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ABSTRACT: A new and efficient convergent approach toward the synthesis of amphidinolide F is described through the assembly 

of three fragments. The two trans-tetrahydrofurans were built by a diastereoselective C-glycosylation with titanium enolate of 

bulky N-acetyl oxazolidinethiones. The side-chain was inserted by a Liebeskind-Srogl cross coupling reaction. A sulfone condensa-

tion/ desulfonylation sequence, a Stille cross-coupling, and a macrolactonisation were applied to connect the fragments. 

Amphidinolides are part of a large family of macrolides 

containing more than 30 members, all being isolated from 

different strains or species of the dinoflagellate amphidinium.
1
 

Amphidinolides F (1),
2
 C (2),

3
 C2 (3),

4
 and C3

5
 (4) particularly 

drawn our attention due to the presence of two trans-

tetrahydrofurans, 11 to 12 stereogenic centers, and two diene-

frameworks at C9-C11 and at C25-C28, which make these 

molecules unique in their family. These marine natural prod-

ucts are very similar in terms of structure, exhibiting the same 

macrolactone. In consequence, the stereochemical assignment 

of amphidinolide F (1) was originally deduced from its anal-

ogy with amphidinolide C (2). The differences rely only on the 

side chain, amphidinolide F (1) being six carbons shorter. On 

the other hand amphidinolide C (2) contains one more stereo-

genic center at C29, and natural derivatives C2 (3) and C3 (4) 

show differences only at this position, the hydroxyl group 

being acylated for 3 while oxidized for 4 (Figure 1). 

These amphidinolides show significant cytotoxic activities 

against some cancer cell lines. Amphidinolide C (2) is particu-

larly active on murine lymphoma L1210 and human epider-

moid carcinoma KB cells lines (IC50 of 5.8 and 4.6 ng/mL 

respectively),
3
 while a reduced cytotoxicity is observed for 1 

(1.5 and 3.2 µg/mL),
2
 3 (0.8 and 3.0 µg/mL),

4
 4 (7.6 and 10.0 

µg/mL).
5
 Amphidinolides F (1) and C (2) have received a 

great interest from organic chemists, producing numerous 

synthetic approaches
6
  to these macrolides and finally culmi-

nating to two total syntheses of both amphidinolide F (1) and 

C (2).
7,8

 We describe herein our achievement of the total syn-

thesis of amphidinolide F (1). 

From a retrosynthetic point of view, we initially planned to 

construct the THF ring using a C-glycosylation to form the 

C19-C20 bond.
6i,6r

 Unfortunately, we found from model ex-

periments that the diene framework was not compatible with 

the generated oxonium intermediate during this reaction. 

 

Figure 1. Structures of amphidinolide F, C, C2 and C3 

Therefore, we changed this disconnection in order to per-

form the C-glycosylation reaction prior to the diene installa-

tion. Following this idea, we envisioned forging the macrolac-

tone core with a sulfone condensation/desulfonylation se-

quence to connect 5 (C18-C29) to 6 (C10-C17), and a Stille 

cross coupling to attach the sub-unit 7 (C1-C9), followed by a 

macrolactonisation (Scheme 1). Fragments 5, 6 and 7 could be 

synthesized through high diastereoselective reactions from 

chiral synthons easily accessible from the chiral pool or from 

well-known asymmetric reactions (e.g. Sharpless asymmetric 

epoxidation of allylic alcohol).  

The synthesis of C18-C29 sub-unit 5 started from chiral 

lactone 8,
9
 which was protected as a TBDPS (tert-

butyldiphenylsilyl) ether and compound 9 was then subjected 

 



 

Scheme 1. Retrosynthetic analysis of amphidinolide F (1) 

