and 0.287 269 

± 0.018 °C higher in hedgerows than in woodlands (Table A.9). We thus find consistently higher temperature 270 

ranges in hedgerows than woodlands. 271 

On an annual basis, mean (χ² = 30.0, P < 0.001) and maximum temperature offsets (χ² = 49.5, P < 0.001) 272 

increased significantly with distance from woodland interior towards hedgerow, while for minimum 273 

temperature offsets (χ² = 33.2, P < 0.001) a decrease was found (Fig. 2a and Fig. A.2). In summer, similar 274 

patterns were detected, with increasing mean (χ² = 45.3, P < 0.001) and maximum temperature offsets (χ² = 275 

52.2, P < 0.001) and decreasing minimum temperature offsets (χ² = 38.8, P < 0.001) relative to the woodland 276 

interior (Fig. 2b and Fig. A.3). In winter, maximum temperature offsets increased (χ² = 11.4, P = 0.044) with 277 

distance, while minimum temperature offsets decreased (χ² = 19.2, P = 0.002). Mean temperature offsets 278 

during winter showed no significant pattern along the transect (χ² = 7.06, P = 0.216) (Fig. 2c and Fig. A.4). 279 

The diurnal temperature range increased significantly with distance relative to the woodland interior for all 280 

studied time periods (Fig. A.5 and Table A.10). 281 

 282 
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Fig. 2. Distance patterns in temperature buffering. Temperature offset values for minimum (in blue, Tmin), 283 

mean (in black, Tmean) and maximum (in red, Tmax) temperatures as a function of the distance relative to the 284 

forest-hedgerow ecotone during a full year (a), during summer (June-August) (b) and during winter 285 

(December-February) (c). The temperature offset was calculated as sub-canopy (microclimate) minus 286 

macroclimate (macroclimate) temperatures; negative (positive) values thus denote cooler (warmer) sub-287 

canopy temperatures. The dashed horizontal lines represent the null line (temperature offset = 0 °C). The 288 

dashed vertical lines show the connection point between forest and hedgerow; positive distances are used 289 

for the hedgerow, while negative distances are used for the forest. Error bars represent standard errors of 290 

the mean. Different letters denote significantly different values according to a linear mixed-effect model 291 

(LMM; P < 0.05). 292 

3.2. Effect of macroclimate temperatures on temperature buffering 293 

For all temperature metrics (daily minimum, mean and maximum temperatures), we found a significant 294 

negative relationship between macroclimate temperatures and the magnitude of the temperature offset in 295 

both woodlands and hedgerows. These patterns were consistent for a full year as well as during summer and 296 

winter. Interestingly, particularly for maximum temperatures in summer, the slope of this relationship was 297 

significantly more negative in woodlands than in hedgerows, indicating that woodlands provide better 298 

buffering than hedgerows at higher ambient temperature maxima, but similar buffering at lower ambient 299 

temperature maxima (Fig. 3 and Table A.11).  300 
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 301 

Fig. 3. Effect of macroclimate on temperature buffering. Temperature offset values for minimum (Tmin), 302 

mean (Tmean) and maximum (Tmax) as function of corresponding macroclimate tempertures in woodlands and 303 

hedgerows during a full year (a, d, g), during summer (June-August) (b, e, h) and during winter (December-304 

February) (c, f, i). The temperature offset was calculated as sub-canopy (microclimate) minus macroclimate 305 

(macroclimate) temperatures; negative (positive) values thus denote cooler (warmer) sub-canopy 306 
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temperatures. Fitted regression lines and 95 % confidence intervals are from linear mixed-effect models 307 

(LMM; P < 0.05). The ‘*’ in (a), (c), (d), (g) and (h) indicates that the interaction term between ‘macroclimate 308 

temperatures’ and ‘habitat type’ (‘woodland’ or ‘hedgerow’) was significant at P < 0.05. 309 

3.3. Effect of hedgerow structure on temperature buffering 310 

On an annual basis, we detected a significant cooling effect of canopy cover on daily maximum temperatures 311 

in hedgerows (χ² = 4.51, P = 0.034), while tree height showed a cooling effect on both mean (χ² = 6.02, P = 312 

