M. Galià, L. Montero-de-espinosa, J. C. Ronda, G. Lligadas, and V. Cádiz, Vegetable oil-based thermosetting polymers, European Journal of Lipid Sciences and Technology, vol.112, pp.87-96, 2010.

L. Maisonneuve, T. Lebarbé, E. Grau, and H. Cramail, Structure-properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics, Polymer Chemistry, issue.4, pp.5472-5517, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00915225

S. Dworakowska, D. Bogdal, and A. Prociak, Microwave-Assisted Synthesis of Polyols from Rapeseed Oil and Properties of Flexible Polyurethane Foams, Polymers, vol.4, pp.1462-1477, 2012.

G. Lligadas, J. C. Ronda, M. Galià, and V. Cádiz, Renewable polymeric materials from vegetable oils: A perspective, Mater. Today, vol.16, pp.337-343, 2013.

Y. Xia and R. C. Larock, Vegetable oil-based polymeric materials: Synthesis, properties, and applications, Green Chem, vol.12, pp.1893-1909, 2010.

C. Zhang, T. F. Garrison, S. A. Madbouly, and M. R. Kessler, Prog. Polym. Sci, vol.71, pp.91-143, 2017.

M. A. Meier, J. O. Metzger, and U. S. Schubert, Chem. Soc. Rev, p.1788, 2007.

V. Sharma and P. P. Kundu, Addition polymers from natural oils-A review, Prog. Polym. Sci, vol.31, pp.983-1008, 2006.

U. Biermann, W. Friedt, S. Lang, W. Lühs, G. Machmüller et al., New Syntheses with Oils and Fats as Renewable Raw Materials for the Chemical Industry, Angew. Chemie Int, vol.39, pp.2206-2224, 2000.

T. Saurabh, M. Patnaik, S. L. Bhagst, and V. C. Renge, Epoxidation of Vegetable Oils: a Review, Int. J. Adv. Eng. Technol, vol.2, pp.459-501, 2011.

S. M. Danov, O. A. Kazantsev, A. L. Esipovich, A. S. Belousov, A. E. Rogozhin et al., Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: A review and perspective, Catal. Sci. Technol, vol.7, pp.3659-3675, 2017.

M. Desroches, S. Caillol, V. Lapinte, R. Auvergne, and B. Boutevin, Synthesis of biobased polyols by thiol-ene coupling from vegetable oils, Macromolecules, vol.44, pp.2489-2500, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00587652

M. Bähr and R. Mülhaupt, Linseed and soybean oil-based polyurethanes prepared via the non-isocyanate route and catalytic carbon dioxide conversion, Green Chem, p.483, 2012.

J. Robin, V. Lapinte, J. P. Habas, M. Stemmelen, S. Caillol et al., A fully biobased epoxy resin from vegetable oils. From the synthesis of the precursors by thiolene reaction to the study of the final material, J. Polym. Sci. Part A Polym. Chem, vol.49, pp.2434-2444, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00587993

A. Lee and Y. Deng, Green polyurethane from lignin and soybean oil through nonisocyanate reactions, Eur. Polym. J, vol.63, pp.67-73, 2015.

T. Gurunathan and J. S. Chung, Physicochemical properties of amino-silaneterminated vegetable oil-based waterborne polyurethane nanocomposites, ACS Sustain. Chem. Eng, vol.4, pp.4645-4653, 2016.

H. Pelletier, N. Belgacem, and A. Gandini, Acrylated vegetable oils as photocrosslinkable materials, J. Appl. Polym. Sci, vol.99, pp.3218-3221, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00163876

S. Grishchuk and J. Karger-kocsis, Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO), Express Polym. Lett, vol.5, pp.2-11, 2011.

L. Fu, L. Yang, C. Dai, C. Zhao, and L. Ma, Thermal and mechanical properties of acrylated expoxidized-soybean oil-based thermosets, J. Appl. Polym. Sci, vol.117, pp.2220-2225, 2010.

D. Akesson, M. Skrifvars, and P. Walkenstrom, Preparation of thermoset composites from natural fibres and acrylate modified soybean oil resins, J. Appl. Polym. Sci, vol.114, pp.2502-2508, 2009.