 

to DIBALH reduction/acetylation to lead to activated ketal 

10.
10

 C-glycosylation of ketals derived from 5-substituted THF 

is known to usually be a low selective process due to a compe-

tition between the lowest energy oxonium conformer, leading 

to the cis-THF and the most reactive oxonium conformer, 

leading to the trans-THF.
11

 Nevertheless, the use of the tita-

nium enolate of oxazolidinethione 11 showed a good trans 

selectivity because of steric bulk,
12

 favoring the reaction on the 

most reactive oxonium conformer. Thus, when ketal 10 re-

acted with titanium enolate of oxazolidinethione 11, trans-

THF 12 was isolated after methanolysis of the auxiliary, as 

almost the sole diastereomer (86%, dr ≥ 95:5). As we envi-

sioned introducing directly the corresponding dienic side chain 

using a chemo-selective Liebeskind-Srogl cross coupling,
13

 

construction of a thioester moiety was required. Therefore the 

hydroxyl group was deprotected and oxidized into carboxylic 

acid 13 with in situ generation of ruthenium tetroxide.
14

 Car-

boxylic acid 13 was then transformed into thioester 14, 

through activation into an acyl chloride followed by reaction 

with thiocresol. As we initially carried out the cross coupling 

with the corresponding boronic acid derivative 15a
6r

 in pres-

ence of CuTC (copper thiophene carboxylate) and 

Pd2dba3/P(OMe)3, we observed non-reproducible results (15-

61%) in the formation of dienone 16, due to the instability of 

boronic acid 15a. However ketone 16 was obtained in a 70% 

yield when more stable stannane 15b was used for the cross-

coupling in conjunction with the use of CuDPP (copper di-

phenylphosphinate) and Pd2dba3/P(o-fur)3.
15

 Moreover, we 

also experienced that the synthesis of 15b is shorter and more 

practical than that of 15a (3 steps vs 6). Reduction of dienone 

16 using Luche conditions
16

 at –78 °C gave us the syn product 

17 in a polar Felkin-Anh fashion selectivity (dr ≥ 90:10).
6n

 

Finally, the hydroxyl group was etherified with a fragile TMS 

protecting group, and the ester was converted into aldehyde 5 

by using a selective reduction with DIBALH (Scheme 2).  

In parallel, the synthesis of sub-unit C10-C17 (6) was con-

ducted. The inherent symmetry of the C12-C16 segment could  

 

Scheme 2. Synthesis of the C18-C29 fragment (5).  

 

 

 

be advantageously exploited by using ring-openings of epox-

ides with different nucleophiles. The use of an orthogonally 

protected hydroxyl group at C15 would selectively generate 

the ketone function in a later stage.. Thus, commercial alkyne 

18 was selectively reduced to the corresponding (Z)-olefin 

with Pd/BaSO4-quinoline and a Sharpless asymmetric 

epoxidation was performed using cumyl hydroperoxide to 

obtain epoxy alcohol 19 (er = 93:7) (Scheme 3).
17

 The protec-

tion/activation of the hydroxyl group as tosylate 20 allowed us 

to accomplish the ring-opening of the epoxide exclusively on 

its less hindered side with the help of a trimethylaluminium 

“ate” complex derived from TMS-acetylene in combination 

with BF3•OEt2.
18

 The tosylate was then internally displaced by 

the generation of sodium alkoxide to give terminal epoxide 21. 

A second epoxide ring–opening was carried out with (Z)-

propenyl Grignard in presence of CuI giving (Z)-homo allyl 

alcohol 22. The two new stereogenic centers were installed by 

a VO(acac)2 directed–epoxidation and gave almost exclusively 

a single diastereomer (dr = 43:1).
19

 The protection of the hy-

droxyl as a TBS ether and methanolysis of TMS alkyne pro-

tecting group afforded compound 23. The last epoxide ring 

opening was performed with lithiated methylphenylsulfone in 



 

synergy with BF3•OEt2.
20

 The transformation was quantitative, 

but a mixture of regioisomers, in a separable 71:29 ratio, was 

obtained. Fortunately the lithium anion added preferentially on 

the less hindered face of the epoxide, and after an orthogonal 

protection with TES ether, compound 24 was obtained. Func-

tionalization of the terminal alkyne present in compound 24 

was troublesome. Negishi’s zirconium catalyzed carboalumi-

nation
21

 or stannylcupration followed by iodolysis
22

 did not 

allow us to set up the required functionalities. Thus, a reported 

four-step approach
23

 was successfully applied to our substrate 

giving rise to the accomplishment of the synthesis of fragment 

C10-C17 (6). A palladium mediated regio- and stereo-

selective trimethylsilyl-stannylation of alkyne 24 gave product 

25.
24

 Then iodolysis of the stannane, followed by a substitu-

tion of iodide by dimethylcuprate, afforded compound 26. 

