E. Bigand, C. Delbé, B. Poulin-charronnat, M. Leman, and B. Tillmann, Empirical evidence for musical syntax processing? Computer simulations reveal the contribution of auditory short-term memory, Front. Syst. Neurosci, vol.8, p.94, 2014.

E. Bigand and B. Poulin-charronnat, Are we "experienced listeners"? A review of the musical capacities that do not depend on formal musical training, Cognition, vol.100, pp.100-130, 2006.

E. Bigand, B. Poulin, B. Tillmann, and D. Adamo, Cognitive versus sensory components in harmonic priming effects, J. Exp. Psychol. Hum. Percept. Perform, vol.29, pp.159-171, 2003.

E. Bigand, B. Tillmann, B. Poulin, D. A. D'adamo, and F. Madurell, The effect of harmonic context on phoneme monitoring in vocal music, Cognition, vol.81, pp.11-20, 2001.

E. Bigand, B. Tillmann, and B. Poulin-charronnat, A module for syntactic processing in music?, Trends Cogn. Sci, vol.10, pp.195-196, 2006.

M. Bingabr, B. Espinoza-varas, and P. C. Loizou, Simulating the effect of spread of excitation in cochlear implants, Hear. Res, vol.241, pp.73-79, 2008.

S. J. Brockmeier, D. Fitzgerald, O. Searle, H. Fitzgerald, M. Grasmeder et al., The MuSIC perception test: a novel battery for testing music perception of cochlear implant users, Cochlear Implants Int, vol.12, pp.10-20, 2011.

S. J. Brockmeier, M. Peterreins, A. Lorens, K. Vermeire, S. Helbig et al., Music perception in electric acoustic stimulation users as assessed by the Mu.S.I.C. Test, Adv. Otorhinolaryngol, vol.67, pp.70-80, 2010.

J. K. Chen, A. Y. Chuang, C. Mcmahon, J. C. Hsieh, T. H. Tung et al., Music training improves pitch perception in prelingually deafened children with cochlear implants, Pediatrics, vol.125, pp.793-800, 2010.

J. Cohen, B. Macwhinney, M. Flatt, and J. Provost, PsyScope: an interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers, Behav. Res. Methods Instrum. Comput, vol.25, pp.257-271, 1993.

W. B. Cooper, E. Tobey, and P. C. Loizou, Music perception by cochlear implant and normal hearing listeners as measured by the montreal battery for evaluation of Amusia, Ear Hear, vol.29, pp.618-626, 2008.

W. R. Drennan and J. T. Rubinstein, Music perception in cochlear implant users and its relationship with psychophysical capabilities, J. Rehabil. Res. Dev, vol.45, pp.779-790, 2008.

V. D. Driscoll, J. Oleson, D. Jiang, and K. Gfeller, Effects of training on recognition of musical instruments presented through cochlear implant simulations, J. Am. Acad. Audiol, vol.20, pp.71-82, 2009.

R. A. Fisher, On the 'probable error, vol.1, pp.3-32, 1921.

Q. J. Fu and J. J. Galvin, Perceptual learning and auditory training in cochlear implant recipients, Trends Amplif, vol.11, pp.193-205, 2007.

Q. J. Fu and J. J. Galvin, Maximizing cochlear implant patients' performance with advanced speech training procedures, Hear Res, vol.242, pp.198-208, 2008.

C. D. Fuller, J. J. Galvin, B. Maat, D. Ba?kent, and R. H. Free, Comparison of two music training approaches on music and speech perception in cochlear implant users, Trends Hear, vol.22, p.2331216518765379, 2018.

J. J. Galvin, Q. Fu, and G. Nogaki, Melodic contour identification by cochlear implant listeners, Ear Hear, vol.28, pp.302-319, 2007.

J. J. Galvin, Q. Fu, and S. Oba, Effect of instrument timbre on melodic contour identification by cochlear implant users, J. Acoust. Soc. Am, vol.124, pp.189-195, 2008.

J. J. Galvin, Q. Fu, and R. V. Shannon, Melodic contour identification and music perception by cochlear implant users, Ann. N. Y. Acad. Sci, vol.1169, pp.518-533, 2009.

E. Gaudrain and D. Ba?kent, Discrimination of voice pitch and vocal-tract length in cochlear implant users, Ear Hear, vol.39, pp.226-237, 2018.

E. Gaudrain, L. Stam, and D. Baskent, Measure and model of vocaltract length discrimination in cochlear implants, Proceedings of the 2014 International Conference on Audio, Language and Image Processing, pp.31-34, 2014.

K. Gfeller, J. Oleson, J. F. Knutson, P. Breheny, V. Driscoll et al., Multivariate predictors of music perception and appraisal by adult cochlear implant users, J. Am. Acad. Audiol, vol.19, pp.120-134, 2008.

K. Gfeller, C. Turner, J. Oleson, X. Zhang, B. Gantz et al., Accuracy of cochlear implant recipients on pitch perception, melody recognition and speech reception in noise, Ear Hear, vol.28, pp.412-423, 2007.

M. Imberty, Acculturation tonale et structuration perceptive du temps musical chez l'enfant. Basic musical functions and musical ability, R. Swed. Acad. Music, vol.32, pp.81-130, 1981.

K. H. Jung, Y. S. Cho, J. K. Cho, G. Y. Park, E. Y. Kim et al., Clinical assessment of music perception in Korean cochlear implant listeners, Acta Otolaryncol, vol.130, pp.716-723, 2010.

R. Kang, G. L. Nimmons, W. Drennan, J. Longnion, C. Ruffin et al., Development and validation of the University of Washington clinical assessment of music perception test, Ear Hear, vol.30, pp.411-418, 2009.

