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Abstract: 29 

Trace metal contamination in the European sardine and anchovy food web was investigated in the 30 

Gulf of Lions, NW Mediterranean Sea, including seawater and size fractions of plankton. The results 31 

highlighted: i) higher and more variable concentrations in the smaller plankton size classes for all 32 

metals except cadmium; ii) higher concentrations in anchovy versus sardine for all elements except 33 

lead; iii) different patterns of metal bioaccumulation through the food web: cobalt, nickel, copper, 34 

silver, lead and zinc displayed continuously decreasing concentrations (with the exception of increased 35 

zinc in fish only), while mercury concentrations dropped considerably in larger plankton size classes 36 

and rose significantly in fish. Lastly, cadmium concentrations were found to be highest in intermediate 37 

plankton size classes, with very low levels in fish. The need to efficiently characterize the biological 38 

composition of plankton in order to fully identify its role in the mobilization and transfer of metals 39 

was highlighted. 40 

 41 

 42 

Keywords: inorganic elements; seawater; size-classed plankton; Sardina pilchardus; Engraulis 43 

encrasicolus; Mediterranean Sea 44 

 45 

Highlights: 46 

 47 

- Higher concentrations were generally found in water samples from western stations 48 

- Few or no significant spatial variations were tested or highlighted for biota 49 

- Contrasted bioaccumulation patterns of trace metals along the food web were found 50 

- Concentrations differed greatly among size fractions of plankton 51 

- Anchovy presented higher concentrations than sardine for all metals except Pb 52 

 53 
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1. Introduction 60 

Trace metals are released into the environment from both natural sources (e.g. volcanism, soil erosion 61 

and forest fires) and anthropogenic sources (e.g. transport, harbours, industrial activities and major 62 

coastal cities). They reach the ocean through riverine and aeolian fluxes (Mason, 2013). Their 63 

increased use in human activities has led to the contamination of numerous environmental 64 

compartments and, as a result, to environmental levels with a detectable anthropic contribution (Lewis 65 

and Maslin, 2015). Some trace metals have essential biological functions within a narrow range of 66 

optimal concentrations (essential elements), while others have no known biological role (non-essential 67 

elements) and are recognized for their toxic effects on aquatic organisms, even at environmental 68 

concentrations (Mason, 2013). 69 

Taxa- and species-specific metal regulation mechanisms (i.e. uptake, storage and/or elimination) have 70 

been described for both essential and non-essential elements (Wang and Rainbow, 2010). Their 71 

transfer between biogeochemical compartments, bioaccumulation in organisms and biomagnification 72 

in food webs depends on their concentrations and speciation in both abiotic (habitat) and biotic (food 73 

sources) environments (Neff, 2002; Rainbow, 2002). Marine organisms are hence exposed and 74 

accumulate contaminants via dissolved and trophic pathways; the latter being the main route for trace 75 

metal intake by medium to high trophic level consumers such as fish (Mathews and Fisher, 2009; 76 

Pouil et al., 2016). Understanding the mechanisms that lead to the bioaccumulation of trace metals in 77 

consumers and the interpretation of their metal burden thus requires good knowledge of feeding habits 78 

and trophic ecology, as well as metal levels in diets.  79 

In the Gulf of Lions, in the northwestern (NW) Mediterranean Sea, small pelagic planktivorous fish 80 

such as European sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) are fishery 81 

resources of major economic importance (Palomera et al., 2007). Both species play a major ecological 82 

role in food web functioning  Bă   u e   l , 2013  by transferring energy and nutrients from lower 83 

trophic levels (plankton) to upper levels (large pelagic fish, marine mammals and seabirds). In a 84 

broader context of maintaining the functional integrity of ecosystems and associated ecosystem 85 

services, thorough knowledge of global anthropogenic impacts on this pelagic compartment, including 86 

contamination pressures, appears crucial. The Mediterranean Sea is notoriously faced with various 87 

pollution threats, including chemical contamination (Danovaro, 2003; Durrieu de Madron et al., 2011). 88 

Moreover, the UNEP recently highlighted the lack of data on pollutant impacts on Mediterranean 89 

marine ecosystems (UNEP/MAP, 2012). This data may be of particular importance with regards to the 90 

Mediterranean Sea, where contaminant levels observed in predatory species are significantly higher 91 

than in the Atlantic Ocean (Bodiguel et al., 2009; Cossa and Coquery, 2005). Although this difference 92 

may be explained by higher contaminant concentrations in abiotic compartments, it may also be due to 93 

the enhanced ability of Mediterranean pelagic food chains to bioaccumulate certain chemical elements 94 

or substances, as documented for mercury (Chouvelon et al., 2018; Cossa and Coquery, 2005; 95 



Harmelin-Vivien et al., 2009). Therefore, contamination in the planktonic compartment must also be 96 

studied in order to properly assess contamination pressures on small pelagic fish. 97 

Plankton and, in particular, phytoplankton, forms the first link between abiotic (seawater) 98 

contamination and pelagic fish, hence playing a major role in contaminant transfer into marine food 99 

webs. The contamination dynamics of plankton must therefore be assessed in order to properly 100 

apprehend contaminant bioaccumulation at the secondary trophic levels of small pelagic fish. This 101 

issue remains a challenge and has been relatively poorly-investigated in-situ, probably due to the 102 

difficulties in sampling representative fractions of plankton and obtaining sufficient material to 103 

perform trace level chemical analyses. Despite an abundance of studies on the transfer of metals in 104 

upper trophic levels, none address the problem in its entirety from the water column to small pelagic 105 

fish and most consider a limited number of fish organs (muscle, liver and sometimes gonads or gills). 106 

This failure to address wide-ranging food web compartments and analyse contaminants in certain 107 

organs/tissues (with tissue-specific bioaccumulation properties) may constitute a considerable bias 108 

with regards to bioconcentration/bioaccumulation calculations, for which trophic levels must be 109 

considered in their entirety (Gray, 2002; Wang, 2002). As a result, although the biomagnification of 110 

mercury in aquatic ecosystems is undisputed, zinc is sometimes thought to bioaccumulate in fish food 111 

chains (Mathews and Fisher, 2008; Wang, 2002), while conclusions regarding cadmium, lead and 112 

silver differ (Cheung and Wang, 2008; Luoma and Rainbow, 2005; Reinfelder et al., 1998). 113 

In this general context, the specific objectives of our study were to: (i) characterize the trace metal 114 

burden of the plankton-sardine-anchovy short food web (including seawater) in the Gulf of Lions, NW 115 

Mediterranean; (ii) assess (whenever possible) the spatial and seasonal variability of this burden; 116 

(iii) identify the potential links between the contamination of anchovies and sardines and their 117 

respective trophic ecology; (iv) define trace metal pattern(s) in terms of bioaccumulation, behavior 118 

and transfer within the studied small pelagic fish food web. 119 

Both essential (cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn)) and non-essential elements (silver 120 

(Ag), cadmium (Cd), mercury (Hg), and lead (Pb)) were considered. 121 

 122 

2. Material and Methods 123 

2.1. Study area 124 

The Gulf of Lions (GoL) in the NW Mediterranean Sea is characterized by complex hydrological 125 

dynamics with: (i) a cyclonic Northern Current flowing along the continental slope; (ii) a combination 126 

of wind-driven processes such as coastal upwelling and dense shelf water formation; and 127 

(iii) freshwater dynamics associated with the large Rhône River discharge (Millot, 1999). The Rhône 128 

accounts for the highest mean annual discharge (ca. 1700 m
3
 s

-1
) into the Western Mediterranean basin 129 



(Launay et al., 2019), including 95% of suspended particulate matter (SPM) fluxes to the French 130 

Mediterranean coast (Sadaoui et al., 2016) and 50% of GoL primary production (Lochet and Leveau, 131 

1990). The Mediterranean Se ’  very low tidal range allows the Rhône riverine plume to expand 132 

westwards into the GoL (Boudet et al., 2017; Many et al., 2018). This plume is particularly apparent in 133 

  e fi     w  me e        e w  e    lum  (Lorthiois et al., 2012)  T e   flue  e    SP  from the Rhône 134 

River on both surface water and sediment is observed throughout the western Gulf (Durrieu de 135 

Madron et al., 2000; Espinasse et al., 2014a). 136 

Various zooplankton habitats exist in the GoL, characterized by different biological and physical 137 

variables: species composition, size structure, depth, salinity, wind and currents (Espinasse et al., 138 

2014a). Differences in zooplankton and pelagic fish isotopic signatures and radionuclide 139 

contamination have already been observed in the eastern and the western areas of the GoL (Espinasse 140 

et al., 2014b; Strady et al., 2015a). Phytoplankton and zooplankton communities display conspicuous 141 

seasonal variations in composition and structure,  efle  ed      e   respective carbon and nitrogen 142 

isotopic signatures  Bă   u e   l , 2013; E       e e   l , 2014 , 2014b; H  mel  -Vivien et al., 2008). 143 

Phytoplankton spring bloom generally occurs between March and June in the GoL (Alekseenko et al., 144 

2014). 145 

2.2. Seawater and plankton sampling 146 

Seawater and plankton were sampled in May 2010 (spring) and February 2011 (winter) using the RV 147 

“L'Eu   e”    six to seven stations (depending on the season) along an East-West transect of the GoL 148 

(Fig. 1). As described in previous publications related to this study (Strady et al., 2015a, 2015b; Tiano 149 

et al., 2014), the sampling strategy was adapted to the compartment and size of the sampled 150 

organisms. A chlorophyll a (Chl-       e            file (measured continuously) was obtained at 151 

e      m l       e u       CTD    be fi  ed with   flu   me e . Plankton sampling was performed at 152 

the maximum Chl-a concentration depth (generally around 10-15m water depth). Seawater for trace 153 

metal analysis was pumped from the surface and at depths of 10, 20, 30, 40 and 50 m using an all-154 

Tefl   tube and surface pump system. The water was pressure-filtered on board through 0.45 µm mesh 155 

pre-cleaned with HNO3 acid and pre-weighed polycarbonate filters (Nucleopore

) under a clean 156 

l m     fl w hood installed in a trace metal-clean van. A sub-sample (~500 mL) of the filtered 157 

seawater was transferred into acid-cleaned Teflon

 (FEP) bottles and    d fied w    ul    u e 158 

(SupraPur® quality from Merck) HCl (0.4%) for further dissolved total Hg analyses. The remaining 159 

filtered seawater (~1L) was transferred into acid-cleaned polyethylene bottles and acidified with 160 

ultrapure HNO3 (0.1%) for further dissolved trace metal (other than Hg) analyses. Both sub-samples of 161 

filtered seawater were hermetically sealed, double-bagged and stored in the dark at 4° C pending 162 

analytical processing. 163 

Plankton was collected by pumping or trawling according to the target size. Small planktonic 164 

organisms were sampled by pumping seawater in situ (nominal pumping rate 320 L/min) at the Chl-a 165 



maximum depth using an 8-cm diameter tube a d fil e ed    b   d using a series of sieves made out of 166 

plankton net, mesh size 200, 60 and 6 µm. Two small plankton size fractions were thus retained ([6-60 167 

µm] and [60-200 µm]). The trawling system was used to collect larger plankton (larger than 200 µm 168 

mesh) and towed at a speed of 2-3 knots for around 30 minutes near the Chl-a maximum depth. The 169 

samples were immediately sieved on board in the trace metal laboratory (i.e. clean van) using a sieve 170 

column with four d   e e   fil e  me   size: 2000, 1000, 500 and 200 µm. All plankton fractions were 171 

kept in acid pre-cleaned polyethylene tubes and frozen at -18°C on board. They were then freeze-dried 172 

and kept in the dark at room temperature in the laboratory pending analyses. 173 

2.3. Fish sampling 174 

European sardines (S. pilchardus) and anchovies (E. encrasicolus) were collected in July 2010 175 

(summer) during the yearly PELMED pelagic surveys conducted by the French Institute for the 176 

