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Abstract—Simulating complex industrial manipulation tasks 

(e.g., assembly, disassembly and maintenance tasks) under strong 

geometric constraints in a virtual environment, requires the joint 

usage of task and path planning, not only to compute a sequence 

of primitive actions (i.e., a task plan) at task planning level to 

identify the order to manipulate different objects (e.g., assembly 

order), but also to generate and validate motions for each of these 

primitive actions in a virtual environment by computing valid 

collision-free paths for these actions at path planning level. 

Although task and path planning have been respectively welly 

discussed by artificial intelligence and robotic domain, the link 

between them still remains an open issue, in particular because 

path planning for a primitive action often uses purely geometric 

data. This purely geometric path planning suffers from the 

classical failures (i.e., high-possibility of failure, high processing 

time and low path relevance) of automated path planning 

techniques when dealing with complex geometric models. Thus, it 

can possibly lead to high computational time of the joint task and 

path planning process and can probably produce a poor 

implementation of a task plan. Instead of geometric data, 

involving higher abstraction level information related to a task to 

be performed in the path planning of a primitive action could 

lead to a better relevance of simulations. In this work, we propose 

an ontology-based approach to generate a specific path planning 

query for a primitive action, using a well-structured task-

oriented knowledge model. This specific path planning query 

aims at obtaining an increased control on the path planning 

process of the targeted primitive action. 

Keywords—Coupling task and path planning, ontology, task-

oriented knowledge, knowledge reasoning 

I. INTRODUCTION

Nowadays, while industrial products are more and more 
complex and integrated, their development time and cost must 
be reduced, whereas health, environmental and quality 
standards are increasingly demanding. Facing these challenges, 
industry expresses its increasingly strong need to use integrated 
numerical tools all along the stages of the product lifecycle 
management (PLM). In particular, virtual prototypes should 
provide a way to validate, from design stage on, tasks (e.g., 

assembly, disassembly or maintenance) related to the lifecycle 
of a product through simulations. 

In this work, we focus on simulating and validating 
manipulation tasks. Researchers from the robotics community 
studied the simulation of manipulation tasks following two 
approaches. The first approach [1] follows the task planning 
endpoint. It solves a complex manipulation task problem by 
generating a sequence of primitive actions, for example, to 
reach a goal state where a complex product is assembled. The 
second approach [2] follows the path planning endpoint. It 
focuses on generating and validating motions notably for 
manipulated objects possibly under strong geometric 
constraints. Among these two approaches, path planning 
cannot determine the sequence to manipulate different objects 
(e.g., assembly order of a product), whereas task planning can 
resolve the object manipulation sequence problem by 
computing a sequence of primitive actions (i.e., a task plan) for 
the manipulations. Moreover, task planning uses higher 
abstraction level information (e.g., symbolic terms such as On 
(book1, table1)) instead of geometric data, and only path 
planning could allow to geometrically check motion feasibility 
(i.e., to compute a valid collision-free path) for the primitive 
actions in a task plan. Therefore, in order to solve a complex 
manipulation task and to generate valid geometric paths for 
manipulated objects in a virtual environment, it requires 
considering them jointly.  

In such joint approaches [3, 4, 5, 6, 7, 8], a task planner 
searches a feasible sequence of primitive actions to manipulate 
different objects (i.e., a task plan), and a geometric path 
planner is called to check the motion feasibility of these 
actions. Although task and path planning have been 
respectively welly discussed by artificial intelligence and 
robotic domain, the link between them still remains an open 
issue, in particular because path planning for a primitive action 
uses purely geometric data. In a highly geometrically 
constrained environment, this geometric path planning suffers 
from the classical failures of automated path planning 
techniques. Thus, it can possibly lead to high computational 



time of the joint task and path planning process and can 
probably produce a poor implementation of a task plan.  

Instead of purely geometric data, involving higher 
abstraction level information related to a task could produce a 
better relevance of simulations. The work here investigates the 
benefits of using task oriented knowledge in the path planning 
process of a primitive action. The first step aims at generating a 
specific path planning query for a primitive action, using a 
well-structured task-oriented knowledge model. We propose an 
ontology-based strategy to generate a specific path planning 
query for a primitive action, based on the development of 1) an 
ontology-based knowledge model, including a well-structured 
environment representation related to a task, the specification 
of primitive action and the description of path planning query; 
2) an inference mechanism to generate a path planning query
description from a primitive action specification, using SWRL
(Semantic Web Rule Language) rules.

