Rapid crack propagation in PA11: An application to pipe structure

Résumé : Dynamic fracture mechanism in Polyamide 11 (PA11) material has been described at laboratory scale to access to an intrinsic material parameter. A liquid transportation application is considered with polymer pipes. A preliminary numerical analysis of the rapid crack propagation (RCP) in polymer pipe is firstly realised. Two boundary conditions, imposed displacement or pressure, are numerically investigated. The work of external forces is not negligible for pressurized polymer pipe. A reliable estimate of the dynamic energy release rate GId is in this last case not guaranteed. To limit unwanted structural effects a specific experimental device has been used to ensure a permanent regime of RCP in Pre-Stressed Pipe Specimen (PS2). Experimental dynamic fracture tests are realised with Polyamide 11 PS2. Dynamic instabilities inducing “ring-off” and “snake” mechanisms which could appear during full-scale test are not observed with this new test. A finite element procedure is used to estimate the material toughness GID of PA11. Knowing the crack tip location during RCP inertia effects (i.e. kinetic energy) are quantified. The mean crack tip velocity is observed not to change in PA11 whatever the crack configuration (branching or not). This velocity is known to be the crack branching velocity (≈0.6cR). The average dynamic energy release rate 〈GID〉 is equal to 1.5± 0.1 kJm−2 at the crack branching velocity. The nontrivial fracture surface roughness is observed with a scanning electron microscope.
Document type :
Journal articles
Complete list of metadatas

Cited literature [31 references]  Display  Hide  Download

Contributor : Compte de Service Administrateur Ensam <>
Submitted on : Thursday, November 7, 2019 - 5:39:55 PM
Last modification on : Sunday, November 10, 2019 - 1:22:25 AM


Files produced by the author(s)


  • HAL Id : hal-02354515, version 1


Jean-Benoit Kopp, Christophe Fond, Gilles Hochstetter. Rapid crack propagation in PA11: An application to pipe structure. Engineering Fracture Mechanics, Elsevier, 2018, 202, pp.445-457. ⟨hal-02354515⟩



Record views


Files downloads