Exploitation of the Sea (Ifremer) and in March 2011 (winter) b      e      l fi  e me , in two areas 177 

of the GoL corresponding to eastern and western plankton stations (Fig. 1). Immediately after 178 

collection, they were identified according to species and sampling area or station, then stored in a 179 

freezer in plastic bags at -18°C. The fish (sardines: n = 280 individuals in total; anchovies: n = 265 180 

individuals in total) were then dissected in the laboratory in clean and contamination-free conditions. 181 

The sampled tissues/organs included pieces of white muscle, liver, gonads (females only) and 182 

“ em           ue” (including remaining muscle, skin, head, skeleton, viscera, etc.). They were placed 183 

back in the freezer immediately after dissection. The dissected sardines measured 8.0-13.9 cm in 184 

length; anchovies measured 9.9-13.3 cm in length. In order to collect enough biological material for 185 

analysis, sample pools were constituted according to sampling area/station, species, gender (males vs. 186 

females), and tissue/organ type. For sardines and anchovies, 27 and 23 pools of individuals were 187 

considered respectively, together with 27 and 23 pools of tissues/organs respectively per species. The 188 

pools contained 11 individuals on average. Each pool was homogenised, re-frozen, freeze-dried and 189 

ground into a fine powder using an agate mortar or stainless-steel blade mill      “remaining tissue”  190 

pending further chemical analyses. The agate mortar, grinding bowls and stainless-steel blades were 191 

thoroughly washed with milli-Q water after grinding each sample. 192 

2.4. Trace metal analyses 193 

Total trace element concentrations in seawater, size-classed plankton and fish tissue were analysed at 194 

the Ifremer LBCM laboratory in Nantes, France. This laboratory regularly performs inter-calibration 195 

studies (www.quasimeme.org). 196 

Mercury in seawater samples and biological compartments was assessed using a different approach to 197 

the other study metals (Co, Ni, Cu, Zn, Ag, Cd, Pb) in terms of both sample treatment and analytical 198 

techniques. All Hg analyses on seawater were performed within 3 months of sampling using an 199 

Atomic Fluorescence Spectroscopy detector (AFS, Tekran, model 2500

) as described in Cossa et al. 200 



(2011) coupled to an LBCM-built front end, according to the US-EPA method N°1631 (U.S. 201 

Environmental Protection Agency, 2002). Total Hg in solids (biological compartments) was assessed 202 

by atomic absorption spectrophotometry on aliquots of sample powder (10–50 mg) using an Advanced 203 

Mercury Analyser (ALTEC AMA-254, Altec Ltd), according to the standard operating procedure 204 

described in the US-EPA method N°7473 (U.S. Environmental Protection Agency, 1998).  205 

Dissolved seawater concentrations of Co, Ni, Cu, Zn, Ag, Cd and Pb were determined with a 206 

Quadrupole Inductively Coupled Plasma Mass Spectrometer (Q-ICP-MS, Thermo Electron 207 

Corporation, Element X Series


) on acidified filtrates treated according to an adapted protocol from 208 

Danielsson et al. (1982) and described in detail by Chiffoleau et al. (2002) and Guesdon et al. (2016), 209 

after pre-concentration using a liquid/liquid extraction procedure. Biological compartment samples 210 

were analysed according to an in-laboratory approved method. Briefly, dried samples (~200 mg dry 211 

mass wherever possible) were placed in microwave Tefl  

 bombs and mineralized using a mixture of 212 

ultrapure HNO3 and HCl acids. The digests were then diluted to 50 mL with milli-Q water. Total 213 

metal concentrations were also determined using Q-ICP-MS.  214 

The quality assurance of all metal analyses relied on blank controls and the accuracy and 215 

reproducibility of data relative to the  e   fied  e e e  e m  e   l   CR    used in each analytical run. 216 

Blank values were systematically below the detection limits and CRM values concurred w     e   fied 217 

concentrations. Details of the CRM analyses are reported in Table S1, together with the limits of 218 

quantification (LOQs) for each metal and each matrix (seawater and biological compartments).  219 

2.5. Data treatment and statistical analyses 220 

All data submitted to statistical tests were first checked for normality (through a Shapiro-Wilks test) 221 

and/or homogeneity of variances (B   le  ’   e     I  these conditions were fulfilled, parametric tests 222 

were then used in the subsequent analyses; otherwise, non-parametric analogues were used. All 223 

statistical tests were performed with the software R version 3.4.3 (R Development Core Team, 2017). 224 

Detailed data per station for seawater (dissolved concentrations) and size-classed plankton are 225 

provided in Supplemental Material (Tables S2 and S3). 226 

In order to apprehend variations throughout the water column, trace element concentrations in 227 

seawater (dissolved metals) and salinity were first measured according to sampling depth, station and 228 

season (Figs. 2, 3 and 4, Table S2). Within each season, variations in seawater concentrations were 229 

then assessed by calculating coefficients of variation (Table 1). Non-parametric Spearman correlation 230 

coefficient tests were applied to identify potential relationships between salinity and concentrations of 231 

elements in seawater in the GoL per element and per season, across all stations (Table 2). The 232 

potential enrichment of surface waters in metals (<10 m) versus the remaining water column (i.e. 10-233 

20 m and 20 m) was also tested using parametric ANOVA tests followed by a Tukey’  HSD post-hoc 234 

pairwise comparison test, or non-parametric Kruskal-Wallis (KW) tests followed by a multiple 235 



  m         e   w    H lm’   dju  me   me   d, per element and per season, across all stations. In 236 

order to assess the effect of season and geography on dissolved trace metal concentrations in the GoL, 237 

parametric Student t-tests or non-parametric Mann-Whitney-Wilcoxon (MWW) tests were performed 238 

per element across all stations to ascertain seasonal variations, and per season to ascertain 239 

geographical variations (Table 3). To avoid bias, the tests used data obtained at 10 to 40 m, i.e. the 240 

depth range at which most sampling was performed, as few samples were collected from surface 241 

waters and at 50 m. Moreover, previous statistical tests revealed no significant differences between the 242 

10-20 m and 20 m depth ranges across all study elements and in either season (see Results).  243 

The homogeneity and consistency of biological compartments were first improved by solely taking 244 

into account pools containing all three tissues, i.e. l  e , mu  le   d “ em           ue”   lu      d  245 

for females), enabling the calculation of     e             “w  le        m ” using the following 246 

formula: 247 

[Whole organism] = (([Liver]*Liver mass) + [Muscle]*Muscle mass + [Remaining tissue]*Remaining 248 

tissue mass (+ for females: [Gonads (for females)]*Gonad mass)) / (Liver mass + Muscle mass + 249 

Remaining tissue mass (+ for females: Gonad mass)) 250 

where “[Tissue/organ]” is the metal concentration determined in the relevant tissue/organ (in mg kg
-1

 251 

dry mass), weighted by the mass of each tissue/organ comprising the whole organism or total body 252 

weight (in mg dry mass). Indeed, metal burden (or concentration) values in whole organisms are more 253 

relevant data than concentrations measured in certain tissues/organs in terms of assessing the trophic 254 

transfer of biogeochemical elements between two trophic levels and through food webs (e.g. Cherel et 255 

al., 2005; Lahaye et al., 2005). 256 

The statistical procedure adopted for biological compartments was as follows: due to the relatively 257 

low number of samples available per compartment in a given season (Table 4), statistical seasonal 258 

differences and variations among biological compartments could not be tested. Seasonal concentration 259 

variations measured within each compartment were therefore only considered in separate samples 260 

collected in spring (plankton) or summer 2010 (fish) and in winter 2011 (Figs. 5 and 6). Spatial 261 

variations in selected compartments in summer (plankton) and spring (fish) 2010 (i.e. season(s) and 262 

biological compartments with a minimum number of available samples (n  4 per zone), Table 4) were 263 

statistically analysed using Student t-tests or MWW tests (Table 5). In fish species that did not display 264 

any spatial statistical variations (see results), variations according to tissue/organ were tested using 265 

KW tests (Fig. 7) and variations according to gender (for a given tissue/organ) were examined using 266 

Student t-tests or MWW tests (Table 6), using samples collected in summer 2010 only (i.e. with 267 

enough fish samples for statistical tests, Table 4). Variations according to species (for a given 268 

tissue/organ except gonads) were also tested using Students t-tests or MWW tests (Table 7) using fish 269 

collected in summer 2010. 270 



Finally, bioaccumulation factors (BAFs) were calculated for each biological compartment of the 271 

considered theoretical food web (different plankton size fractions and fish species) and each trace 272 

element, according to the following equation of Griboff et al. (2018): 273 

BAF = Cssbo/Csw 274 

whereby Cssbo is the element concentration in biological organisms at steady state (in mg kg
-1

 dry 275 

mass), and Csw is the element concentration in seawater (in mg L
-1

). As planktonic organisms and fish 276 

live at different depths throughout the day and throughout their lifecycle, selected seawater 277 

concentrations included all of the sampled water column (Fig. 8, Table S2). Finally, the correlation 278 

between BAFs calculated for the different metals (Table S5) was tested using non-parametric 279 

Spearman correlation coefficient tests and seasonal differences (per element) were tested using 280 

Student-t tests or MWW tests.   281 

 282 

3. Results 283 

3.1. Metals in seawater (dissolved metals) 284 

Spatial and temporal variations of dissolved trace metal concentrations were recorded in the GoL. 285 

Larger fluctuations occurred in spring for all elements except Pb, as indicated by higher coefficients of 286 

variation in spring (Table 1). Variations in dissolved trace metal concentrations were also analyzed 287 

according to depth, from the surface to 50 m in both seasons (Figs. 3 and 4). Surface waters (<10 m 288 

depth) were significantly enriched in Co, Ni, Cu and, to a lesser extent, in Zn in spring (i.e. no 289 

statistical difference between the <10 m and 10-20 m depth ranges for Zn, but statistical difference 290 

between the <10 m and 20 m depth ranges) and in Zn alone in winter (ANOVA or KW tests followed 291 

by post-hoc multiple comparison tests, p <0.05). Mean concentrations of all considered elements (Co, 292 

Ni, Cu, Zn) did not differ between the 10-20 m and 20 m depth ranges in either season (post-hoc 293 

multiple comparison tests, p >0.05). No significant differences in the three other study elements (Cd, 294 

Hg and Pb) were observed according to depth in either season (ANOVA or KW tests followed by 295 

post-hoc multiple comparison tests, p >0.05). Cobalt and Ni were significantly negatively correlated 296 

with salinity in both seasons (Table 2), while Cu and Zn were significantly negatively correlated with 297 

salinity in spring only, and Cd and Pb were significantly positively correlated with salinity in winter 298 

only. No correlation with salinity was observed for Hg in spring (Table 2). 299 

Higher mean concentrations of Co and Cu were determined in the water column (10-40 m depth) in 300 

spring (MWW tests, p =0.008 and p =0.026 respectively), with higher mean concentrations of Cd in 301 

winter (p <0.001), while no seasonal differences were observed for Ni, Zn and Pb (MWW tests, all 302 

p >0.05). In both seasons, significantly higher dissolved concentrations of Co and Ni were determined 303 

in the western part of the GoL, with higher concentrations of Pb in the eastern part (Table 3). Higher 304 



concentrations of Cd and Cu were also determined in the western part of the GoL in spring, but not in 305 

winter. No spatial differences were observed for Zn and Hg and no clear pattern emerged at a station 306 

level (Figs. 3 and 4; Table S2). 307 

3.2. Metals in size-classed plankton 308 

Overall, fraction size appeared to be a major factor in trace metal concentration variations measured in 309 

plankton (Table 4, Figs. 5 and 6). The highest values of all metals (Co, Ni, Cu, Zn, Ag, Hg and Pb), 310 

except Cd, were found in the smallest size fraction [6-60 µm] and, to a lesser extent, in [60 - 200 µm]. 311 