The rest of the paper is organized as follows. Section II 
presents the literature in task planning and path planning. 
Section III gives a use-case used throughout our discussion. 
Section IV illustrates task-oriented knowledge in which we are 
interested. Section V presents in detail the modeling of task-
related information. Using this information, section VI 
generally discusses how to generate a specific path planning 
query for a primitive action. Section VII describes in detail the 
generation process. The conclusion is presented in section VIII. 

II. RELATED WORKS

A. Task planning and Path planning

1) Task planning, as a thoroughly sub-field of artificial
intelligence, has been studied largely since 1960. The classical 
task planning process [1] aims at generating a sequence of 
successive primitive actions [9], transiting from an initial state 
of the world to a pre-defined goal state, using forward-
searching [10] or backward-searching [3] algorithms. 

A world state [11] is described by symbolic terms (e.g., On 
(book1, table1)) using symbols and prepositions. These 
symbols and prepositions respectively represent environment 
instances (e.g., book1, table1) and relations (e.g., On, In, Left). 

A primitive action [11] allows state transition where some 
terms are removed from a world state, and some are added to it. 
A primitive action consists of two parts: precondition and 
effect. Pre-condition describes the terms that current world 
state must satisfy when an action is performed. Effect describes 
the terms that will be added or removed from current world 
state after an action is performed.  

Task planning solves the object manipulation sequence 
problem, and it uses higher abstraction level information 
(symbolic terms, such as On (book1, table1)) instead of 
geometric data (e.g., coordinates or angles). Using this abstract 
representation does not allow to check the motion feasibility of 
primitive actions of a task plan and to compute valid collision-
free paths for the manipulated objects in a virtual environment.  

2) Path Planning: Since 1980, automated path planning

techniques have been deeply and widely discussed by the 

robotics community [2, 12]. They aim at producing a collision-

free path (a sequence of free configurations) moving a 

manipulated object from an initial configuration (position and 

orientation) to a goal configuration. [13] proposed a four-

quadrant categorization of path planning techniques [14, 15, 

16, 17], from deterministic to probabilistic and from global to 

local. Because most of the path planning works often uses 

purely geometric models and little higher abstraction level 

information has been taken into account, in a highly 

geometrically constrained environment, it could probably fail, 

could result in high-processing time and the generated paths 

could be of low-relevance. More importantly, path planning is 

unable to determine the necessary sequence of actions to 

manipulate different objects.  
Therefore, in order to determine the feasible sequence of 

primitive actions for the manipulations and compute a valid 
collision-free path for each action, solving a complex 
manipulation task in a virtual environment expresses a strong 
need to consider jointly task and path planning. 

B. The joint usage of task planning and path planning

To use jointly task and path planning [3, 4], a task planner
searches for a feasible task plan that consists of a sequence of 
primitive actions, e.g., to manipulate objects, and a geometric 
path planner is called to check the motion feasibility (i.e., path 
planning) of these actions.  

In terms of how task and path planning relate to each other, 
two approaches have been identified. Firstly, some researchers 
[5, 6] discussed them in a discrete and iterative way: task 
planning first, then path planning. A task plan is constructed 
firstly, and a geometric path planner is then called to check the 
motion feasibility of all primitive actions in this plan. If no path 
is found in a given time threshold, the geometric path planner 
informs the task planner to find an alternative task plan. 
Secondly, some others considered them in a continuous way [3, 
7, 8]: task planning querying path planning. The motion 
feasibility of a primitive action is verified by a geometric path 
planner during task planning process, when this action is 
applied by a task planner.  

A key issue in the joint usage is to effectively link task and 
path planning to improve the performance of the planning 
process. [5] used external predicates/functions at task planning 
level to call a geometric path planner, to check the motion 
feasibility of a primitive action applied by task planner. [4] 
used a list of geometric predicates (reachability / visibility of 
objects), computed by geometric path planner or other 
geometric reasoners, in the task planning process to determine 
the primitive actions that can be applied by task planner. Yet, 
the link them is still an open issue due to the fact that,  

1) path planning for a primitive action uses purely
geometric data, and it suffers from the classical failures of 
automated path planning techniques, and it can further lead to 
high computational time of the joint task and path planning 
process and can produce a poor implementation (low path 
relevance) of a task plan. 