M. Black and J. W. Rawlins, Thiol-ene UV-curable coatings using vegetable oil macromonomers, Eur. Polym. J, vol.45, pp.1433-1441, 2009.

B. D. Mather, K. Viswanathan, K. M. Miller, and T. E. Long, Michael addition reactions in macromolecular design for emerging technologies, Prog. Polym. Sci, vol.31, pp.487-531, 2006.

D. P. Nair, M. Podgórski, S. Chatani, T. Gong, W. Xi et al., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used Tool in Materials Chemistry, Chem. Mater, vol.26, pp.724-744, 2014.

S. Chatani, C. Wang, M. Podgórski, and C. N. Bowman, Triple shape memory materials incorporating two distinct polymer networks formed by selective thiol-Michael addition reactions, Macromolecules, vol.47, pp.4949-4954, 2014.

X. Ding, C. Yang, Y. Li, Y. Huang, J. L. Hedrick et al., Antimicrobial and Antifouling Hydrogels Formed In Situ from Polycarbonate and Poly(ethylene glycol) via Michael Addition, Adv. Mater, vol.24, pp.6484-6489, 2012.

Y. Li and X. S. Sun, Synthesis and characterization of acrylic polyols and polymers from soybean oils for pressure-sensitive adhesives, RSC Adv, vol.5, pp.44009-44017, 2015.

G. Francucci, F. Cardona, and N. W. Manthey, Cure kinetics of an acrylated epoxidized hemp oil-based bioresin system, J. Appl. Polym. Sci, vol.128, pp.2030-2037, 2013.

D. Behera and A. K. Banthia, Synthesis, characterization, and kinetics study of thermal decomposition of epoxidized soybean oil acrylate, J. Appl. Polym. Sci, vol.109, pp.2583-2590, 2008.

G. Wuzella, A. R. Mahendran, U. Müller, A. Kandelbauer, and A. Teischinger, Photocrosslinking of an Acrylated Epoxidized Linseed Oil: Kinetics and its Application for Optimized Wood Coatings, J. Polym. Environ, vol.20, pp.1063-1074, 2012.

A. M. Salih, M. Bin-ahmad, N. A. Ibrahim, K. Z. Hjmohd-dahlan, R. Tajau et al., Synthesis of radiation curable palm oil-based epoxy acrylate: NMR and FTIR spectroscopic investigations, Molecules, vol.20, pp.14191-14211, 2015.

L. M. Bonnaillie and R. P. Wool, Thermosetting foam with a high bio-based content from acrylated epoxidized soybean oil and carbon dioxide, J. Appl. Polym. Sci, vol.105, pp.1042-1052, 2007.

C. Wang, L. Ding, M. He, J. Wei, J. Li et al., Facile one-step synthesis of bio-based AESO resins, Eur. J. Lipid Sci. Technol, vol.118, pp.1463-1469, 2016.

S. Kasetaite, S. De-la-flor, A. Serra, and J. Ostrauskaite, Effect of selected thiols on cross-linking of acrylated epoxidized soybean oil and properties of resulting polymers, Polymers (Basel), p.439, 2018.

A. Paramarta and D. C. Webster, The exploration of Michael-addition reaction chemistry to create high performance, ambient cure thermoset coatings based on soybean oil, vol.108, pp.59-67, 2017.

P. J. Flory, Molecular Theory of Rubber Elasticity, Polym. J, vol.17, pp.1-12, 1985.

A. Paramarta and D. C. Webster, Highly Functional Acrylated Biobased Resin System for UV-Curable Coatings, 2013.

J. Lu and R. P. Wool, Novel thermosetting resins for SMC applications from linseed oil. Synthesis, characterization, and properties, J. Appl. Polym. Sci, vol.99, pp.2481-2488, 2006.

D. Wu, Y. Liu, C. He, T. Chung, and S. Goh, Effects of Chemistries of Trifunctional Amines on Mechanisms of Michael Addition Polymerizations with Diacrylates, vol.37, pp.6763-6770, 2004.

K. Sanui and N. Ogata, The Catalytic Effect of Alcohol and Mercaptan on the Michael Reaction of Acrylates, Bull. Chem. Soc. Jpn, vol.40, pp.1727-1727, 1967.