These two size fractions also displayed the greatest concentration variability. The highest 312 

concentrations of Cd were determined in intermediate size fractions [200-500 µm], [500-1000 µm] 313 

and [1000-2000 µm]. The lowest concentrations of all metals were generally recorded in the largest 314 

size fraction [>2000 µm], especially in spring (Table 4, Figs. 5 and 6). Mean concentrations of trace 315 

metals in plankton were generally more variable in spring than in winter (Figs. 5 and 6). In the four 316 

compartments in which spatial differences could be tested (i.e. [6-60 µm], [60-200 µm]; sardines and 317 

anchovies collected in spring (plankton size fractions) or summer 2010 (fish), Table 5), no variations 318 

in Co, Ni, Cu, Zn or Ag were observed. However, significant spatial differences in Cd, Hg and Pb 319 

were revealed in the [60-200 µm] size fraction only, with significantly higher mean concentrations in 320 

plankton in the eastern part of the GoL (Table 5).  321 

3.3. Metals in fish 322 

Trace metal analyses and statistical tests were performed on fish collected in summer 2010 (i.e. season 323 

with sufficient samples) in order to appreciate variations according to zone, tissue/organ, gender and 324 

species. Spatial variations were investigated separately for each species considering whole individuals 325 

and no significant differences were revealed (Table 5). Conversely, trace metal concentrations in 326 

tissues/organs were significantly different in the two species, with identical patterns observed in both 327 

anchovies and sardines (Table 6, Fig. 7). The highest concentrations of all elements except Ni and Zn 328 

were systematically found in the liver and the lowest concentrations in muscle (except Hg). The 329 

highest concentrations of Ni and Zn were found in female gonads in both fish species, with higher 330 

values in sardines than anchovies (Fig. 7). Variations according to gender were tested separately on 331 

the basis of tissues/organs and species (Table 6). In sardines, significant gender-related variations were 332 

only found in Ag in “ em           ue”, with females showing slightly lower Ag concentrations than 333 

males. These variations were more conspicuous in anchovies: females displayed significantly lower 334 

liver concentrations of all metals except Ni (Cu, Zn, Ag, Cd, Hg and Pb) versus males and 335 

significantly lower concentrations of Cu in whole individuals (Table 6). 336 

Finally, significantly higher mean concentrations of Ni, Cu, Zn, Ag, Cd and Hg were found in 337 

anchovy “ em           ue”    w  le   d   du l  versus sardines (Table 7, Figs. 5 and 6). Significantly 338 

higher concentrations of Ni, Cu, Cd and Hg were also found in anchovy liver versus sardine and 339 



significantly higher concentrations of Ni and Hg were found in anchovy muscle versus sardine. 340 

Among the trace elements analysed, the only exception was hence Pb, which was found in higher 341 

concentrations in sardines across all tissue types (Table 7). 342 

3.4. Bioaccumulation factors (BAFs) 343 

Bioaccumulation factors (BAFs) were calculated for each plankton fraction and fish species in both 344 

seasons, taking into account dissolved metal concentrations measured throughout the sampled water 345 

column (Fig. 8; Table S4). BAF variation patterns in the food web were fairly similar for given metals 346 

regardless of season, but differed among metals (Fig. 8; Table S4). The highest BAFs were obtained 347 

on the two smallest fractions [6-60 µm] and [60-200 µm] for all metals except Cd. Four BAF profiles 348 

were differentiated using Spearman rank correlation coefficient tests. Firstly, Co, Ni, Cu and Pb were 349 

significantly correlated, with Spearman rank correlation coefficients (r) varying from 0.909 to 0.986 350 

(Table S5). All four elements exhibited similar profiles, with a continuous BAF decrease along the 351 

food web from the smallest phytoplankton fraction [6-60 µm] up to fish (Fig. 8). Secondly, Zn BAFs 352 

were also significantly correlated with Co, Ni, Cu and Pb BAFs, but with lower r values (from 0.579 353 

to 0.700). The Zn profile was similar to those of Co, Ni, Cu and Pb in plankton, but increased slightly 354 

in fish: this pattern was particularly apparent when BAF was expressed in log (Fig. 8; Table S4). 355 

Thirdly, Hg displayed a particular BAF profile, with a strong decrease in plankton according to size, 356 

particularly between phytoplankton [6 - <200 µm] and zooplankton [200 to >2000 µm] and a sharp 357 

increase in both fish species (Fig. 8). Lastly, Cd exhibited a completely different BAF profile, which 358 

was not significantly correlated with any other element (Table S4). Cadmium was the only metal to 359 

show the highest values in zooplankton [200 to >2000 µm] rather than small phytoplankton size 360 

classes [6 - <200 µm], with low BAF values in fish too (Fig. 8; Table S4). 361 

Seasonal differences were highlighted in some compartments, with slightly higher BAFs in winter for 362 

Co, Cu, Zn and Pb, in particular Co in the smallest fractions and Cu, Zn and Pb in the intermediate 363 

fractions (Table S4). However, no significant seasonal variations in the study elements were found 364 

across compartments (Student-t tests or MWW tests, p< 0.05), except for Zn (MWW test, p= 0.015), 365 

which showed a higher mean BAF value in winter (ca. 773 00 ± 144 000 dm) than in spring 366 

(plankton) and summer (fish) (ca. 570 000 ± 375 000 dm). 367 

 368 

4. Discussion 369 

Our study enabled the characterization of trace metal burdens in seawater, plankton and two major 370 

small pelagic fish species from the GoL in the NW Mediterranean Sea. A consistent and original 371 

database was obtained on trace metal contamination in the study area, including its short, small pelagic 372 

fish food web, hence reinforcing available data on radionuclides and rare earth elements (Strady et al., 373 



2015a, 2015b). This geographical area is of major economic and ecological importance and has been 374 

widely investigated in recent years, in particular in the aim of understanding the potential drivers of 375 

change observed in the small pelagic fish community (e.g. Brosset et al., 2017, 2016, 2015, 2015; Le 376 

Bourg et al., 2015; Van Beveren et al., 2017, 2016). However, thorough information on the chemical 377 

contamination of pelagic compartments (from seawater to pelagic fish) by trace elements was lacking.  378 

4.1. Variability of metals in seawater and vertical distribution patterns 379 

Although a relatively large number of trace metal studies on the Mediterranean Sea were performed in 380 

the 1980s and 1990s (see Yoon et al., 1999), recent dissolved trace metal measurements remain scarce 381 

(however, see Battuello et al., 2016 and Heimbürger et al., 2011 for recent data reported in the 382 

northwestern Mediterranean Sea). Overall, surface and sub-surface (i.e. 0-15 m depth) concentrations 383 

determined in the GoL versus the range of surface metal concentrations reported in recent decades in 384 

the Mediterranean Sea (see Heimbürger et al., 2011; Lacan et al., 2006; Morley et al., 1990; Riso et 385 

al., 1994; Yoon et al., 1999; Zeri and Voutsinou-Taliadouri, 2003) are as follows: (i) in the same range 386 

for Zn, (ii) in the same range or higher for Ni, Cu, Cd, Pb, and (iii) higher than previously-reported for 387 

Co and Hg. However, in direct comparison with a recent study in the northwestern Mediterranean Sea 388 

(Ligurian Sea), the seawater concentrations we measured in the GoL were lower than those reported 389 

by Battuello et al. (2016). 390 

Dissolved trace metal concentrations in Mediterranean surface waters are generally higher than in the 391 

Atlantic Ocean (Boyle et al., 1985; Morley et al., 1997), mainly due to atmospheric inputs (including 392 

Saharan dust events and European anthropogenic emissions) and riverine outflows on the continental 393 

shelves (Durrieu de Madron et al., 2011 and references therein). In the Mediterranean Sea, surface-394 

enriched concentrations of Co, Cu, Ni and Zn, along with their significant negative correlations with 395 

salinity, suggest that concentrations are influenced by the Rhône River plume, as already demonstrated 396 

in the GoL (e.g. Radakovitch et al., 2008; Cossa et al., 2017). However, as this pattern of surface-397 

enriched waters is only observed for essential elements (Co, Cu, Ni and Zn) and not non-essential 398 

elements (Cd, Hg and Pb), we cannot exclude a potential uptake by plankton in surface waters 399 

(Battuello et al., 2016). 400 

Below the surface, significantly higher concentrations of most elements (Co, Ni, Cu and Cd) were 401 

observed in the western area of the GoL; only Pb showed higher concentrations in the eastern area. 402 

This spatial variation is mainly due to the dynamics of the Rhône River plume, which is generally 403 

directed westward by the Northern Current and prevailing winds (Gangloff et al., 2017) and to the 404 

existence of small rivers to the West (Sadaoui et al., 2016). Our study revealed that Co, Ni, Cu and Zn 405 

were more concentrated in surface desalinated waters, in particular in spring. The East-West influence 406 

of Rhône river water inputs in the GoL has already been demonstrated with regards to particulate 407 

organic matter and sediment transfer (Durrieu de Madron et al., 2000). In contrast, the higher 408 

dissolved Pb concentrations we found in the eastern area of the GoL are coherent with the results of 409 



Strady et al. (2015a), which recorded higher 
210

Pb concentrations in the eastern area. As Pb did not 410 

display any relationship with depth and salinity, its concentration is probably linked to the industrial 411 

and urban activities of the nearby city of Marseille and town of Fos-sur-Mer, together with inputs from 412 

the Rhône River. Dissolved Pb concentrations were indeed significantly higher at St1 and St10 413 

adjacent to Marseille (Fig. 1) than at other stations. 414 

In our study, seasonal variations in dissolved element concentrations were limited to Cd (higher in 415 

winter), Co and Cu (higher in spring). No seasonal-dependent variations in Ni, Zn and Pb were 416 

observed in the water column (10-40 m depth), in contrast to the study of Battuello et al. (2016), 417 

which found high seasonal variations in Ni and Zn in the Ligurian Sea, allocated to bioaccumulation 418 

by zooplankton and changes in the abundance of zooplankton taxa. In the GoL, the lack of seasonal 419 

variations in dissolved element concentrations in seawater, in particular in Ni and Zn, but also Pb, may 420 

be due to the predominant role of highly variable river and atmospheric contaminant inputs 421 

(Desboeufs et al., 2018; Dumas et al., 2015; Sadaoui et al., 2016). 422 

4.2. Variability of metal concentrations in size-classed plankton 423 

Recent data on trace metal concentrations in plankton in the Mediterranean Sea are also relatively 424 

scarce (however, see Battuello et al., 2016; Rossi and Jamet, 2008; Strady et al., 2015a, 2015b for 425 

recent data reported in the northwestern Mediterranean Sea) in comparison to the numerous 426 

Mediterranean Sea studies conducted in the 1980s (see in Roméo et al., 1992). Different plankton 427 

species are known to show significant variations in terms of metal bioaccumulation (Battuello et al., 428 

2017; Bhattacharya et al., 2014; Levy et al., 2008). Therefore, variations in metal concentrations 429 

among plankton size fractions are probably related to their specific composition. 430 

As indicated by (Espinasse et al., 2014b) and Strady et al. (2015a), the plankton composition of our 431 

samples (i.e. same samples as cited authors) was related to the size of the considered fraction: the two 432 

smallest fractions [6-60 µm] and [60-200 µm] were mainly composed of phytoplankton and detritus 433 

(detritus decreased with particle size). The larger fractions [200-500 µm], [500-1000 µm] and [1000-434 

2000 µm] were mainly composed of copepods and crustacean larvae of increasing size. The largest 435 

fraction [>2000 µm] consisted mainly of large gelatinous organisms (salps, siphonophores, pteropods, 436 

chaetognaths), with some copepods and euphausiids (Espinasse et al., 2014b; Strady et al., 2015a). 437 

The marked ability of most metals to be adsorbed onto small particles (dead or alive, organic or 438 

inorganic) may partly explain the highest values we observed in the smallest size fractions (i.e. higher 439 

surface/volume ratio hence higher potential for metal adsorption and absorption). Moreover, sorption 440 

processes can vary widely according to microalgae species (e.g. Levy et al., 2008 for Cu); this may 441 

also explain the highly-varied concentrations observed in the smallest fractions composed of 442 

phytoplankton and detritus. Alternatively, the relatively-high Cd, Zn and, to a lesser extent, Ag 443 

contents found in intermediate size fractions could be related to predominant copepods. Previous 444 

studies have documented that the assimilation of these metals by copepods depends on their prey and 445 



is particularly efficient when copepods feed on protozoa rather than phytoplankton (Twining and 446 

