, Cloud-native and verticals' services, 5G-PPP Software Network Working Group, 2019.

, 5GPPP-Software-Network-WG-White-Paper-2019_ FINAL.pdf, pp.2019-2029

A. Blenk, A. Basta, L. Henkel, J. Zerwas, W. Kellerer et al., perfbench: A tool for predictability analysis in multi-tenant software-defined networks, Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, pp.66-68, 2018.

K. Crombecq, D. Gorissen, D. Deschrijver, and T. Dhaene, A novel hybrid sequential design strategy for global surrogate modeling of computer experiments, SIAM Journal on Scientific Computing, vol.33, issue.4, pp.1948-1974, 2011.

K. Dunn, Process improvement using data, pp.2019-2029, 2019.

D. Duplyakin, J. Brown, and R. Ricci, Active learning in performance analysis, 2016 IEEE International Conference on Cluster Computing (CLUS-TER), pp.182-191, 2016.

I. Giannakopoulos, D. Tsoumakos, and N. Koziris, A decision tree based approach towards adaptive modeling of big data applications, 2017 IEEE International Conference on Big Data (Big Data), pp.163-172, 2017.

G. Khan, M. Bastani, S. Taheri, J. Kassler, A. Deng et al., Nfv-inspector: A systematic approach to profile and analyze virtual network functions, 2018 IEEE 7th International Conference on Cloud Networking (CloudNet), pp.1-7, 2018.

J. O. Iglesias, Orca: an orchestration automata for configuring vnfs, Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference, ACM, pp.81-94, 2017.

S. G. Kulkarni, Nfvnice: Dynamic backpressure and scheduling for nfv service chains, Conference of the ACM Special Interest Group on Data Communication, pp.71-84, 2017.

A. Mimidis-kentis, J. Soler, and P. Veitch, The next generation platform as a service: Composition and deployment of platforms and services, Future Internet, vol.11, issue.5, p.119, 2019.

J. Nam, J. Seo, and S. Shin, Probius: Automated approach for vnf and service chain analysis in software-defined nfv, Proceedings of the Symposium on SDN Research, p.14, 2018.

R. Pantos and W. May, Http live streaming, rfc 8216, pp.2019-2029, 2017.

H. Parmar and M. Thornburgh, Real-time messaging protocol (rtmp) specification. Adobe specifications, 2012.

F. Pedregosa and G. Varoquaux, Scikitlearn: Machine learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

M. Peuster and H. Karl, Profile your chains, not functions: Automated network service profiling in devops environments, Network Function Virtualization and Software Defined Networks (NFV-SDN), 2017.

M. Peuster and H. Karl, Understand your chains and keep your deadlines: Introducing timeconstrained profiling for nfv, 14th International Conference on Network and Service Management (CNSM), pp.240-246, 2018.

R. V. Rosa and C. Bertoldo, Take your vnf to the gym: A testing framework for automated nfv performance benchmarking, IEEE Communications Magazine, vol.55, issue.9, pp.110-117, 2017.

V. Sciancalepore and F. Z. Yousaf, z-torch: An automated nfv orchestration and monitoring solution, IEEE Transactions on Network and Service Management, vol.15, issue.4, pp.1292-1306, 2018.

A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statistics and computing, vol.14, issue.3, pp.199-222, 2004.

J. J. Thiagarajan and N. Jain, Bootstrapping parameter space exploration for fast tuning, Proceedings of the 2018 International Conference on Supercomputing, ACM, pp.385-395, 2018.

S. Van-rossem, W. Tavernier, M. Peuster, D. Colle, M. Pickavet et al., Monitoring and debugging using an sdk for nfv-powered telecom applications, IEEE NFV-SDN2016, the IEEE Conference on Network Function Virtualization and Software Defined Networks, pp.1-5, 2016.

S. Van-rossem and B. Sayadi, A vision for the next generation platform-as-a-service, IEEE 5G World Forum, issue.5GWF, pp.14-19, 2018.

S. Van-rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester, Profile-based resource allocation for virtualized network functions, IEEE Transactions on Network and Service Management, pp.1-1, 2019.

C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol.2, 2006.