P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Sulfide Bornite Thermoelectric Material: A Natural Mineral with Ultralow Thermal Conductivity, Energy Environ. Sci, vol.7, p.4000, 2014.

G. Guélou, A. V. Powell, and P. Vaqueiro, Ball Milling as an Effective Route for the Preparation of Doped Bornite: Synthesis, Stability and Thermoelectric Properties, J. Mater. Chem. C, vol.3, pp.10624-10629, 2015.

P. Kumar, V. Barbier, T. Lemoine, P. Raveau, B. Nassif et al., The Crucial Role of Selenium for Sulphur Substitution in the Structural Transitions and Thermoelectric Properties of Cu 5 FeS 4 Bornite, vol.46, p.2174, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01470480

S. O. Long, A. Powell, P. Vaqueiro, and S. Hull, High Thermoelectric Performance of Bornite through Control of the Cu(II) Content and Vacancy Concentration, Chem. Mater, vol.30, pp.456-464, 2018.

K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Thermoelectric Properties of Mineral Tetrahedrites Cu 10 Tr 2 Sb 4 S 13 with Low Thermal Conductivity, Appl. Phys. Express, vol.5, p.51201, 2012.

K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori et al.,

, Tetrahedrite. J. Appl. Phys, p.43712, 2013.

X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins et al., High Performance Thermoelectricity in Earth-Abundant Compounds Based on Natural Mineral Tetrahedrites, Adv. Energy Mater, vol.3, pp.342-348, 2013.

T. Barbier, P. Lemoine, S. Gascoin, O. I. Lebedev, A. Kaltzoglou et al., Structural Stability of the Synthetic Thermoelectric Ternary and Nickel-Substituted Tetrahedrite Phases, J. Alloys Compd, vol.634, pp.253-262, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02184183

R. Chetty, A. Bali, and R. C. Mallik, Tetrahedrites as Thermoelectric Materials : An Overview, J. Mater. Chem. C, vol.3, pp.12364-12378, 2015.

Y. Bouyrie, C. Candolfi, V. Ohorodniichuk, B. Malaman, A. Dauscher et al., Electronic Band Structure and High-Temperature Thermoelectric Properties of Te, vol.3, pp.10476-10487, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01279100

T. Barbier, S. Rollin-martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou et al., Thermoelectric Materials: A New Rapid Synthesis Process for Nontoxic and High-Performance Tetrahedrite Compounds, J. Am. Ceram. Soc, vol.99, pp.51-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01664729

T. Barbier, P. Lemoine, S. Martinet, M. Eriksson, M. Gilmas et al., Up-Scaled Synthesis Process of Sulphur-Based Thermoelectric Materials, vol.6, pp.10044-10053, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02184702

M. L. Liu, F. Q. Huang, L. D. Chen, I. W. Chen, and . Wide, Gap p-Type Thermoelectric Material Based on Quaternary Chalcogenides of Cu, vol.2

, Appl. Phys. Lett, p.202103, 2009.

H. Yang, L. A. Jauregui, G. Zhang, Y. P. Chen, and Y. Wu, Non-Toxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High Temperature Thermoelectric Energy Harvesting, Nano Lett, vol.12, pp.540-545, 2012.

P. Kumar, V. Barbier, T. Caignaert, V. Raveau, B. Daou et al., Copper Hyper-Stoichiometry: The Key for the Optimization of Thermoelectric Properties in Stannoidite Cu 8+x Fe 3-x Sn 2 S 12, J. Phys. Chem. C, vol.2017, issue.30, pp.16454-16461

P. Kumar, V. Paradis-fortin, L. Lemoine, P. Caignaert, V. Raveau et al., Designing a Thermoelectric Copper-Rich Sulfide from a Natural Mineral: Synthetic Germanite Cu 22 Fe 8 Ge 4 S 32, Inorg. Chem, vol.2017, issue.21, pp.13376-13381
URL : https://hal.archives-ouvertes.fr/hal-01640116

K. Suekuni, F. S. Kim, H. Nishiate, M. Ohta, H. I. Tanaka et al., Takabatake, T. High-Performance Thermoelectric Minerals : Colusites Cu 26 V 2 M 6 S 32, p.132107, 2014.

K. Suekuni, F. S. Kim, and T. Takabatake, Tunable Electronic Properties and Low Thermal Conductivity in Synthetic Colusites Cu 26-x Zn x V 2 M 6 S 32 (x ? 4, M = Ge, Sn), J. Appl. Phys, p.63706, 2014.