Fisher, 2004). This is due to the fact that Cd, Zn and Ag occur in higher proportions in the cytoplasmic 447 

fraction of protozoan cells, and are therefore more easily assimilated by consumers (Reinfelder et al., 448 

1998; Reinfelder and Fisher, 1991). Our sampling campaign did not allow an assessment of protozoa 449 

proportions in the various fractions, but the study results clearly highlight Cd, Zn and Ag 450 

biomagnification in part of the trophic chain, as suspected by Reinfelder et al. (1998). Finally, the low 451 

concentrations we observed in the largest size fraction [>2000 µm] could be related to a predominance 452 

of gelatinous organisms, which concentrate metals less efficiently than crustaceans (Roméo et al., 453 

1992), together w           ble “bio-d lu     e  e  ” due      ze  Cadmium, Cu, Pb and Zn 454 

concentrations recorded in salps and copepods sampled in the Mediterranean Sea in the 1980s 455 

(e.g. Krishnaswami et al., 1985; Roméo et al., 1992) were in the same range as in our study fractions 456 

([>2000 µm] and [200-500 µm], respectively). However, Co, Ni, Cu, Zn, Cd and Pb concentrations 457 

reported in zooplankton (>300 µm) collected from the Ligurian Sea (Battuello et al., 2016) were far 458 

lower than those found in corresponding fractions in the GoL ([200-500 µm], [500-1000 µm] and 459 

[1000-2000 µm]). As decreased metal concentrations in zooplankton (vesus phytoplankton) can be 460 

partly explained by the possible excretion of metals through faecal pellets (Rossi and Jamet, 2008), 461 

metal concentration patterns observed in the various plankton size fractions are likely to depend on 462 

both their size and species composition. While increasing cell and organism size is probably the main 463 

driver behind decreasing direct sorption process (ad- and ab-sorption) in phytoplankton, the diet, 464 

physiological characteristics and detoxification mechanisms the different zooplankton species 465 

(Battuello et al., 2017) are probably of prime importance in explaining the metal concentrations found 466 

in our zooplankton samples (corresponding to the >200 µm plankton fractions according to Espinasse 467 

et al., 2014b and Strady et al., 2015a). 468 

4.3. Variability of metal concentrations in fish 469 

Trace metal concentrations measured in anchovies and sardines collected in the GoL allowed us to 470 

pinpoint bioaccumulation variations according to geographical zone, organ/tissue (i.e. organotropism), 471 

gender and species. Seasonal-dependant variations could not be tested. Broadly, (i) no spatial 472 

differences were recorded (considering whole individuals); (ii) liver showed the highest concentrations 473 

(except for Zn and, to a lesser extent, Ni), while muscle showed the lowest concentrations (except for 474 

Hg); (iii) few gender-related differences were observed (more so in anchovies than sardines), with 475 

lower concentrations in females when significant; (iv) concentrations in reconstructed whole 476 

individuals were correlated with concentrations in “ em           ue” comprising the majority of body 477 

mass; (v) anchovies were generally more contaminated by all metals except Pb in comparison to 478 

sardines (inverse trend).  479 

The highest concentrations of most metals in liver versus muscle is a well-documented pattern, 480 

especially in fish (Durrieu et al., 2005; Le Croizier et al., 2018; Metian et al., 2013; Pouil et al., 2017), 481 



due to the direct role of the liver in metal storage and/or detoxification further to trace element 482 

incorporation, in particular through the trophic pathway/diet (Roesijadi, 1992; Siscar et al., 2014; 483 

Wang and Rainbow, 2010). Conversely, the relatively high concentrations of Hg (versus other metals) 484 

observed in muscle may be due to its high affinity with muscular protein sulfhydryl groups (-SH) 485 

(e.g. Bloom, 1992). The high Zn concentrations recorded in female gonads are probably due to its vital 486 

role in fish gonad development (Fletcher and King, 1978). Finally, on the organism scale, the liver 487 

represented less than 2% of wet body mass on average in the studied small pelagic fish species, while 488 

“ em           ue” (including remaining muscle, viscera, gills, kidneys, bones, skin, etc.) accounted 489 

for 85-95% of body mass. Therefore, whole (reconstructed) organisms showed very similar metal 490 

concentrations to “remaining tissue”. 491 

Dietary exposure is widely considered as the main route for contaminant incorporation and 492 

assimilation (both inorganic and organic) in consumers such as fish (Fisk et al., 2001; Mathews and 493 

Fisher, 2009; Wang, 2002). However, no differences in anchovy diet according to gender were 494 

reported in the GoL by Pethybridge et al. (2014), or by Karachle and Stergiou (2014) in another area 495 

of the Mediterranean Sea (Agean Sea), suggesting that the contaminant variations we found are 496 

probably not related to differing diets. Other factors such as substantial contaminant elimination 497 

through reproduction (i.e. through spawning by female anchovy) may explain gender-related 498 

variations in anchovies; this topic has been well-documented in terms of organic contaminants in fish 499 

(Bodiguel et al., 2009). However, similar variations were not reported in sardines, while variations in 500 

anchovies were mainly found in liver. This probably indicates poor elimination of trace metals versus 501 

organic contaminants by small pelagic female fish during reproduction, as already suggested for large 502 

pelagic fish such as tuna (Chouvelon et al., 2017). 503 

Variations in metal concentrations found in the two study fish species may also be due to differing in 504 

trophic ecologies (trophic level, prey preferences, etc.). Both anchovies and sardines were recently 505 

shown to have dietary overlaps in the GoL, with the main targeted prey being small copepods such as 506 

Microsetella, Oncaea and Corycaeidae copepods (Le Bourg et al., 2015). However, sardine have a 507 

more diverse, temporally variable and seasonally-specific feeding strategy than anchovies (Le Bourg 508 

et al., 2015; Pethybridge et al., 2014), confirming that the two species do not feed on exactly the same 509 

food sources or at the same trophic level in the GoL (Costalago et al., 2014, 2012). Moreover, 510 

anchovies tend to feed on the continental shelf and in the western GoL, whereas sardines remain 511 

nearer the coast and feed more in the eastern area (Le Bourg et al., 2015; Saraux et al., 2014). Sardines 512 

can also capture smaller prey than anchovies (Blaxter and Hunter, 1982; Costalago et al., 2014, 2012). 513 

The differing trophic ecologies of anchovies and sardines can hence account, at least in part, for the 514 

variations observed in trace metal concentrations: each species probably feeds on planktonic prey 515 

species affected by different levels of contamination. 516 

Finally, differences in body condition and/or proximate composition could also explain some of the 517 

variations observed in the two fish species, although these parameters were not analysed in our study. 518 



Indeed, recent studies have demonstrated that variations in metal content may be attribuable to the 519 

specific proximate composition (i.e. proteins, lipids, ash content) of fish species (e.g. Marval-León et 520 

al., 2014; Sofoulaki et al., 2018). This is due to the fact that most metals, including all the trace 521 

elements studied here, have a high affinity with the cysteine amino-acid of certain proteins, such as 522 

metallothioneins (e.g. Capdevila et al., 2012). Similarly, certain organic pollutants have a well-known 523 

high affinity with lipids (e.g. Munschy et al., 2016). Sardines have a far higher total lipid content than 524 

anchovies in the GoL (Pethybridge et al., 2014), although specific lipid content may vary according to 525 

season. If a lower lipid content theoretically corresponds to a higher protein content, this could 526 

explain, at least in part, the higher metal concentrations measured in anchovies versus sardines. 527 

However, it does not explain the exception we observed for Pb. Nonetheless, in direct comparison, our 528 

results were similar to those found by Sofoulaki et al. (2018) on individuals collected from six Greek 529 

sites (Mediterranean Sea), with higher levels of most of the study trace elements observed in 530 

anchovies versus sardines, with the exception of Pb (i.e. same as the inverse trend found in our study).  531 

4.4. Patterns of metal bioaccumulation in the study food web (BAFs) 532 

Field-based bioaccumulation factors (BAFs) were calculated as a ratio of chemical concentration in 533 

organisms versus seawater (e.g. DeForest et al., 2007; Gobas et al., 2009), using the dissolved metal 534 

concentrations measured throughout the sampled water column. Patterns of BAFs calculated on the 535 

basis of dissolved concentrations measured at 10-15 m depth only (i.e. plankton sampling depth) were 536 

rigorously identical (results not shown), confirming the probable night and day migration of organisms 537 

in the water column, at least at the sampling depths (0-50 m). 538 

The higher BAFs observed in the two smallest plankton fractions were probably linked to two factors: 539 

firstly, the higher surface/volume ratio of small versus large cells/organisms, which may enhance 540 

dynamic metal sorption processes and secondly, the relatively-large proportion of detritus in these 541 

fractions (Strady et al., 2015a), which may efficiently adsorb metals onto their large, particle-specific 542 

surface area. Most metals showed a decreasing BAF in higher chains of the food web, from phyto- to 543 

zooplankton, then fish. Only two metals among those considered, Zn and particularly Hg, showed 544 

increased BAF values in fish. This pattern is coherent with the well-known biomagnifying properties 545 

of Hg through food webs, especially in its methylated forms (Chen et al., 2008; Cossa et al., 2012). 546 

The slight increase in Zn BAF in fish is also consistent with the biomagnifying potential of Zn in 547 

marine fish food chains (Wang, 2002). Conversely, the higher Cd bioaccumulation we observed in 548 

zooplankton fractions (mainly composed of copepods and crustacean larvae) versus fish may be linked 549 

to efficient copepod Cd assimilation (Twining and Fisher, 2004) and the ability of crustaceans to 550 

accumulate high quantities of Cd in their exoskeleton (Sarkar et al., 2016). 551 

Generally speaking, the BAFs calculated in our study were lower than those calculated in the Ligurian 552 

Sea (NW Mediterranean Sea) by Battuello et al. (2016), probably due to the significant differences in 553 

dissolved metal concentrations found in the two studies (see above). Moreover, field BAFs tend to be 554 



inversely-related to exposure concentrations (DeForest et al., 2007), i.e. lower when seawater 555 

concentrations are higher in the field. This could also explain BAF differences in studies performed in 556 

environments with potentially different contamination levels and hence the differences in our results in 557 

the GoL versus those of Battuello et al. (2016) in the Ligurian Sea. 558 

 559 

4.5. Synthesis on the seawater-plankton-fish continuum 560 

When adequate material was available for statistical testing, slightly higher metal concentrations were 561 

found in seawater samples from western stations (especially below the surface and with the exception 562 

of Pb) and in biological compartment samples from eastern stations (i.e. for the [60-200 µm] fraction, 563 

and for Cd, Hg and Pb only). The slightly higher seawater concentrations found at western stations 564 

may be due to the influence of small river outflows in this area combined with the Rhône River plume, 565 

which is directed westward by the Northern Current and prevailing winds (Gangloff et al., 2017; 566 

Sadaoui et al., 2016). The inverse spatial trend observed in some biological compartments (i.e. higher 567 

concentrations at eastern part when significant) should be confirmed by testing larger numbers of 568 

samples per compartment, in particular plankton. The role of Rhône River loads on the overall 569 

contaminant burden of GoL organisms has already been reported with regards to radionuclides such as 570 

210
Po (Strady et al., 2015a) and organic contaminants such as Polychlorinated biphenyls (PCBs) in 571 

plankton (Alekseenko et al., 2018). Small pelagic planktivorous fish in the eastern areas of the GoL 572 

are therefore probably affected by more prevalent/efficient exposure to chemical contamination via 573 

trophic pathways (i.e. plankton). However, this hypothesis should be supported by an additional 574 

experimental design for metals.  575 

No common patterns were established for essential elements (Co, Ni, Cu, Zn) or non-essential 576 

elements (Ag, Cd, Hg, Pb). Instead, our results showed different metal uptake/level fingerprints in the 577 

GoL for the different study elements, with: (i) Co, Cu, Ni, Pb and, to a lesser extent, Zn and Ag, 578 

displaying the highest concentrations in the smallest investigated plankton fractions ([6-60 µm] and 579 

[60-200 µm]. Metal levels decreased considerably in intermediate plankton sizes and, finally, in fish 580 