S. Koelsch, S. Koelsch, S. Jentschke, D. Sammler, D. Mietchen et al., Untangling syntactic and sensory processing: an ERP study of music perception, Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN, vol.46, pp.966-972, 2004.

L. Lassaletta, A. Castro, M. Bastarrica, R. Pérez-mora, B. Herrán et al., Changes in listening habits and quality of musical sound after cochlear implantation, Otolaryngol. Head Neck Surg, vol.138, pp.363-367, 2008.

M. C. Leal, Y. J. Shin, M. L. Laborde, M. N. Calmels, S. Verges et al., Music perception in adult cochlear implant recipients, Acta Otolaryngol, vol.123, pp.826-835, 2003.

M. Leman, An auditory model of the role of short-term memory in probe-tone ratings, Music Percept, vol.17, pp.435-463, 2000.

M. Leman, M. Lesaffre, and K. Tanghe, IPEM Toolbox for Perception-Based Music Analysis Version 1.02, 2005.

V. Looi, H. Mcdermott, C. Mckay, and L. Hickson, Music perception for cochlear implant users compared with that of hearing aid users, Ear Hear, vol.29, pp.421-434, 2008.

V. Looi and J. She, Music perception of cochlear implant users: a questionnaire and its implications for a music training program, Int. J. Audiol, vol.49, pp.116-128, 2010.

F. Marmel, B. Tillmann, and C. Delbé, Priming in melody perception: tracking down the strength of cognitive expectations, J. Exp. Psychol. Hum. Percept. Perform, vol.36, pp.1016-1028, 2010.

H. J. Mcdermott, Music perception with cochlear implants: a review, Trends Amplif, vol.8, pp.49-82, 2004.

C. M. Mckay, Spectral processing in cochlear implants, Aud. Spectr. Process, vol.70, pp.473-509, 2005.

L. Migriov, J. Kronenberg, and Y. Henkin, Self-reported listening habits and enjoyment of music among cochlear implant recipients, Ann. Otol. Rhinol. Laryngol, vol.118, pp.350-355, 2009.

C. Mitani, T. Nakata, and S. E. Trehub, Music recognition, music listening, and word recognition by deaf children with cochlear implants, Ear Hear, vol.28, pp.38-41, 2007.

B. C. Moore and R. P. Carlyon, Perception of pitch by people with cochlear hearing loss and by cochlear implant users, Pitch, Neural Coding and Perception, pp.234-277, 2005.

G. L. Nimmons, R. S. Kang, W. R. Drennan, J. Longnion, C. Ruffin et al., Clinical assessment of music perception in cochlear implant listeners, Otol. Neurotol, vol.29, pp.149-155, 2008.

F. Rattay, P. Lutter, F. , and H. , A model of the electrically excited human cochlear neuron. I. Contribution of neural substructures to the generation and propagation of spikes, Hear. Res, vol.153, pp.256-258, 2001.

F. Rochette and E. Bigand, Long-term effects of auditory training in severely or profoundly deaf children, Ann. N. Y. Acad. Sci, vol.1169, pp.195-198, 2009.

E. G. Schellenberg, E. Bigand, B. Poulin-charronnat, C. Garnier, and C. Stevens, Children's implicit knowledge of harmony in Western music, Dev. Sci, vol.8, pp.551-566, 2005.

B. Tillmann, J. J. Bharucha, and E. Bigand, Implicit learning of tonality: a self-organizing approach, Psychol. Rev, vol.107, pp.885-913, 2000.

B. Tillmann, T. Justus, and E. Bigand, Cerebellar patients demonstrate preserved implicit knowledge of association strengths in musical sequences, Brain Cogn, vol.66, pp.161-167, 2008.

B. Tillmann, I. Peretz, E. Bigand, and N. Gosselin, Harmonic priming in an amusic patient: the power of implicit tasks, Cogn. Neuropsychol, vol.24, pp.603-622, 2007.

S. E. Trehub, T. Vongpaisal, and T. Nakata, Music in the lives of deaf children with cochlear implants, Ann. N. Y. Acad. Sci, vol.1169, pp.534-542, 2009.

L. M. Van-immerseel and J. Martens, Pitch and voiced/unvoiced determination with an auditory model, J. Acoust. Soc. Am, vol.91, pp.3511-3526, 1992.

A. W. Young, D. Hellawell, and E. H. Dehaan, Cross-domain semantic priming in normal subjects and a prosopagnosic patient, Q. J. Exp. Psychol, vol.40, pp.561-580, 1988.

E. Yucel, G. Sennaroglu, and E. Belgin, The family-oriented musical training for children with cochlear implants: speech and musical perception results of two year follow-up, Int. J. Pediatr. Otorhinolaryngol, vol.73, pp.1043-1052, 2009.

Y. Zaltz, R. L. Goldsworthy, L. Kishon-rabin, and L. S. Eisenberg, Voice discrimination by adults with cochlear implants: the benefits of early implantation for vocal-tract length perception, J. Assoc. Res. Otolaryngol, vol.19, pp.193-209, 2018.

F. Zeng, Trends in cochlear implants, Trends Amplif, vol.8, pp.1-34, 2004.

, presenting differences between the regular and irregular chords for positions 3 and 5, for the harmonic spectrum (A) and the model of Leman (B-D). For panels B and C, the mean differences between the tonal contextuality of the target chords (TC regular -TC irregular ) are presented as a function of the local and global context integration windows. Positive, negative, and non-significant differences are represented by hot, APPENDIX FIGURE 1 | Results of the acoustic analyses for the material Koelsch et, 2004.

, A positive difference indicates that the pitch similarity in the sensory memory induced by the related target is stronger than that of the less-related target