2) to search for an optimal task plan for manipulation, more
kinds of feedback from path planning results, e.g., complexity 
or relevance of computed paths, should be taken into account.  

We concentrate on the first issue of the joint task and path 
planning. Rather than purely geometric data, higher abstraction 
level information should be considered. [13] proposed a multi-
level environment model and path planning architecture to use 
semantic (complexity to cross a place, object shape, obstacle 
mobility), topological (places and borders, a topological graph 
to describe the connectivity of places) and geometric (3D 
object meshes and octree decomposition to describe 3D free 
space) information in a two-step path planning process (coarse 
planning computes a least cost topological path, and fine 
planning finds a collision free geometric path for each step on 
this topological path). It improved the relevance of computed 
paths and the performance of the planning system. 
Nonetheless, it is still a path planning approach, and the 
semantic level is still poor with only text information.  

Our work further develops this multi-level path planning 
architecture [13] to investigate the usage of richer semantic 
information and to develop towards a joint task and path 
planning approach to solve a task problem.  Different kinds of 
high abstraction level information exist in a task, such as the 
spatial representation of an environment (e.g., the location of 
an object, the relative location between two objects), and 
potential constraints related to a task to be performed (e.g., 
spatial relations to be obeyed between two objects). Yet, the 
employment of this task-related information in the path 
planning process of a primitive action is rarely issued.  

In this paper, we investigate the benefits of using the task-
oriented knowledge for the path planning process of a primitive 
action. In particular, we focus on the knowledge related to a 
primitive action to be performed (see Section III) and 
generating a specific path planning query for a targeted 
primitive action. This specific path planning query aims at 
obtaining a better control on the path planning of this action, 
and furthermore, a better relevance of simulations. 

III. A PEN-PENBOX INSERTION USE CASE

In this paper, we use a pen-penbox insertion scenario as an 
example throughout our discussion. The objective is to insert a 
pen (mobile) into a penbox (fixed) to a final placement 
"pen_goal", from fig. 1-(a) to fig. 1-(b).  The reason of using 
this use case is that 1) this simple example is complex enough 
for path planning, and 2) it can provide enough task-related 
information (e.g., constraints to be obeyed during a 
manipulation) to study the benefits of using this information in 
the path planning process of an insertion action. 

Figure 1 A pen-penbox insertion use case 

IV. TARGETED TASK-ORIENTED KNOWLEDGE

Action-specific knowledge 

In order to correctly execute a primitive action for 
manipulation (such as "Put a book on a table", "Insert a pen 
into a penbox"), the planning system should understand and 
has to process action-specific knowledge [18]. This action-
specific knowledge is used not only to identify current location 
and goal place of a manipulated object but also to provide 
specific constraints during the manipulation. In this paper, the 
targeted task-oriented knowledge concerns the constraints 
about how a manipulated object should be placed in the 3D (3-
Dimensional) space in relation to a reference object during the 
manipulation. For example, when inserting a pen into a 
penbox, the pen should point to the penbox.  

Spatial Constraints 

The relation describing the relative location (i.e., position 
and orientation) between two objects in the 3D space is 
specified as a spatial relation [19]. Typical spatial relations 
include, among others: Left, Right, Inside, Outside, PointTo 
and so on. Then, we define a spatial constraint as a constraint 
that describes a spatial relation between a manipulated object 
and a reference object. Widely speaking, a spatial constraint 
can specify a spatial relation not only between two objects but 
also between an object and an area (a closed bounded volume 
of 3D space). The spatial constraint is described by symbolic 
terms, e.g., PointTo (pen, penbox). It is easily understandable 
to humans, but it is insufficient to be used for path planning, 
which mainly deals with geometric models of an environment. 

Geometric Constraints 

A geometric constraint specifies a spatial relation between 
two geometric elements [20], e.g., the origin of a pen is on the 
left of the origin of a penbox. The geometric elements refer to 
the ones used in the geometric modeling, such as point, line, 
face, bounding box, vector. Moreover, geometric constraints 
have been discussed and used long ago in path planning [21]. 