(with the exception of Zn); (ii) Hg, which also displayed high concentrations in the smallest plankton 581 

fractions, far lower levels in intermediate fractions and enhanced concentrations in fish; and (iii) Cd, 582 

which showed higher bioaccumulation in intermediate zooplankton fractions versus both the smallest 583 

phytoplankton fractions and fish. These findings are globally consistent with studies previously 584 

conducted in other areas, which have reported general trends of lower metal concentrations in larger 585 

plankton (e.g. Ho et al., 2007), and/or in phyto- versus zooplankton (e.g. Rossi and Jamet, 2008), 586 

probably corresponding to small versus large plankton fractions according to the composition of our 587 

size fractions as described by Espinasse et al. (2014b) and Strady et al. (2015a). Only Hg has been 588 

documented as biomagnifying in upper trophic levels such as small planktivorous pelagic fishes 589 

(e.g. Cossa et al., 2012; Nfon et al., 2009). However, as fish live far longer than planktonic organisms, 590 



they are exposed to contaminants over a longer period: this may also explain the peculiar trend found 591 

for Hg and, to a lesser extent, Zn. Indeed, as previously stated, Hg is notoriously poorly-excreted by 592 

organisms over time versus other trace metals (Maulvault et al., 2016; Wang and Wong, 2003). 593 

Finally, the analysis of different fish tissues revealed that metal concentrations in whole organisms 594 

and, to a lesser extent, liver, reflect potential differences between fish species more accurately than 595 

muscle tissue. 596 

4.6. Future work and prospects 597 

First and foremost, further studies on the topic of trace metal bioaccumulation and trophic transfer in 598 

planktonic compartments and pelagic food webs in general would greatly enhanced by a better 599 

biological-chemical coupling of the various parameters analysed on each sample. Where possible, this 600 

should include: (i) a thorough identification of the taxonomic composition of each plankton size 601 

fraction analysed for contaminants and (ii) the systematic analysis of indirect tracers of autotrophic 602 

and heterotrophic components of these fractions, together with their average trophic level 603 

(e.g. analysis of stable carbon and nitrogen isotopes, fatty acid profiles). This would improve our 604 

interpretation of concentrations determined in plankton fractions; (iii) assessment of metal fractions 605 

adsorbed/absorbed onto/into plankton (i.e. using chelating agents) to improve our understanding of 606 

metal fractions that are actuall  “b     umul  ed”     l  k   ; iv) assessment of insoluble versus 607 

soluble metal fractions in plankton, or subcellular compartmentalization, to better assess which metal 608 

fractions are actually available to upper trophic levels. Regarding fish, further studies on this topic 609 

would also be largely improved by an analysis of proximate composition and biological/trophic 610 

parameters using the same samples studied for contaminants. Moreover, our analyses of the various 611 

body parts showed that whole individuals more accurately reflect differences in "global” me  l 612 

contamination among species within a food web. In terms of larger species, which are difficult to 613 

analyze whole, our results suggest liver as an alternative tissue for Ni, Cu, Cd, Hg and Pb analysis 614 

and/or muscle for Ni, Zn, Hg and Pb analysis.  615 

More broadly, future studies on this topic would be improved by (i) fine-tuning research on the 616 

smallest plankton size, i.e. <60 µm; (ii) analysing the physical-chemical form of metals, which 617 

determines their bioavailability, transfer and bioaccumulation in organisms and food webs 618 

(e.g. methylated forms for Hg); (iii) comparing eco-regions with different trophic functioning, 619 

e.g. oligotrophic vs. mesotrophic areas, or areas subject to different anthropogenic pressures. This 620 

would enable a better consolidation of the processes we observed in terms of contaminant 621 

bioaccumulation in plankton and transfer to upper trophic levels. 622 
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Table 1: Mean concentrations ± standard deviation (in ng L
-1

) of dissolved trace metals in seawater from the Gulf of Lions, in spring 2010 (N = 27) and winter 2011 

(N = 28), with the range of values indicated into brackets. CV = Coefficient of variation (in %). 
        

 Co Ni Cu Zn Cd Hg Pb 
        

        

Spring 2010 

13 ± 5 

(7-30) 

CV = 41 

236 ± 32 

(205-374) 

CV = 13 

203 ± 72 

(137-488) 

CV = 36 

256 ± 160 

(144-894) 

CV = 63 

11 ± 2 

(9-18) 

CV = 19 

0.65 ± 0.32 

(0.41-1.79) 

CV = 50 

29 ± 9 

(21-60) 

CV = 32 
        

        

Winter 2011 

9 ± 2 

(7-13) 

CV = 16 

231 ± 14 

(205-253) 

CV = 6 

172 ± 37 

(126-323) 

CV = 21 

202 ± 40 

(140-297) 

CV = 20 

13 ± 2 

(10-16) 

CV = 14 

— 

— 

— 

29 ± 11 

(20-75) 

CV = 39 
        

 

 

Table 2: Results of the Spearman correlation coefficient (r) tests and associated probability (p-value) between concentrations of dissolved elements in seawater and salinity 

in the Gulf of Lions (N = 27 for each metal in spring 2010; N = 28 in winter 2011). Significant correlations are in bold. 
         

  Co Ni Cu Zn Cd Hg Pb 
         

         

Spring 2010 

r -0.859 -0.816 -0.754 -0.549 -0.372 0.205 0.232 

r2 0.738 0.666 0.569 0.301 0.138 0.042 0.054 

p-value <0.001 <0.001 <0.001 0.003 0.056 0.325 0.245 
         

         

Winter 2011 

r 

r2 

p-value 

-0.577 

0.333 

0.001 

-0.593 

0.352 

<0.001 

-0.289 

0.084 

0.136 

-0.301 

0.091 

0.120 

0.488 

0.238 

0.008 

— 

— 

— 

0.651 

0.424 

<0.001 
         

 

 

Table 3: Results of the Student t-tests (t) or of the Mann-Whitney-Wilcoxon tests (W) and associated probability (p-values) for the statistical comparison of dissolved trace 

metal concentrations between East and West parts in the Gulf of Lions (N = 21 in spring 2010; N = 20 in winter 2011). Only the data corresponding to the depths 10-40 m 

were considered here (see section 2.5). E = East; W = West. Significant differences are in bold. 
         

  Co Ni Cu Zn Cd Hg Pb 
         

         

Spring 2010 

t or W 

p-value 

 

(W) 4 

 <0.001 

E < W  

(t) -5.5  

<0.001 

E < W 

(W) 19 

 0.012 

E < W 

(W) 32 

0.129 

E = W 

(t) -3.7 

0.002 

E < W 

(W) 69.5 

0.137 

E = W 

(W) 87 

0.018 

E > W 
         

         

Winter 2011 

t or W 

p-value 

(W) 17 

0.016 

E < W 

(t) -5.8 

<0.001 

E < W 

(W) 27 

0.115 

E = W 

(t) -0.9 

0.374 

E = W 

(t) 1.9 

0.075 

E = W  

— 

— 

— 

(W) 74 

0.047 

E > W 
         

 



Table 4: Trace metal concentrations (in mg kg
-1

 dry mass) determined in biological compartments (size-classed plankton and fish), reported per element type (essential vs. 

non-essential), per season (spring (plankton) or summer (fish) 2010 vs. winter 2011) and per sampling zone (East vs. West). Values are mean ± standard deviation (SD). 

N = number of stations (for size-classed plankton) or number of pools of individuals (for fish), for which total metal concentrations could be determined within each area 

and at each season. Nd = Not determined. 

  Essential elements  Non-essential elements 

  Co Ni Cu Zn  Ag Cd Hg Pb 

 N Mean ± SD Mean ± SD Mean ± SD Mean ± SD  Mean ± SD Mean ± SD Mean ± SD Mean ± SD 
           

Spring or Summer 2010 - East           

6-60 µm 4 6.7 ± 2.8 45.4 ± 4.2 58.8 ± 11.1 293 ± 72  0.56 ± 0.37 0.37 ± 0.16 0.570 ± 0.513 44.0 ± 15.1 

60-200 µm 4 4.3 ± 3.0 22.2 ± 8.9 30.0 ± 11.6 142 ± 30  0.43 ± 0.36 0.61 ± 0.18 0.365 ± 0.535 38.9 ± 14.3 

200-500 µm 3 0.22 ± 0.06 1.9 ± 0.5 7.0 ± 0.5 154 ± 14  0.14 ± 0.03 0.89 ± 0.08 0.037 ± 0.017 0.93 ± 0.09 

500-1000 µm 3 0.24 ± 0.05 2.1 ± 0.5 8.1 ± 2.2 172 ± 18  0.16 ± 0.04 0.99 ± 0.01 0.042 ± 0.026 0.96 ± 0.46 
1000-2000 µm 3 0.30 ± 0.07 3.4 ± 1.7 8.7 ± 2.5 186 ± 55  0.19 ± 0.05 1.0 ± 0.1 0.043 ± 0.023 1.3 ± 0.5 

> 2000 µm 3 0.34 ± 0.19 1.8 ± 0.7 4.6 ± 2.2 63 ± 41  0.10 ± 0.04 0.36 ± 0.18 0.024 ± 0.019 1.3 ± 0.6 

Sardine (Wh*) 8 Nd 0.52 ± 0.17 4.8 ± 0.7 85 ± 6  0.02 ± 0.00 0.06 ± 0.01 0.130 ± 0.036 0.21 ± 0.04 
Anchovy (Wh*) 8 Nd 0.77 ± 0.11 5.9 ± 0.6 116 ± 17  0.03 ± 0.01 0.12 ± 0.03 0.275 ± 0.039 0.14 ± 0.04 

Spring or Summer 2010 - West           
6-60 µm 4 4.7 ± 1.1 65.6 ± 40.5 41.9 ± 31.9 439 ± 115  0.74 ± 0.74 0.38 ± 0.15 0.049 ± 0.039 72.4 ± 90.9 

60-200 µm 4 3.5 ± 1.8 17.2 ± 6.8 20.3 ± 16.0 76 ± 54  0.11 ± 0.04 0.14 ± 0.04 0.031 ± 0.021 17.4 ± 5.9 

200-500 µm 4 0.53 ± 0.15 3.0 ± 0.6 7.2 ± 1.9 114 ± 43  0.13 ± 0.04 0.58 ± 0.14 0.013 ± 0.009 2.4 ± 0.6 
500-1000 µm 3 0.50 ± 0.25 3.0 ± 1.1 7.2 ± 0.7 138 ± 9  0.14 ± 0.02 0.49 ± 0.06 0.014 ± 0.007 2.8 ± 2.2 

1000-2000 µm 4 0.54 ± 0.28 2.8 ± 1.1 6.3 ± 1.2 102 ± 20  0.11 ± 0.03 0.36 ± 0.10 0.015 ± 0.007 2.3 ± 1.4 

> 2000 µm 4 0.36 ± 0.23 1.8 ± 0.9 3.3 ± 1.9 41 ± 33  0.06 ± 0.03 0.16 ± 0.13 0.008 ± 0.008 1.3 ± 0.8 
Sardine (Wh*) 16 Nd 0.54 ± 0.11 5.1 ± 0.8 90 ± 12  0.02 ± 0.01 0.06 ± 0.01 0.141 ± 0.038 0.23 ± 0.07 

Anchovy (Wh*) 11 Nd 0.65 ± 0.15 5.8 ± 0.7 123 ± 11  0.03 ± 0.01 0.11 ± 0.02 0.236 ± 0.054 0.13 ± 0.02 
           
           

Winter 2011 - East           

6-60 µm 2 8.6 ± 0.4 44.0 ± 6.5 35.2 ± 13.0 158 ± 0  0.26 ± 0.07 0.14 ± 0.04 1.318 ± 1.459 53.2 ± 11.5 

60-200 µm 2 1.8 ± 0.8 38.1 ± 29.9 27.9 ± 6.2 305 ± 92  0.20 ± 0.04 1.0 ± 0.3 0.264 ± 0.283 33.6 ± 14.2 

200-500 µm 3 0.43 ± 0.14 4.4 ± 0.8 25.0 ± 16.4 198 ± 45  0.15 ± 0.02 1.2 ± 0.1 0.068 ± 0.007 9.2 ± 7.8 