0.014) and maximum (χ² = 5.84, P = 0.016) temperatures. In addition, significantly lower daily temperature 313 

maxima were found in wider hedgerows (χ² = 5.60, P = 0.018). Low, single-storied (only shrub layer) 314 

hedgerows showed smaller minimum temperature offsets than tall, single-storied (only tree layer) 315 

hedgerows (Fig. A.6, Table A.12-A.13 and Table A.16-A.17). 316 

In summer, we found significant cooling effects of canopy cover (χ² = 4.55, P = 0.033) and total tree cover (χ² 317 

= 5.29, P = 0.021) on maximum temperatures.  A higher total tree cover also resulted in a smaller diurnal 318 

temperature range (χ² = 7.06, P = 0.008). Mean (χ² = 4.19, P = 0.041) and maximum temperatures (χ² = 4.35, 319 

P = 0.037) were more buffered below taller trees, while shrub height positively affected mean temperature 320 

offsets (χ² = 4.28, P = 0.038). Maximum temperature offsets during summer were again lower in wider 321 

hedgerows (χ² = 5.13, P = 0.024). Low, single-storied hedgerows showed smaller minimum temperature 322 

offsets than tall, single-storied hedgerows (Fig. 4, Table A.14-A.15 and Table A.16-A.17). 323 

During winter, tree height showed a significant cooling effect on mean temperature offsets (χ² = 4.44, P = 324 

0.035) (Fig. 4, Table A.14-A.15 and Table A.16-A.17). 325 
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 326 

 Fig. 4. Effect of site characteristics on temperature buffering. Temperature offset values for minimum (Tmin), 327 

mean (Tmean) and maximum (Tmax) summer and winter temperatures in the hedgerows as function of canopy 328 

cover (a, d, g), tree layer height (b, e, h) and hedgerow width (c, f, i). The temperature offset was calculated 329 

as sub-canopy (microclimate) minus macroclimate (macroclimate) temperatures; negative (positive) values 330 

thus denote cooler (warmer) sub-canopy temperatures. Fitted regression lines and 95 % confidence intervals 331 
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are from linear mixed-effect models (LMM). Dashed lines are not significant, while solid lines are significant 332 

at P < 0.05.  333 

4. Discussion 334 

Using a unique dataset of sub-canopy temperatures in woodlands and hedgerows across temperate Europe, 335 

we show that the thermal buffering capacity of hedgerows is lower than that of woodlands, particularly 336 

during summer. Maximum temperatures in hedgerows were consistently higher, whereas minimum 337 

temperatures were lower. Nonetheless, we underpin that temperature buffering in hedgerows can be 338 

increased via hedgerow management through modification of several structural attributes, for example, by 339 

creating a high and dense canopy and extending the width of hedgerows. 340 

4.1. Variation in temperature buffering along hedgerow-to-woodland interior gradient 341 

Mean and maximum temperatures inside woodland interiors were lower than open-field temperatures, 342 

while minimum temperatures were higher. During the day, tree canopies reflect, absorb or transmit the 343 

incoming solar radiation. Solar radiation thus diminishes rapidly with depth into the canopy, and this energy 344 

is largely converted into latent heat via evaporation of moisture from the ground surface and foliage as well 345 

as transpiration through plant’s stomata (usually jointly referred to as evapotranspiration). In addition, the 346 

canopy, along with tree stems, also reduces the mixing of air due to wind flow, causing cooler and more 347 

uniform near-ground thermal conditions ((Chen et al., 1993; Geiger et al., 2009; Li et al., 2015; Murcia, 1995)). 348 

During the night, however, woodlands tend to be warmer than open lands ((Chojnacka-Ożga and Ożga, 1999)) 349 

due to the attenuation of outgoing infrared radiation by the canopy, allowing woodlands to lose their heat 350 

more gradually compared to open areas ((Houspanossian et al., 2012)). Furthermore, the magnitude of 351 

temperature buffering decreased from woodland interior towards edge, with the steepest decline occurring 352 

within 10 m from the edge. This pattern is in accordance with previous studies (e.g. (Arroyo-Rodríguez et al., 353 