Linking Spatial and Geometric Constraints 

Spatial constraints often come from the action-specific 
knowledge related to a primitive action to be performed. In 
order to employ those spatial constraints in the path planning 
process of a primitive action, it is required to map spatial 
constraints into geometric constraints. In particular, we are 
interested in generating the geometric constraints from the 
spatial constraints, depending on the task-oriented environment 
knowledge (the type and the shape of an object or an area 
involved in an action) and the action itself. These generated 
geometric constraints are to be used in the control of the path 
planning process of a primitive action. 

V. AN ONTOLOGY-BASED ENVIRONMENT KNOWLEDGE

REPRESENTATION 

In order to describe objects or areas involved in a spatial 
constraint and geometric elements used in a geometric 
constraint, a spatial knowledge representation of an 
environment not only should describe high abstraction level 
information related to a task (e.g., world knowledge about the 



taxonomy of objects and areas), but also has to represent 
geometric models of an environment. Furthermore, spatial 
relations should also be considered in the modeling of a spatial 
constraint and a geometric constraint. Therefore, the 
environment knowledge representation here is going to 
conceptualize in the knowledge base:  

• The knowledge of the multi-level environment model
[13], consisting of information on the semantic,
topologic and geometric level (see Section II-B), since
our work further develops the multi-level path planning
approach [13] and the multi-level environment
information allows to welly describe the necessary
elements (objects, areas, geometric elements) in the
spatial/geometric constraint description.

• The qualitative spatial knowledge about an
environment, including 1) world knowledge about the
environment in a particular task, and 2) spatial relation
knowledge describing relative location between two
objects, between an object and an area, and between
two geometric elements.

A. The conceptualization of a multi-level environment model

and world knowledge

A multi-level environment model knowledge 

The conceptualization of the multi-level environment 
model (Fig. 2) is decomposed into three levels, following the 
one proposed by [13]: semantics, topology, and geometry. It 
further develops the semantic level by introducing world 
knowledge about an environment in a particular task.  

1) Knowledge on the geometric level: It concerns the
concepts and the relations used in the geometric modeling of a 
3D environment. Two abstract concepts are discussed. 

• Geometry describes the geometric models of a 3D
environment. ObjectGeometry and SpaceGeometry are
two sub-concepts concerning respectively geometric
models of RigidBody and FreeSpace. A RigidBody is an
ObjectGeometry, and it is solid with no deformation
allowed. FreeSpace is a SpaceGeometry, and it
represents continuous geometric 3D space with no
obstacles overlapped.

• Geometric element describes the elements belonging to
the geometric models of a RigidBody or FreeSpace. A
BoundingBox represents the smallest enclosing box of a
RigidBody or FreeSpace. GeometricPrimitive is the
common set of primitives used in 3D modeling such as
Point, Line, Face. Vector is a more mathematical
concept, and it is often used to describe other concepts
such as the position of a Point and the pointing
direction of a Geometry. Orientation reference frame
(OrientationRF) assists describing orientation relation.

2) Knowledge on the topological level: It aims at
conceptualizing places and borders, constructed at topological 
level in [13]. Place and Border are sub-concepts of Area, 
representing a closed bounded volume of geometric 3D free 
space.  A Border connects two Places. 

3) Knowledge on the semantic level: The environment
information on this level is strongly related to a task to be 
performed. It is described by the world knowledge about an 
environment of a task, and it aims to obtain a detailed 
classification of the concepts on the two other levels (e.g., 
RigidBody at the geometric level and Place defined at the 
topological level).  

Figure 2 A taxonomy of multi-level environment knowledge (Concepts) 

World Knowledge 
World knowledge concerns the detailed taxonomy of 

RigidBody, Place and Border, their properties, and relations, 
under a particular task context.   

• ShapedObject and FunctionalObject: A RigidBody is
further classified into ShapedObject and Functional
Object respectively, depending on the shape and the
functionality of an object. A particular RigidBody can
be both a ShapedObject and a FunctionalObject. For
example, a Pen is a CylindricalObject, and a PenBox is
a CuboidContainerObject.