500-1000 µm 3 0.62 ± 0.49 5.9 ± 2.8 13.6 ± 2.3 218 ± 89  0.17 ± 0.05 0.92 ± 0.18 0.067 ± 0.011 22.5 ± 31.2 

1000-2000 µm 2 0.39 ± 0.04 4.2 ± 1.3 18.6 ± 7.0 186 ± 60  0.16 ± 0.08 0.77 ± 0.02 0.063 ± 0.015 8.0 ± 3.1 

> 2000 µm 1 0.95 6.9 9.1 137  0.14 0.78 0.042 11.0 

Sardine (Wh*) 2 Nd 0.66 ± 0.10 4.8 ± 0.7 131 ± 5  0.02 ± 0.00 0.07 ± 0.01 0.290 ± 0.054 0.46 ± 0.0 

Anchovy (Wh*) 1 Nd 0.66 6.3 131  0.05 0.11 0.371 0.17 

Winter 2011 - West           
6-60 µm 3 7.5 ± 1.0 66.8 ± 18.7 42.8 ± 19.5 200 ± 40  0.31 ± 0.04 0.28 ± 0.12 0.115 ± 0.025 74.4 ± 45.1 

60-200 µm 3 2.3 ± 0.5 27.2 ± 14.9 16.6 ± 3.1 126 ± 7  0.15 ± 0.02 0.65 ± 0.26 0.046 ± 0.011 13.6 ± 5.2 

200-500 µm 3 0.28 ± 0.05 2.4 ± 0.7 10.8 ± 1.0 125 ± 8  0.13 ± 0.03 1.0 ± 0.1 0.040 ± 0.005 0.95 ± 0.30 
500-1000 µm 3 0.30 ± 0.10 2.5 ± 0.3 9.7 ± 0.3 129 ± 10  0.14 ± 0.02 0.82 ± 0.14 0.038 ± 0.003 1.5 ± 1.1 

1000-2000 µm 2 0.37 ± 0.03 4.0 ± 1.1 12.8 ± 1.4 122 ± 4  0.17 ± 0.01 0.61 ± 0.14 0.040 ± 0.003 2.5 ± 0.6 

> 2000 µm 3 1.1 ± 0.4 5.5 ± 3.8 16.3 ± 6.5 107 ± 71  0.11 ± 0.06 0.43 ± 0.29 0.031 ± 0.021 8.6 ± 5.4 
Sardine (Wh*) 1 Nd 0.84 6.3 121  0.02 0.06 0.335 0.62 

Anchovy (Wh*) 3 Nd 0.64 ± 0.07 5.7 ± 0.4 134 ± 16  0.03 ± 0.01 0.10 ± 0.01 0.379 ± 0.066 0.13 ± 0.03 

*Wh = whole individuals (reconstructed data). 

  



Table 5: Results of the statistical tests for the differences between zones for the biological compartments: [6-60 µm], [60-200 µm], sardine and anchovy (whole 

individuals), collected in spring (plankton) or summer 2010 (fish). This corresponded to season(s) and biological compartments with a minimum number of samples (n  4 

per zone) for testing the spatial differences (see Table 4). Results are reported per element type (essential vs. non-essential) and per biological compartment. Significant 

differences are in bold and the results and p-values of the statistical tests performed (Student t-tests (t) or Mann-Whitney-Wilcoxon (W) tests) are indicated (with 

* p <0.05; ** p <0.01; *** p <0.001). 

Biological 

compartment  
Differences between zones 

 Biological 

compartment 
Differences between zones 

Essential elements  Non-essential elements 

Co  Ag 

6-60 µm t = 1.4; p = 0.224; East = West  6-60 µm t = -0.4; p = 0.677; East = West 

60-200 µm t = 0.4; p = 0.670; East = West  60-200 µm t = 1.8; p = 0.127; East = West 

Sardine (Wh*) —  Sardine (Wh*) W = 61; p = 0.840; East = West  

Anchovy (Wh*) —  Anchovy (Wh*) W = 58; p = 0.229; East = West  

Ni  Cd 

6-60 µm t = -1.0; p = 0.359; East = West  6-60 µm W = 6; p = 0.663; East = West 

60-200 µm t = 0.9; p = 0.402; East = West  60-200 µm t = 5.2; p = 0.002**; East > West 

Sardine (Wh*) W = 45.5; p = 0.269; East = West  Sardine (Wh*) W = 62.5; p = 0.949; East = West 
Anchovy (Wh*) t = 1.9; p = 0.077; East = West   Anchovy (Wh*) W = 52; p = 0.518; East = West 

Cu  Hg 

6-60 µm t = 1.0; p = 0.356; East = West  6-60 µm t = 2.0; p = 0.090; East = West 

60-200 µm t = 1.0; p = 0.367; East = West  60-200 µm W = 15.5; p = 0.042*; East > West 

Sardine (Wh*) W = 49; p = 0.375; East = West   Sardine (Wh*) W = 46.5; p = 0.294; East = West 

Anchovy (Wh*) t = 0.2; p = 0.868; East = West   Anchovy (Wh*) t = 1.8; p = 0.093; East = West 

Zn  Pb 

6-60 µm t = -2.2; p = 0.074; East = West  6-60 µm W = 10; p = 0.686; East = West 
60-200 µm W = 13; p = 0.200; East = West   60-200 µm t = 2.8; p = 0.032*; East > West 

Sardine (Wh*) t = -1.2; p = 0.250; East = West   Sardine (Wh*) W = 50.5; p = 0.424; East = West 

Anchovy (Wh*) t = -1.2; p = 0.262; East = West   Anchovy (Wh*) t = 0.6; p = 0.564; East = West 

*Wh = whole individuals (reconstructed data). 



Table 6: Trace metal concentrations (in mg kg
-1

 dry mass) determined in the different tissues of fish collected in summer 2010, reported per element type (essential vs. 

non-essential) and per fish species (sardine vs. anchovy). Values are mean ± standard deviation (SD), and N = number of pools of individuals considered for organotropism 

(i.e. metal concentrations in the different tissues). For each tissue, the results of the statistical tests for gender differences (females (F) vs. males (M)) are also given. To test 

gender differences, only pools of individuals whose sex could be determined were considered (i.e. F vs. M; no consideration of pools of sexually undetermined (U) 

individuals). Also, as no spatial differences were evidenced for fish during the summer season (see Table 5), individuals from the different zones were combined. 

Significant differences are in bold, and only the p-values of the statistical tests performed (Student t-test or Mann-Whitney-Wilcoxon test) are indicated (with * p <0.05; ** 

p <0.01; *** p <0.001). 

Essential elements 

 Ni  Cu  Zn    

 Mean ± SD 
Differences 

between sexes 
 Mean ± SD 

Differences 

between sexes 
 Mean ± SD 

Differences 

between sexes 
   

Sardine (N= 24 / F: n= 9, M: n= 7; U: n= 8)             
             

Gonads (F)  2.9 ± 4.3 —  3.6 ± 1.3 —  481 ± 149 —    

Liver  0.41 ± 0.29 F = M (p=0.077)  9.7 ± 3.2 F = M (p=0.314)  115 ± 19 F = M (p=0.935)    

Muscle  0.09 ± 0.02 F = M (p=0.322)  1.9 ± 0.3 F = M (p=0.623)  48 ± 12 F = M (p=0.535)    

Remaining tissue  0.56 ± 0.14 F = M (p=0.560)  5.2 ± 0.9 F = M (p=0.841)  91 ± 11 F = M (p=0.470)    

Whole*  0.53 ± 0.13 F = M (p=0.686)  5.0 ± 0.8 F = M (p=0.791)  88 ± 11 F = M (p=0.620)    
             

Anchovy (N= 19 / F: n= 9, M: n= 9; U: n= 1)             
             

Gonads (F)  0.71 ± 0.32 —  4.3 ± 0.4 —  168 ± 18 —    

Liver  0.64 ± 0.29 F = M (p=0.077)  11.8 ± 2.1 F < M (p=0.012*)  127 ± 23 F < M (p=0.001**)    

Muscle  0.12 ± 0.04 F = M (p=0.770)  2.1 ± 0.5 F = M (p=0.508)  46 ± 13 F = M (p=0.114)    

Remaining tissue  0.77 ± 0.17 F = M (p=0.246)  6.2 ± 0.7 F = M (p=0.145)  129 ± 15 F = M (p=0.367)    

Whole*  0.70 ± 0.15 F = M (p=0.528)  5.8 ± 0.6 F < M (p=0.035*)  120 ± 14 F = M (p=0.052)    

Non-essential elements 

 Ag  Cd  Hg  Pb 

 Mean ± SD 
Differences 

between sexes 
 Mean ± SD 

Differences 

between sexes 
 Mean ± SD 

Differences 

between sexes 
 Mean ± SD 

Differences 

between sexes 

Sardine (N= 24 / F: n= 9, M: n= 7; U: n= 8)             
             

Gonads (F)  0.03 ± 0.01 —  0.12 ± 0.04 —  0.104 ± 0.040 —  0.17 ± 0.20 — 
Liver  0.10 ± 0.10 F = M (p=0.260)  0.46 ± 0.15 F = M (p=0.981)  0.270 ± 0.091 F = M (p=0.710)  0.23 ± 0.06 F = M (p=0.884) 

Muscle  0.02 ± 0.01 F = M (p=0.815)  0.004 ± 0.003 F = M (p=0.439)  0.179 ± 0.059 F = M (p=0.481)  0.05 ± 0.01 F = M (p=1.000) 

Remaining tissue  0.02 ± 0.01 F < M (p=0.038*)  0.06 ± 0.01 F = M (p=0.817)  0.134 ± 0.035 F = M (p=0.676)  0.24 ± 0.07 F = M (p=0.593) 

Whole*  0.02 ± 0.01 F = M (p=0.069)  0.06 ± 0.01 F = M (p=0.753)  0.138 ± 0.037 F = M (p=0.690)  0.23 ± 0.07 F = M (p=0.710) 
             

Anchovy (N= 19 / F: n= 9, M: n= 9; U: n= 1)             
             

Gonads (F)  0.08 ± 0.02 —  0.17 ± 0.04 —  0.102 ± 0.019 —  0.04 ± 0.01 — 
Liver  0.10 ± 0.05 F < M (p=0.004**)  0.91 ± 0.25 F < M (p=0.017*)  0.704 ± 0.197 F < M (p=0.012*)  0.15 ± 0.06 F < M (p=0.008**) 

Muscle  0.01 ± 0.01 F = M (p=0.458)  0.01 ± 0.00 F = M (p=0.514)  0.268 ± 0.067 F = M (p=0.863)  0.04 ± 0.02 F = M (p=0.513) 

Remaining tissue  0.03 ± 0.01 F = M (p=0.773)  0.12 ± 0.03 F = M (p=0.686)  0.248 ± 0.052 F = M (p=0.934)  0.15 ± 0.04 F = M (p=0.348) 

Whole*  0.03 ± 0.01 F = M (p=0.362)  0.12 ± 0.02 F = M (p=0.780)  0.252 ± 0.051 F = M (p=0.727)  0.14 ± 0.03 F = M (p=0.660) 

*Whole = whole individuals (reconstructed data). 

  



Table 7: Results of the statistical tests for the differences between species for the fish collected in summer 2010. The results are reported per element type (essential vs. 

non-essential) and per fish tissue (except gonads, collected from females only). Significant differences are in bold and the results and p-values of the statistical tests 

performed (Student t-tests (t) or Mann-Whitney-Wilcoxon (W) tests) are indicated (with * p <0.05; ** p <0.01; *** p <0.001). 