2016; Chen et al., 1993; Chen et al., 1999; Tuff et al., 2016)), and can be explained by the rising influence of 354 

edge effects. For instance, increased light availability near woodland edges, particularly due to the lateral 355 

transmittance of incident light entering through the canopy, is likely an important mechanism driving these 356 

temperature changes ((Davies-Colley et al., 2000)).  357 
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The magnitude of temperature buffering decreased even further in the hedgerows, with a distinct peak in 358 

maximum midday temperatures around 10 m from the woodland edge. Interestingly, after this point 359 

buffering increased again and maximum temperatures at 50 m in the hedgerow did not statistically differ 360 

from the woodland boundary. One potential explanation for this pattern could be that hedgerows act as a 361 

wind barrier, causing considerably lower wind speeds at the bottom of hedgerows (especially at the leeward 362 

side of the corridor; (Forman and Baudry, 1984)). In turn, this could result in a reduction of air mixing and 363 

evaporation, leading to higher daytime temperatures both inside and directly adjacent to the hedgerow 364 

((Geiger et al., 2009)). Wind speeds are presumably most attenuated close to the connection point with the 365 

woodland, and together with the declining thermal buffering effect of the nearby woodland, this could 366 

account for the observed temperature peak at 10 m in the hedgerows. Conversely, during the night, the 367 

reduction of wind speeds and resulting air mixing implies that less warm air will be transported down from 368 

aloft, causing lower nocturnal temperatures in hedgerows than in nearby woodlands. As expected, we found 369 

similar patterns for the diurnal temperature range, with higher differences between daily maximum and 370 

minimum temperatures in hedgerows than in forests. However, it was striking that the differences were 371 

highest again at 10 m into the hedgerow, with smaller temperature ranges observed further along the 372 

corridor. 373 

4.2. Effect of macroclimate temperature on temperature buffering 374 

In general, the temperature offset of the woodland patches became more negative (i.e. lower temperatures 375 

in woodlands) as ambient temperatures increased and more positive (i.e. higher temperatures in woodlands) 376 

as ambient temperatures decreased. Together, these results imply that woodlands act as thermal insulators, 377 

thereby moderating the negative impact of macroclimatic warming on organisms living below tree canopies 378 

((De Frenne et al., 2013; Renaud and Rebetez, 2009)). Microclimatic buffering in hedgerows was also 379 

negatively correlated to macroclimate temperatures, but the slope of this relationship was markedly lower 380 

for temperature maxima. Thus, particularly on warm summer days, hedgerows will be less efficient thermal 381 

insulators than woodlands. These conditions could negatively affect the long-term survival of forest-adapted 382 

organisms in hedgerows, notably due to the increased risk of their thermal tolerance limits being exceeded 383 

by extreme temperature events. 384 
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4.3. Effect of hedgerow structure on temperature buffering 385 

The moderating effect of canopy closure on microclimate temperatures in hedgerows, particularly during 386 

summer, is in line with our expectations. Denser tree canopies reduce the transmission of solar radiation to 387 

the understorey and diminish the penetration of turbulent eddies through the foliage induced by wind flow 388 

over the canopy ((Bonan, 2015; Campbell and Norman, 1998; Chen et al., 1993)). The cooling effect of tree 389 

height is potentially coupled to this canopy effect; higher tree crowns generally provide more overstorey 390 

cover. Indeed, Martens et al. (2000) reported that light transmission to the understorey of woodland stands 391 

was negatively related to tree height. Alternatively, high and dense tree canopies also form a thicker 392 

boundary layer between atmosphere and understorey, resulting in a stronger decoupling from the 393 

surrounding macroclimate ((Benítez et al., 2015; Martens et al., 2000)). Tall forest vegetation is also 394 

aerodynamically rough, has a high aerodynamic conductance, and dissipates the incoming solar energy more 395 

efficiently compared to short vegetation ((Bonan, 2015)). Furthermore, we detected a positive effect of 396 

hedgerow width on the magnitude of buffering. Indeed, due to the declining influence of edge effects, we 397 

expect the interior part of wider hedgerows to be characterized by a more woodland-like microclimate (cf. 398 