• Hole and Opening: Place and Border are further
classified according to some characteristics of the 3D
free space. A Hole is a Place within an object. An
Opening is a Border that connects a Hole with the rest
of geometric free space. And they are further
respectively classified into a PenBoxHole and a
PenboxOpening that belong to a PenBox.

• SpatialThingQuality: It concerns all quality
information belonging to RigidBody, Place, and Border.
Congestion and Complexity describe how difficult to
cross a Place or a Border. Mobility identifies whether a
RigidBody can be moved or not.



B. The Conceptualization of Spatial Relation Knowledge

Spatial relation knowledge should also be modeled in order
to describe the relative location between two geometries 
(object or area) in a spatial constraint or between two 
geometric elements in a geometric constraint. Inspired by [22, 
23], the taxonomy specializes into three categories (Fig. 3). 

Figure 3 Spatial Relation Knowledge 

Topological Relation describes how the boundaries and the 
interiors of two geometries (object or area) relate, based on Set 
Theory. Disjoint, Touch, Overlap, Inside and Equal are all 
instances of this concept.  

Orientation Relation describes how two geometries (object 
or area) or two geometric elements are placed relative to one 
another. Top, Down, Front, Back, Left, Right, and PointTo are 
all instances of this concept. This relation is described 
according to a frame of reference.  

Geometric Relation describes how two geometric elements 
(e.g., line, plane) relate to each other. Coplanar, Perpendicular, 
Offset, Collinear, Against, Parallel are all instances of this 
concept. 

VI. GENERATION OF A PATH PLANNING QUERY FOR A PRIMITIVE

ACTION IN A TASK PLAN 

In this section, we want to consider jointly task and path 
planning and focus on generating a specific path planning 
query for a primitive action, using action-specific knowledge. 
Especially, we are interested in generating geometric 
constraints from spatial constraints, where geometric 
constraints are specified in a path planning query and spatial 
constraints are defined in a specification of a primitive action. 
Finally, geometric constraints are used to guide the search in 
the path planning, which we have not yet discussed in the 
paper. Subsection VI-A discusses the knowledge modeling of a 
primitive action and a path planning query. Subsection VI-B 
shows an overview of the generation process. 

A. The modeling of primitive action specification and path

planning query description

In order to generate a path planning query for a primitive
action in a task plan, it is necessary to model a primitive action 
and its related path planning query appropriately. Fig. 4 shows 
the partial modeling of a primitive action specification (PAS) 
and a path planning query description (PPQD). 

Figure 4 The knowledge modeling of PAS and PPQD (Concepts) 

Primitive action (PA) specification (PAS): A primitive action 
specification consists of four parts:  

• A primitive action identity (I): to identify the kind of
action that a system is executing, e.g., insert, put.

• Manipulated object (MO): the rigid body that a system
manipulates.

• Reference Geometry (RG): a rigid body or a place to
which the action references.

• PA Constraint Specification: The spatial constraints for
the primitive action.

A spatial constraint here specifies a spatial relation between 
two geometries (object or area), currently, that is between two 
rigid bodies or between a rigid body and a place. It consists of 
three parts: 1). A reference geometry, 2). A target geometry, 3). 
A related spatial relation 

Path planning (PP) query description (PPQD): A path 
planning query description consists of three parts:  

• Manipulated object: the rigid body that a system
manipulates.

• Goal Configuration: The configuration to reach

• PP Constraint Specification: The geometric constraints
in a path planning query

A geometry constraint here specifies a spatial relation 
between two geometric elements, for example, Left (Point1, 
Point2), Parallel (Line1, Line2). It consists of three parts: 1). A 
reference geometric element, 2). A target geometric element, 
3). A related spatial relation.  

B. Generation of a path planning query description through

an inference process

As the first step of the path planning query generation
process, a primitive action specification (PAS) is constructed 
according to the targeted primitive action to be executed. The 
primitive action identity, the manipulated object and the 
reference geometry are automatically extracted from the 
targeted primitive action. A list of spatial constraints is 



manually assigned by human operator and is associated to the 
action specification (Fig. 5).  

Figure 5 The process to construct a PAS and to generate a related PPQD 

Then, the path planning query constructor (PP Query 
Constructor) takes the PAS as input and generates a related 
path planning query description (PPQD). The manipulated 
object in this PPQD is directly extracted from the PAS. The 
goal configuration is randomly obtained in the goal region, 
while satisfying the geometric constraints that are associated to 
the PPQD.  