Tissue/organ Differences between species 
 

Tissue/organ Differences between species 

Essential elements  Non-essential elements 

Ni  Ag 

Liver W = 103; p = 0.002**; S < A  Liver W = 201; p = 0.514; S = A 
Muscle t = -2.6; p = 0.014*; S < A  Muscle W = 255.5; p = 0.453; S = A 

Remaining tissue t = -4.4; p < 0.001***; S < A  Remaining tissue W = 50.5; p < 0.001***; S < A 

Whole* t = -3.8; p < 0.001***; S < A  Whole* W = 71; p < 0.001***; S < A 

Cu  Cd 

Liver W = 105.5; p = 0.003**; S < A  Liver W = 20; p < 0.001***; S < A 

Muscle W = 148.5; p = 0.053; S = A  Muscle W = 168; p = 0.094; S = A 

Remaining tissue t = -4.0; p < 0.001***; S < A  Remaining tissue W = 3; p < 0.001***; S < A 
Whole* t = -3.7; p < 0.001***; S < A  Whole* W = 1; p < 0.001***; S < A 

Zn  Hg 

Liver t = -1.9; p = 0.066; S = A  Liver t = -9.6; p < 0.001***; S < A 

Muscle W = 259.5; p = 0.448; S = A  Muscle t = -4.7; p < 0.001***; S < A 
Remaining tissue W = 13; p < 0.001***; S < A  Remaining tissue t = -8.3; p < 0.001***; S < A 

Whole* W = 21; p < 0.001***; S < A  Whole* t = -8.6; p < 0.001***; S < A 

  Pb 

   Liver W = 375; p < 0.001***; S > A 

   Muscle W = 313.5; p = 0.032*; S > A 
   Remaining tissue W = 420; p < 0.001***; S > A 

   Whole* W = 430; p < 0.001***; S > A 

*Whole = whole individuals (reconstructed data). 

  



Figure captions 

 

Fig. 1: Location of sampling sites in the Gulf of Lions (northwestern Mediterranean Sea). Black squares = seawater 

and plankton sampling stations; dotted circles = pelagic fish sampling areas; dashed line = separation between the 

eastern and western areas (East, West) considered in this study. 

 

Fig. 2: Vertical profiles of seawater salinity determined at each station sampled in spring 2010 and winter 2011. 

Data are expressed in practical salinity unit (psu). The depth range of plankton samples (i.e. 10-15 m depth) is 

indicated.  E = East; W = West. 

 

Fig. 3a: Vertical profiles of (dissolved) seawater concentrations (in ng. L
-1

) of Co, Ni, Cu and Zn (i.e. essential 

metals) determined at each station sampled in spring 2010 (left panel) and winter 2011 (right panel). The depth 

range of plankton samples (i.e. 10-15 m depth) is indicated. E = East; W = West.  

 

Fig. 4: Vertical profiles of (dissolved) seawater concentrations (in ng. L
-1

) of Hg, Cd and Pb (i.e. non-essential 

metals) determined at each station sampled in spring 2010 (left panel) and winter 2011 (right panel). The depth 

range of plankton samples (i.e. 10-15 m depth) is indicated. E = East stations; W = West. 

 

Fig. 5: Boxplots of concentrations (in mg kg
-1

 dry mass) of Co, Ni, Cu and Zn (i.e. essential metals) determined in 

the various biological compartments, reported per element and per season (spring (plankton) or summer (fish) 2010 

(blue boxes) vs. winter 2011 (red boxes)). Stations are combined. Boxplots for fish are enlarged in the upper right 

corner. The box length represents the interquartile, the bar length represents the range and the horizontal lines in 

bold are median values. 

 

Fig. 6: Boxplots of concentrations (in mg kg
-1

 dry mass) of Ag, Cd, Hg and Pb (i.e. non-essential metals) 

determined in the various biological compartments, reported per element and per season (spring (plankton) or 

summer (fish) 2010 (blue boxes) vs. winter 2011 (red boxes)). Stations are combined. Boxplots for fish are 

enlarged in the upper right corner. The box length represents the interquartile, the bar length represents the range 

and the horizontal lines in bold are median values. 

 

Fig. 7: Histograms of trace metal concentrations (in mg kg
-1

 dry mass) determined in different tissues 

(i.e. organotropism) of fish collected in summer 2010, reported per element (essential (left panel) vs. non-essential 

elements (right panel)) and per fish species (sardine vs. anchovy). Values are mean ± SD per tissue. N = 24 and 

N = 19 for each sardine and anchovy tissue type, respectively (except gonads, collected from females only, N = 9 

for each species). The results of statistical tests to ascertain concentration variations among tissue types are also 

indicated (with numbers for sardines, and letters for anchovies). An identical number or letter indicates that tissue 

concentrations were not significantly different within a species (i.e. results of the post-hoc multiple comparison test 

with Holm adjustment method after a Kruskal-Wallis test, at  = 0.05). F = Females; RT = Remaining Tissue. 

 

Fig. 8: Plots of mean bioaccumulation factors (BAFs) calculated per element type (essential vs. non-essential), 

reported per season (spring (plankton) or summer (fish) 2010 vs. winter 2011) and per biological compartment. 

Concentrations used for calculations were mg L
-1

 for seawater and mg kg
-1

 dry mass for biological compartments. 

Top panel = BAF values *10
3
; Bottom panel = log-transformed BAF values. For exact values see Table S4 

(Supplemental Material). S = Sardine; A = Anchovy. 
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Supplemental Material 

Table S1: Re ul    b    ed      e   fied  e e e  e m  e   l   CR    u ed in trace metal analyses. Values are means ± standard deviation (SD), in ng L
-1

 for 

seawater and mg kg
-1

 dry mass for biological compartments. The limits of quantification (LOQ, in italics) and the recovery rate (in %, in bold) are also 

  d    ed  T e   mb l “—”    e    w e    e eleme   w       de e m  ed     qu      ed      e   m les. Nc = CRM not certified for the element. 

  Essential elements  Non-essential elements 

  Co Ni Cu Zn  Ag Cd Hg Pb 

Seawater           
           

LOQ (ng L-1):  0.2 0.001 0.01 0.01  — 0.1 0.075 0.4 
           

ORMS-4 (lake water, National Research Council Canada/NRCC) Measured value — — — —  — — 22.68 ± 0.04 — 

 Certified value — — — —  — — 22.0 ± 1.6 — 

 RR (%) — — — —  — — 103 — 
           

CASS-5 (seawater, NRCC) Measured value 83.1 ± 2.0 0.304 ± 0.005 0.36 ± 0.01 0.67 ± 0.03  — 20.9 ± 1.4 — 9.9 ± 0.9 

 Certified value 93 0.32 ± 0.02 0.37 ± 0.03 0.70 ± 0.07  — 21 ± 2 — 11 ± 2 

 RR (%) 89 95 97 96  — 100 — 90 
           

Biological compartments           
           

LOQ (mg kg-1 dm):  0.25 0.13 1.25 12.5  0.03 0.03 0.015 0.03 
           

BCR-414 (plankton, JRC-European Commission/EC) Measured value — — — —  — — 0.259 ± 0.001 — 

 Certified value — — — —  — — 0.276 ± 0.018 — 

 RR (%) — — — —  — — 94 — 
           

SRM-2976 (mussel tissue, National Institute of Standards and Technology/NIST) Measured value — — — —  — — 0.058 ± 0.006 — 

 Certified value — — — —  — — 0.061 ± 0.004 — 

 RR (%) — — — —  — — 95 — 
           

IAEA-142 (mussel homogenate, International Atomic Energy Agency) Measured value — — — —  — — 0.127 ± 0.006 — 

 Certified value — — — —  — — 0.126 ± 0.007 — 

 RR (%) — — — —  — — 101 — 
           

BCR-422 (cod muscle, JRC-EC) Measured value — — — —  — — 0.543 ± 0.003 — 

 Certified value — — — —  — — 0.559 ± 0.016 — 

 RR (%) — — — —  — — 97 — 
           

BCR-CRM 278 R (mussel tissue, JRC-EC) Measured value 0.33 ± 0.01 (Nc) 8.98 ± 0.13 79.1 ± 1.7  (Nc) 0.343 ± 0.013 — 1.95 ± 0.04 

 Certified value 0.34* (Nc) 9.45 ± 0.13 83.1 ± 1.7  (Nc) 0.348 ± 0.007 — 2.00 ± 0.04 

 RR (%) 98 (Nc) 95 95  (Nc) 99 — 98 
           

DORM-3 (fish protein, NRCC) Measured value (Nc) 1.30 ± 0.10 14.9 ± 0.4 49.2 ± 0.4  0.03 ± 0.01 0.30 ± 0.01 — 0.34 ± 0.08 

 Certified value (Nc) 1.28 ± 0.24 15.5 ± 0.63 51.3 ± 3.1  0.04* 0.29 ± 0.02 — 0.395 ± 0.050 

 RR (%) (Nc) 101 96 96  70 104 — 86 
           

DOLT-3 (dogfish liver, NRCC) Measured value (Nc) 3.17 ± 0.59 31.7 ± 0.0 89.4 ± 0.9  1.21 ± 0.01 19.0 ± 0.0 — 0.32 ± 0.01 
 Certified value (Nc) 2.72 ± 0.35 31.2 ± 1.0 86.6 ± 2.4  1.20 ± 0.07 19.4 ± 0.6 — 0.319 ± 0.045 

 RR (%) (Nc) 116 102 103  101 98 — 100 

* Indicative value on the certificate.  



Table S2: Detailed dissolved trace metal concentrations (in ng L
-1

) determined in seawater, reported per season (spring 2010 vs. winter 2011), per sampling 

zone (East vs. West), per station and per sampling depth. The salinity is also indicated. Nd = Not determined. 

Spring 2010  Winter 2011 

 
Depth 

(m) 

Salinity 

(psu) 
Co Ni Cu Zn Cd Hg Pb   

Depth 

(m) 

Salinity 

(psu) 
Co Ni Cu Zn Cd Hg Pb 

East           East          

St1 10 38.0 10 225 190 894 11 1.10 60  St10 1 38.0 8 223 175 297 14 (Nd) 37 

 20 38.0 9 222 176 217 9 1.07 52   10 38.0 8 211 162 189 14 (Nd) 33 

 30 38.1 9 216 165 196 9 1.79 40   20 38.0 10 223 323 220 15 (Nd) 75 

 40 38.1 9 222 150 152 9 0.41 23   30 38.0 8 227 172 186 14 (Nd) 38 

 50 38.1 7 204 168 149 10 0.82 21   40 38.0 8 217 163 216 14 (Nd) 37 

 Mean*  9 218 170 322 9 1.04 39   Mean*  8 220 199 222 14 (Nd) 44 
                     

St2 2 20.9 30 374 488 565 9 0.60 29  St2 10 38.0 9 232 158 185 16 (Nd) 31 

 10 37.7 11 222 174 191 9 0.45 27   20 38.0 10 233 160 184 15 (Nd) 35 

 20 37.9 9 213 205 171 9 0.78 31   30 38.0 8 224 157 184 14 (Nd) 35 

 30 38.0 12 218 157 182 10 1.07 36   40 38.0 9 228 158 175 15 (Nd) 40 

 40 38.0 13 225 167 242 10 0.46 34   Mean*  9 229 158 182 15 (Nd) 35 

 Mean*  15 250 238 270 10 0.67 32            
                     

St3 10 37.9 10 225 369 245 10 0.48 26  St3 1 37.6 9 213 158 195 10 (Nd) 25 

 20 38.1 9 218 152 162 10 0.50 25   10 37.9 7 205 126 140 11 (Nd) 21 

 30 37.9 8 221 148 144 10 (Nd) 25   20 37.9 8 227 146 152 10 (Nd) 24 

 40 38.2 7 211 137 172 10 0.51 23   30 37.9 8 217 137 144 11 (Nd) 23 

 50 38.1 8 224 154 167 11 0.49 27   40 37.9 7 216 147 221 11 (Nd) 23 

 Mean*  8 220 192 178 10 0.50 25   Mean*  8 216 143 171 11 (Nd) 23 
                     

West           West          

St4 10 37.7 12 225 166 417 9 0.48 29  St4 1 35.5 10 242 160 237 11 (Nd) 21 

 20 37.9 14 237 179 191 10 0.42 24   10 37.6 9 240 163 167 11 (Nd) 21 

 30 37.9 13 223 195 211 10 0.46 23   20 37.7 9 239 161 168 11 (Nd) 23 

 Mean*  13 228 180 273 10 0.46 25   30 37.8 9 228 156 176 11 (Nd) 23 

            Mean*  9 237 160 187 11 (Nd) 22 
                     

St5 8 37.3 14 250 225 228 18 (Nd) 26  St6 1 37.6 9 220 179 293 12 (Nd) 20 

 15 37.3 14 249 239 219 13 0.76 23   7 37.6 10 245 177 216 12 (Nd) 22 

 25 37.3 14 252 216 448 13 0.43 26   15 37.6 9 245 175 202 12 (Nd) 23 

 40 37.7 12 246 217 241 12 0.46 28   25 37.6 9 245 157 202 12 (Nd) 21 

 Mean*  14 249 224 284 14 0.55 26   35 37.6 9 251 163 194 11 (Nd) 24 

            45 37.8 9 223 144 180 14 (Nd) 24 

St5b 5 37.0 15 247 212 287 12 0.48 23   Mean*  9 238 166 215 12 (Nd) 23 

 12 37.1 14 238 197 172 11 0.71 22            

 25 37.0 14 244 203 204 12 0.53 22            

 Mean*  14 243 204 221 11 0.58 22            

                     



St7 9 37.5 21 265 214 241 13 0.46 23  St7 1 37.6 12 251 217 290 13 (Nd) 23 

 15 37.7 21 264 207 209 12 0.42 22   7 37.6 12 249 201 203 12 (Nd) 25 

 Mean*  21 264 210 225 12 0.44 22   15 37.5 13 253 211 226 13 (Nd) 25 

            20 37.6 12 252 205 213 13 (Nd) 24 

            Mean*  12 251 208 233 13 (Nd) 24 
                     

* Data used for the calculations of mean BAFs including dissolved metal concentrations measured throughout the sampled water column (Fig. 6, Tables S4 

and S5). 