Y. Kikuchi, Y. Bouyrie, M. Ohta, K. Suekuni, M. Aihara et al., Vanadium-Free Colusites Cu 26 A 2 Sn 6 S 32 (A = Nb, Ta) for Environmentally Friendly Thermoelectrics, J. Mater. Chem. A, vol.2016, issue.39, pp.15207-15214

C. Bourgès, Y. Bouyrie, A. R. Supka, R. Orabi, P. Lemoine et al., High-Performance Thermoelectric Bulk Colusite by Process Controlled Structural Disordering, J. Am. Chem. Soc, issue.6, pp.2186-2195, 2018.

K. Suekuni, Y. Shimizu, E. Nishibori, H. Kasai, H. Saito et al., Atomic-Scale Phonon Scatterers in Thermoelectric Colusites with a Tetrahedral Framework Structure, J. Mater. Chem. A, vol.2019, issue.1, pp.228-235
URL : https://hal.archives-ouvertes.fr/hal-02274207

P. Kumar, V. Supka, A. R. Lemoine, P. Lebedev, O. I. Raveau et al.,

. T-=-cr and W. ). Mo, Toward Functionalization of the Conductive, Cu-S" Network. Adv. Energy Mater, vol.9, p.1803249, 2019.

P. Kumar, V. Guélou, G. Lemoine, P. Raveau, B. Supka et al., Copper-Rich Thermoelectric Sulfides: Size Mismatch Effect and Chemical Disorder in the
URL : https://hal.archives-ouvertes.fr/hal-02307079

. Angew and . Chemie,

L. R. Bernstein, D. G. Reichel, and S. Merlino, Renierite Crystal Structure Refined from Rietveld Analysis of Powder Neutron-Diffraction Data, Am. Mineral, vol.74, issue.9, pp.1177-1181, 1989.

J. Rodríguez-carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Phys. B Condens. Matter, vol.192, issue.1-2, pp.55-69, 1993.

T. Roisnel, J. Rodríguez-carvajal, and . Winplotr, A Windows Tool for Powder Diffraction Patterns Analysis, Mater. Sci. Forum, pp.118-123, 2001.

E. Mugnaioli, T. Gorelik, and U. Kolb, Structure Solution from Electron Diffraction Data Obtained by a Combination of Automated Diffraction Tomography and Precession Technique, Ultramicroscopy, vol.109, issue.6, pp.758-765, 2009.

P. Boullay, L. Palatinus, and N. Barrier, Precession Electron Diffraction Tomography for Solving Complex Modulated Structures: The Case of Bi 5 Nb 3 O 15, Inorg. Chem, issue.10, pp.6127-6135, 2013.

L. Palatinus, P. Brázda, M. Jelínek, J. Hrdá, G. Steciuk et al., Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0, Acta Crystallogr. B, p.512, 2019.

V. Pet?í?ek, M. Du?ek, and L. Palatinus, Crystallographic Computing System Jana2006: General Features, Zeitschrift fur Krist, p.345, 2014.

E. D. Debyatkova, I. A. Smirnov, and . Fiz, Tverd. Tela, pp.2-1984, 1960.

A. Anselm, Introduction to the Theory of Semiconductors (English Translation), English tr, 1981.

Y. I. Ravich, B. A. Efimova, and I. A. Smirnov, Semiconducting Lead Chalcogenides (English Translation

L. S. Stil'bans and . Ed, , 1970.

E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou et al., Rev. Sci. Instrum, vol.86, p.11301, 2015.

R. T. Tettenhorst and C. E. Corbato, Cu 26 Ge 4 Fe 4 S 32 , Determined by Powder X-Ray Diffraction, Am. Mineral, vol.69, pp.943-947, 1984.

O. Frank-kamenetskaya, I. V;-rozhdestvenskaya, and L. A. V;-yanulova, New Data on the Crystal Structures of Colusites and Arsenosulvanites, J. Struct. Chem, vol.43, issue.1, pp.89-100, 2002.

L. Caër, G. Brand, and R. A. , General Models for the Distributions of Electric Field Gradients in Disordered Solids, J. Phys. Condens. Matter, vol.10, issue.47, pp.10715-10774, 1998.

L. Caër, G. Dubois, and J. M. , Evaluation of Hyperfine Parameter Distributions from Overlapped Mossbauer Spectra of Amorphous Alloys, J. Phys. E, vol.12, issue.11, pp.1083-1090, 1979.

A. Hightower, P. Delcroix, G. Le-caër, C. Huang, B. V. Ratnakumar et al., A [Sup 119]Sn Mössbauer Spectrometry Study of Li-SnO Anode Materials for Li-Ion Cells, J. Electrochem. Soc, vol.147, issue.1, pp.1-8, 2002.

P. Imbert, F. Varret, and M. Wintenberger, Etude Par Effet Mössbauer de La Briartite (Cu 2 FeGeS 4 ), J. Phys. Chem. Solids, vol.34, issue.10, pp.1675-1682, 1973.