Final iodolysis of TMS with NIS
25

 in MeCN/CH2Cl2 ended the 

sequence towards sub-unit 6 (Scheme 3).   

 

Scheme 3. Synthesis of the C10-C17 fragment (6). 

 

The linkage of subunits 5 and 6 was briefly studied. It was 

found that base, concentration and temperature were important 

parameters for the success of the sulfone condensation. There-

fore, sulfone 6 was best deprotonated at 0 °C
26

 with LDA and 

aldehyde 5 was then added at –78 °C, followed by a slow 

warming to 0 °C delivering a complex mixture of four di-

astereomers. A two-step sequence including 2,6-lutidine buff-

ered Dess-Martin oxidation of C18 alcohol and SmI2 mediated 

desulfonylation at –78 °C, afford compound 27 (Scheme 4, 

boxed). 

The next step was the introduction of the last C1-C9 frag-

ment. Sub-unit C1-C9 was synthesized using a strategy re-

ported by us based on a vinylogous Mukaiyama aldol reaction 

followed by a C-glycosylation with an oxazolidinethione.
6i
 

Early studies indicated that the Stille cross-coupling with 

methyl ester 28 was effective using the copper mediated Lie-

beskind’s protocol
27

 with a 45-55% yield range depending on 

the coupling partners. However, we later experienced some 

difficulties to cleanly saponify the corresponding methyl ester 

of such complex molecules. Thus, we decided to perform the 

Stille coupling between the free acid 7, obtained by reaction of 

28 with TMSOK,
28

 and vinyliodide 27 (Scheme 4). As we 

anticipated proto-demetallation issues between the free acid 

and the in situ generated vinyl copper species, we decided to 

treat first free acid 7 with NaH in DMF followed by addition 

of vinyl iodide 27 and other reagents needed. We were pleased 

to note that the cross-coupling was very effective, albeit that it 

resulted in a partial TMS deprotection. Therefore, treatment of 

the crude reaction mixture with dilute HCl selectively re-

moved TMS ether and afforded, after purification, compound 

29 (72% yield). The macrolactonization took place using 

Yamaguchi reagent,
29

 affording compound 30 as a 3:1 mixture 

of at least two major conformers detectable by NMR.
7,8 

The 

TES group at C15 was selectively cleaved employing 

HF•pyridine in THF/pyridine
30

 giving a complex mixture of 

hydroxyketone and ketals in equilibrium. The probable pres-

ence of conformers makes this intermediate very difficult to 

characterize. Nevertheless, we can establish that the ketal form 

seems predominant due to the absence of the ketone absorp-

tion band (νC=O) at 1715 cm
-1

 in the infrared spectrum. The 

oxidation of hydroxyl at C15 was problematic, and Fürstner’s 

conditions using TPAP (tetraproylammonium perruthenate)
8
 

proved to be the most successful, giving compound 31 in good 

yield. Final deprotection of the three TBS groups was per-

formed using HF•pyridine in THF/pyridine. We noticed that 

Et3N•HF reagent system, which was used in the previous total
 

syntheses,
7,8

 produced significant degradation products in our 

hands (Scheme 4). 

In conclusion, we synthesized amphidinolide F (1) in 23 

steps from the longest linear sequence and 47 total steps, 

which is a close result to Fürstner’s total synthesis (21 steps, 

longest linear sequence; 39 total steps) and more favorable 

towards Carter’s total synthesis (34 steps, longest linear se-

quence; 62 total steps). Characterization of our synthetic sam-

ple 1 was in accordance with previously reported total synthe-

ses and natural product.
31

 Highlights of this synthesis include 

the stereoselective synthesis of both trans-THF rings using C-

glycosylation reactions with the titanium enolate of bulky 

oxazolidinethiones, the exploitation of a inherent symmetry to 

build the C10-C19 fragment through iterative ring epoxide 

openings and a direct and versatile introduction of the dienic 

side chain via a Liebeskind-Srogl cross coupling. 

 

 



 

 

  



 

Scheme 4. Synthesis of amphidinolide F (1).  
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