In particular, a reasoner is invoked to generate the related 
geometric constraints from the spatial constraints, using the 
pre-defined inference rules. We define this constraint 
generation process as "Spatial-Geometric Constraint Mapping", 
see from Fig. 5. Because inference rules vary among different 
applications, the next section discusses the constraint 
generation process in detail, using a specific inference rule as 
an example in a pen-penbox use case. 

VII. A PEN-PENBOX INSERTION EXAMPLE

With the help of a pen-penbox insertion case, this section 
starts to describe in detail the generation of a path planning 
query for a primitive action, especially the generation of 
geometric constraints for path planning from spatial constraints 
defined in a primitive action.  

The subsections discuss 1) the instantiation of a pen-
penbox environment in the knowledge base, 2) the 
specification of an insertion action with the associated spatial 
constraints, 3) through an inference process, the generation of a 
path planning query description with geometric constraints. 

A. The instantiation of Pen-Penbox case in knowledge base

Different levels of environment information should be
instantiated in the knowledge base. It includes geometric 
models of rigid bodies and free space (geometric level), the 

constructed places and borders (topological level), and the 
taxonomy of rigid bodies, places, and borders (semantic level). 

Figure 6 An instantiation of a pen in the environment model knowledge 

Fig. 6 shows an instantiation of a pen in the environment 
model knowledge. "pen_1" is an instance of the concept Pen, it 
has a PolyhedronMesh "mesh_1", an Origin "Origin_pen_1", a 
central line (Line) "Line_1" and a pointing direction (Vector) 
"vector_1".  This information is either manually annotated or 
automatically generated. Although this annotation would be 
long and tedious, it can be saved as a config file and be reused 
in the next time.  

B. The instantiation of spatial relation knowledge

In the pen-penbox insertion scenario, the penbox is
regarded as a reference geometry. To correctly define the 
orientation relation between a pen and a penbox, we specify an 
orientation reference frame, located at the penbox's origin. 
Then, the orientation relations are described by different 
vectors, based on this reference frame, see from Fig. 7.  

• +-X corresponds to the Front and Back of penbox

• +-Y corresponds to the Right and Left of penbox

• +-Z corresponds to the Top and Bottom of penbox.

Figure 7 The orientation relations referred to penbox's origin 



C. Primitive action specification for pen-penbox insertion 

A primitive action specification is constructed from an 
insertion action between "pen_1" and "penbox_1" (Fig. 8). The 
primitive action identity ("Insert"), the manipulated object 
("pen_1") and the reference geometry ("penbox_1") are 
directly extracted from this insertion action. 

 
Figure 8 The construction of a primitive action specification 

In the meanwhile, different ways of insertions are possible 
to insert a pen into a penbox. In our example, a human operator 
manually assigns spatial constraints to the insertion action 
between "pen_1" and "penbox_1", and then they are associated 
to the specification of this insertion action. Two spatial 
constraints are used here.  

pen_1   PointTo  penbox_1 

pen_1      Left     penbox_1 

D. The generation of a path planning query description using 

spatial-geometric constraint mapping 

In the next step, a path planning query constructor (PP 
Query Constructor) takes the specified primitive action 
specification ("PAS_1") as input, and generates a related path 
planning query description ("PPQD_1"), as shown in Fig. 9. 
The manipulated object ("pen_1") in "PPQD_1" is directly 
extracted from "PAS_1". The goal configuration 
("Goal_pen_1") is obtained by a random sampling in the goal 
region, while satisfying the geometric constraints attached to 
"PPQD_1". 

More specifically, we are interested in how to generate 
geometric constraints from spatial constraints, specified in VII-
C, through an inference process using the pre-defined inference 
rules (Fig. 9).  

Pen_1 PointTo Penbox_1: For simplicity, we use a spatial 
constraint "pen_1 PointTo penbox_1" as an example to show 
how a geometric constraint, "vector_1 Against vector_2", is 
inferred or generated using an inference rule. The SWRL rule 
below assists this inference process.  

SWRL Rule Explanation: A SWRL rule contains an 
antecedent (IF) and a consequent (THEN). If the terms in 
antecedent holds, then the terms in consequent must holds. 