 Data used for the calculations of mean BAFs including dissolved concentrations measured at 10-15 m depth only (i.e. plankton sampling depth; results not 

shown).  

  



Table S3: Detailed trace metal concentrations (in mg kg
-1

 dry mass) determined in size-classed plankton, reported per season (spring 2010 vs. winter 2011), 

per sampling zone (East vs. West) and per station. Ns/d = Not sampled/not determined. 

 Spring 2010   Winter 2011 

 
Size class 

(µm) 
Co Ni Cu Zn Ag Cd Hg Pb   

Size class 

(µm) 
Co Ni Cu Zn Ag Cd Hg Pb 

East           East          

St1 6-60 3.4 45.6 73.3 256 1.09 0.60 1.248 65.5  St10 6-60 8.9 48.6 44.4 158 0.30 0.12 2.350 61.4 

 60-200 2.0 13.9 45.4 142 0.96 0.60 1.165 49.3   60-200 2.4 17.0 23.6 240 0.17 0.78 0.464 43.7 

 200-500 0.15 1.3 7.3 142 0.18 0.82 0.056 0.88   200-500 0.28 3.6 43.9 167 0.12 1.2 0.074 5.2 

 500-1000 0.21 1.8 10.6 192 0.20 0.99 0.072 1.5   500-1000 0.29 4.5 11.9 180 0.12 1.1 0.071 5.5 

 1000-2000 0.28 5.3 11.6 249 0.25 1.2 0.069 1.9   1000-2000 0.36 5.1 23.5 229 0.10 0.79 0.073 10. 2 

 > 2000 0.24 1.6 6.9 110 0.13 0.57 0.045 1.6   > 2000 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 
                     

St2 6-60 
9.0, 
9.1* 

41.5, 
51.2* 

47.8, 
52.9* 

241, 
277* 

0.31, 
0.32* 

0.26, 
0.28* 

0.156, 
0.188* 

32.0, 
35.0* 

 St2 6-60 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 

 60-200 
5.0, 

8.3 * 

29.0, 

30.9 * 

21.5, 

32.1* 

103, 

148* 

0.16, 

0.35* 

0.42, 

0.59* 

0.060, 

0.151* 

18.2, 

40.9* 
  60-200 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 

 200-500 0.25 2.0 7.3 150 0.14 0.86 0.030 0.87   200-500 0.56 5.1 15.8 249 0.15 1.3 0.068 18.1 

 500-1000 0.21 1.9 6.6 160 0.13 1.0 0.031 0.59   500-1000 1.2 9.1 16.3 320 0.19 0.94 0.076 58.5 

 1000-2000 0.25 2.2 7.3 157 0.17 0.98 0.030 0.91   1000-2000 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 

 > 2000 0.56 2.5 4.4 46 0.11 0.32 0.018 1.7   > 2000 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 
                     

St3 6-60 5.5 43.3 61.3 399 0.52 0.35 0.687 43.6  St3 6-60 8.3 39.4 26.0 158 0.21 0.17 0.286 45.1 

 60-200 2.0 15.1 20.7 177 0.25 0.85 0.083 47.4   60-200 1.3 59.3 32.3 370 0.23 1.2 0.064 23.6 

 200-500 0.27 2.3 6.4 170 0.11 0.98 0.024 1.0   200-500 0.46 4.7 15.2 178 0.16 1.1 0.061 4.1 

 500-1000 0.29 2.6 7.2 162 0.15 0.99 0.024 0.81   500-1000 0.38 4.0 12.7 154 0.22 0.73 0.055 3.5 

 1000-2000 0.38 2.7 7.1 151 0.15 0.94 0.029 1.1   1000-2000 0.42 3.3 13.7 144 0.21 0.75 0.052 5.8 

 > 2000 0.22 1.3 2.5 34 0.06 0.21 0.008 0.61   > 2000 0.95 6.9 9.1 137 0.14 0.78 0.042 11.0 
                     

West           West          

St4 6-60 6.2 34.1 23.2 372 0.21 0.29 0.105 42.0  St4 6-60 8.4 63.7 64.9 241 0.35 0.26 0.144 123 

 60-200 5.7 25.2 43.8 156 0.16 0.19 0.057 25.2   60-200 2.9 27.0 16.2 133 0.17 0.68 0.052 18.5 

 200-500 0.69 3.6 7.3 143 0.11 0.64 0.025 2.2   200-500 0.26 2.0 10.5 134 0.14 1.0 0.046 1.0 

 500-1000 0.68 4.1 7.1 128 0.17 0.53 0.024 2.2   500-1000 0.25 2.3 10.0 132 0.15 0.80 0.041 1.1 

 1000-2000 0.59 2.5 5.0 74 0.08 0.26 0.020 1.5   1000-2000 0.35 4.7 11.8 125 0.16 0.71 0.042 2.1 

 > 2000 0.67 2.6 3.4 39 0.05 0.08 0.019 1.9   > 2000 1.4 7.9 12.6 170 0.16 0.64 0.049 14.3 
                     

St5 6-60 3.7 57.1 42.4 316 0.63 0.31 0.037 25.3  St6 6-60 6.4 86.9 35.4 198 0.27 0.17 0.098 34.6 

 60-200 2.0 10.0 17.1 46 0.11 0.15 0.015 11.8   60-200 1.9 42.2 20.0 127 0.16 0.89 0.052 8.2 

 200-500 0.36 2.2 5.5 75 0.10 0.50 0.007 1.7   200-500 0.24 3.2 10.1 122 0.09 0.91 0.038 0.62 

 500-1000 0.30 2.0 8.2 135 0.14 0.54 0.010 1.3   500-1000 0.23 2.9 9.6 118 0.11 0.69 0.036 0.72 

 1000-2000 0.34 2.1 5.8 101 0.12 0.47 0.008 1.5   1000-2000 0.39 3.2 13.8 119 0.17 0.52 0.038 2.9 

 > 2000 0.11 0.63 1.9 16 0.05 0.13 0.002 0.28   > 2000 0.97 7.5 23.8 121 0.12 0.54 0.037 8.0 
                     

St5b 6-60 4.6 125 86.6 564 1.81 0.61 0.017 208  St7 6-60 7.6 49.9 28.0 161 0.31 0.40 0.103 65.4 

 60-200 2.1 13.5 10.7 47 0.07 0.09 0.014 14.1   60-200 2.2 12.4 13.8 119 0.13 0.37 0.033 14.1 

 200-500 0.47 3.3 6.2 80 0.12 0.43 0.006 2.6   200-500 0.33 1.8 11.9 119 0.15 1.1 0.037 1.2 



 500-1000 0.26 2.1 6.7 137 0.14 0.47 0.010 1.7   500-1000 0.41 2.3 9.6 138 0.15 0.96 0.036 2.8 

 1000-2000 0.31 2.1 6.4 112 0.14 0.42 0.021 1.9   1000-2000 (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) (Ns/d) 

 > 2000 0.37 2.4 6.0 89 0.11 0.35 0.008 2.0   > 2000 0.76 1.1 12.6 30 0.04 0.10 0.008 3.5 
                     

St7 6-60 4.4 46.5 15.5 504 0.31 0.31 0.036 14.6            

 60-200 4.2 20.0 9.7 53 0.09 0.12 0.038 18.6            

 200-500 0.61 2.9 9.9 159 0.18 0.74 0.013 3.1            

 500-1000 0.75 3.7 6.9 150 0.11 0.42 0.010 6.1            

 1000-2000 0.91 4.3 8.0 121 0.09 0.29 0.010 4.4            

 > 2000 0.30 1.6 2.0 20 0.04 0.07 0.002 1.1            
                     

* Exceptionally, two samples were collected and analyzed for this fraction at this station. 



Table S4: Mean bioaccumulation factors (BAFs) calculated per element type (essential vs. non-essential), reported 

per season (spring (plankton) or summer (fish) 2010 vs. winter 2011) and per biological compartment. 

Concentrations used for calculations were in mg L
-1

 for seawater (including dissolved concentrations of all the 

sampled water column), and mg kg
-1

 dry mass for biological compartments (plankton and fish). Nd = Not 

determined. 

BAFs relative 

to dry mass 

Essential elements  Non-essential elements 

Co Ni Cu Zn  Cd Hg Pb 

         

Spring or Summer 2010         

6-60 µm 428 761 232 173 248 653 1 444 604  34 243 511 885 2 129 335 

60-200 µm 292 479 82 453 124 069 430 540  34 118 327 532 1 030 065 

200-500 µm 29 901 10 552 35 195 517 921  64 622 38 071 64 557 

500-1000 µm 28 892 10 911 37 593 600 977  64 151 42 800 73 827 

1000-2000 µm 32 648 12 621 36 062 544 352  59 165 44 219 69 376 

> 2000 µm 26 415 7 537 19 057 199 331  22 456 24 119 48 085 

Sardine (Wh*) (Nd) 2 232 24 748 348 582  5 324 227 948 8 259 

Anchovy (Wh*) (Nd) 2 913 28 766 472 684  10 495 417 278 4 996 
         

Winter 2011         

6-60 µm 842 765 248 766 230 584 909 054  17 824 (Nd) 2 307 768 

60-200 µm 225 671 136 122 122 738 980 543  62 693 (Nd) 755 432 

200-500 µm 37 841 14 651 103 889 801 698  87 353 (Nd) 176 687 

500-1000 µm 48 845 18 175 67 760 861 720  68 785 (Nd) 420 605 

1000-2000 µm 40 434 17 562 91 127 766 240  54 884 (Nd) 183 254 

> 2000 µm 109 873 25 221 84 257 569 031  40 781 (Nd) 322 338 

Sardine (Wh*) (Nd) 3 117 30 693 632 459  5 211 (Nd) 18 040 

Anchovy (Wh*) (Nd) 2 788 33 841 660 097  8 238 (Nd) 4 785 
         

*Wh = whole individuals (reconstructed data). 

 

 

  



Table S5: Spearman rank order correlation coefficients (r) between mean metal BAFs calculated for the pelagic 

food web analyzed in the Gulf of Lions. Significant correlations at p<0.05 are indicated in bold characters. 

        

 Co Ni Cu Zn Cd Hg Pb 

Co —       

Ni 0.986 —      

Cu 0.909 0.926 —     

Zn 0.608 0.621 0.700 —    

Cd -0.406 0.403 0.394 0.318 —   

Hg 0.943 0.310 0.524 0.333 -0.357 —  

Pb 0.972 0.982 0.918 0.579 0.403 0.238 — 
        

 

 

 

 