(Roy and de Blois, 2008; Wehling and Diekmann, 2007)).  399 

4.4. Implications for management and biodiversity conservation 400 

Fine-scale climatic variations play a major role in shaping plant distribution patterns across space and time 401 

((Ashcroft et al., 2009; Geiger et al., 2009)). Therefore, microclimates can be used as a regulating service to 402 

steer the colonization of species such as woodland specialists in hedgerows, and enhance their effectiveness 403 

as movement corridors between isolated habitat patches. Additionally, if the microclimatic conditions are 404 

favourable, hedgerows may provide a refuge habitat for woodland-dwelling species in landscapes with 405 

relatively few woodland patches. Indeed, studies (e.g. (Corbit et al., 1999; Wehling and Diekmann, 2009)) 406 

have shown that woodland specialists are more likely to occur in wider hedgerows with a well-developed 407 

tree canopy, most likely due to the more benign microclimatic conditions therein. Ultimately, hedgerows 408 

may also be crucial to ensure the long-term survival and dispersal of woodland-dwelling species under 409 

climate change, by providing a suitable microenvironment that partially resembles woodland conditions and 410 
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may thus potentially alleviate their response to global warming ((Lenoir et al., 2017)). Even so, it should be 411 

noted that the thermal buffering capacity of these woody habitats will likely change over time with changes 412 

in the macroclimate, having important implications for their biodiversity and associated ecosystem functions 413 

((Arnone et al., 2008; Davis et al., 2019)). 414 

Furthermore, a thorough understanding of the microclimatic conditions in hedgerows is of paramount 415 

importance to landscape managers and policy makers, because it helps when making decisions to maximize 416 

biodiversity conservation and ecosystem service delivery in these linear habitats, acting as effective 417 

environmental corridors and potential microrefugia for many species groups. Management practices that 418 

lead to more effective buffering of the understorey microclimate in hedgerows could significantly benefit the 419 

long-term colonization success of species in these woody corridors. In particular, wider hedgerows with 420 

substantial lateral crown cover and a tall, dense tree canopy are expected to create more buffered 421 

microclimatic conditions, which may in turn promote the establishment and migration of temperate 422 

woodland species. Potential strategies are to relax the cutting regime and allow hedgerows to incrementally 423 

increase in height. Meanwhile, the effect of wind could also be mitigated by altering the hedgerow structure. 424 

Wind is likely an important factor controlling other microclimatic variables such as temperature and relative 425 

humidity ((Saunders et al., 1991)), and modulating the wind flow over hedgerows could strongly reduce edge 426 

effects. Notably, our results suggested that air temperatures were most extreme in hedgerows around 10 m 427 

from the woodland boundary, especially during summer. We therefore propose a more gradual transition 428 

between woodland edge and hedgerow, both vertically and laterally (that is, a taller and wider hedgerow 429 

close to the connection point), to effectively moderate edge effects (e.g. by reducing the turbulent airflow in 430 

the woodland-hedgerow ecotone). However, we acknowledge that the latter should be further investigated 431 

with field trials or wind tunnel experiments. 432 

5. Conclusion 433 

As species migrations are predicted to accelerate under climate change ((Walther et al., 2002)) and habitats 434 

become increasingly fragmented due to human land-use activities ((Haddad et al., 2015)), hedgerows may 435 

play a key role in the long-term conservation of species by providing a temporary refuge habitat or even 436 
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dispersal route between isolated habitat patches such as woodlands. Yet, the sub-optimal microclimatic 437 

conditions, particularly around the connection point with the woodland, could potentially hamper the 438 

migration of species into these woody corridors. This leads us to suggest that measures associated with the 439 

management, restoration and establishment of hedgerows in rural landscapes should focus on creating a 440 

favourable sub-canopy microclimate, which closely resembles the conditions found in woodlands. This could 441 

significantly enhance the colonization success of woodland-dwelling species into hedgerows and, to some 442 

extent, mediate their response to climate warming. 443 
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