 

1) Antecedent (line 1-13): 1) Environment specification 

(line 2-6): "object a" is an instance of CylindericalObject 

(line 2), "object b" is an instance of ContainerObject (line 

3), "vector_1" and "vector_2" are both instances of Vector 

(line 4), and are respectively pointing direction of "object 

a" (line 5) and opening direction of "object b" (line 6). 2) 

Constraint specification (line 7-12): "sconstraint" is an 

instance of SpatialConstraint (line 7), and it specifies a 

spatial relation "PointTo" (line 8) between two geometries 

"object a" (line 10) and "object b" (line 9). "gconstraint" 

is an instance of GeometricConstraint (line 11), and it has 

a related spatial constraint "sconstraint" (line 12). 

2) Consequent (line 14-18): If the terms in the antecedent 

holds, then "gconstraint" specifies a new spatial relation 

"Against" (line 17) between two geometric elements 

"vector_1" (line 16) and "vector_2" (line 15), which 

means that the scalar product of these two vectors should 

be negative. 

Fig. 10 visually shows why the “pen_1 PointTo 

penbox_1” results in “vector_1 Against vector_2”. In our pen-

penbox insertion example, the corresponding geometric 

constraints (see in Fig. 9), generated from the spatial 

constraints specified in VII-C, are  

vector_1    Against      vector_2 

Origin_pen_1       Left     Origin_penbox_1 

 

Figure 9 The generation of a path planning query description 

A SWRL Rule for spatial-geometric constraint mapping 

1. IF {   
2.  a instance_of CylindericalObject and  
3.  b instance_of ContainerObject and  
4.  vector_1, vector_2 instance_of Vector and 
5.  a hasPointingDirection vector_1 and 
6.  b hasOpeningDirection  vector_2 and 
7.  sconstraint instance_of SpatialConstraint and 
8.     sconstraint  hasRelation “PointTo” and    
9.     sconstraint  hasRefGeometry “b” and 
10.    sconstraint  hasTargetGeometry “a” and 
11. gconstraint instance_of GeometricConstraint and 
12.    gconstraint hasRelatedSC “sconstraint”  
13. }  
14. THEN {   
15.  gconstraint hasRefGeoElement “vector_2” and 
16.  gconstraint hasTargetGeoElement “vector_1” and 
17.  gconstraint hasRelation “Against”  
18. }   



Finally, when all geometric constraints are inferred and 

are generated from the spatial constraints, they are specified in 

a path planning query description. Using this specific path 

planning query description as an input, a path planner 

computes a relevant trajectory/path for this pen-penbox 

insertion action while respecting the geometric constraints. 

VIII. CONCLUSION AND FUTURE WORK

The work here presents an attempt to generate a specific 
path planning query for a primitive action by using a well-
structure task-oriented knowledge model. In particular, this 
work concentrates on using spatial constraints (defined in a 
primitive action specification) to generate geometric 
constraints (specified in a path planning query) through an 
inference process using the pre-defined rules. Then, the 
specific path planning query aims at obtaining a better control 
(e.g., lower-processing time, higher path relevance) on the path 
planning process during the execution of a primitive action. 
Currently, the work is still preliminary. Firstly, the ontology-
based knowledge model has limited number of concepts and 
rules, and it has to be further developed, validated and 
evaluated (e.g., to evaluate the metrics of the ontology model, 
to verify whether the system’s responding time is acceptable 
using the inference engine).  Secondly, we believe that more 
experiments are necessary to validate this work. The objective 
is to show that a better control (e.g., lower processing time, 
higher path relevance) on the path planning process of a 
primitive action can be obtained, by using a proper set of task-
related semantic information instead of purely geometric data. 
Thirdly, the work should be fully evaluated in a real-world 
scenario, such as an industrial product assembly task. Fourthly, 
the current work generates and uses geometric constraints in a 
geometric path planning process, and it requires a further 
development towards a complete usage of the multi-level path 
planning architecture [13] (coarse/topologic and fine/geometric 
planning). Last but not the least, the generation of a task plan is 
not issued in this work, and it would be necessary to develop 
towards a complete task and path planning approach. 

Figure 10 A graphical representation of the SWRL rule 
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