, Appl. Sci, 2018.

L. Ezziat, A. Elabed, and S. Ibnsouda, S. Challenges of Microbial Fuel Cell Architecture on Heavy Metal Recovery and Removal From Wastewater. Front. Energy Res, vol.7, pp.1-13, 2019.

H. Liu, R. Ramnarayanan, and B. E. Logan, Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell, Environ. Sci. Technol, vol.38, pp.2281-2285, 2004.

E. S. Heidrich, J. Dolfing, K. Scott, S. R. Edwards, C. Jones et al., Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell, Appl. Microbiol. Biotechnol, vol.97, pp.6979-6989, 2013.

W. Li, H. Yu, and Z. He, Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies, Energy Environ. Sci, vol.7, pp.911-924, 2013.

D. Pant, G. Van-bogaert, L. Diels, and K. Vanbroekhoven, A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production, Bioresour. Technol, vol.101, pp.1533-1543, 2010.

D. Paul, M. T. Noori, P. P. Rajesh, M. M. Ghangrekar, and A. Mitra, Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell, Sustain. Energy Technol. Assessments, vol.26, pp.77-82, 2018.

Y. Zhao, Y. Ma, T. Li, Z. Dong, and Y. Wang, Modification of carbon felt anodes using double-oxidant HNO 3 /H 2 O 2 for application in microbial fuel cells, RSC Adv, vol.8, pp.2059-2064, 2018.

Y. G. Zhao, M. Ying, Y. B. Fu, and W. Chen, Improving Electrochemical Performance of Carbon Felt Anode by Modifying With Akaganeite in Marine Benthic Microbial Fuel Cells, Fuel Cells, vol.19, pp.190-199, 2019.

H. O. Mohamed, E. T. Sayed, H. Cho, M. Park, M. Obaid et al., Effective strategies for anode surface modification for power harvesting and industrial wastewater treatment using microbial fuel cells, J. Environ. Manag, vol.206, pp.228-235, 2018.

E. Blanchet, E. Desmond, B. Erable, A. Bridier, T. Bouchez et al., Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment, Bioresour. Technol, vol.185, pp.106-115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149751

R. Belaabed, S. Elabed, A. Addaou, A. Laajab, M. A. Rodr??guez et al., Synthesis of LTA zeolite for bacterial adhesion, Bol. la Soc. Esp. Ceram. Vidr, vol.55, pp.152-158, 2016.

X. Y. Wu, F. Tong, T. S. Song, X. Y. Gao, J. J. Xie et al., Effect of zeolite-coated anode on the performance of microbial fuel cells, J. Chem. Technol. Biotechnol, vol.90, pp.87-92, 2013.

L. S. Clesceri, A. E. Greenbaerg, and A. D. Eaton, Standard Methods for Examination of Water and Wastewater, vol.552, pp.5-16, 1998.

D. Lorenzo, M. Scott, K. Curtis, T. P. Head, and I. M. , Effect of increasing anode surface area on the performance of a single chamber microbial fuel cell, Chem. Eng. J, vol.156, pp.40-48, 2010.

T. Pham, H. T. Jo, C. Lee, J. Kwon, and Y. , MoO 2 nanocrystals interconnected on mesocellular carbon foam as a powerful catalyst for vanadium redox flow battery, RSC Adv, vol.6, pp.17574-17582, 2016.

K. Guo, S. Freguia, P. G. Dennis, X. Chen, B. C. Donose et al., Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems, Environ. Sci. Technol, vol.47, pp.7563-7570, 2013.

C. Santoro, M. Guilizzoni, J. P. Correa-baena, U. Pasaogullari, A. Casalegno et al., The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells, vol.67, pp.128-139, 2014.

E. Blanchet, B. Erable, M. L. De-solan, and A. Bergel, Two-dimensional carbon cloth and three-dimensional carbon felt perform similarly to form bioanode fed with food waste, Electrochem. Commun, vol.66, pp.38-41, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304333

E. I. Basaldella, P. G. Vázquez, F. Iucolano, and D. Caputo, Chromium removal from water using LTA zeolites: Effect of pH, J. Colloid Interface Sci, vol.313, pp.574-578, 2007.

B. Sarkar, Y. Xi, M. Megharaj, G. S. Krishnamurti, D. Rajarathnam et al., Remediation of hexavalent chromium through adsorption by bentonite based Arquad ® 2HT-75 organoclays, J. Hazard. Mater, vol.183, pp.87-97, 2010.

I. A. Vasiliadou, D. Papoulis, C. V. Chrysikopoulos, D. Panagiotaras, E. Karakosta et al., Attachment of Pseudomonas putida onto differently structured kaolinite minerals: A combined ATR-FTIR and 1H NMR study, Colloids Surf. B Biointerfaces, vol.84, pp.354-359, 2011.

B. C. Erdoan and S. Ülkü, Cr(VI) sorption by using clinoptilolite and bacteria loaded clinoptilolite rich mineral, Microporous Mesoporous Mater, vol.152, pp.253-261, 2012.

D. L. Vullo, H. M. Ceretti, M. A. Daniel, S. A. Ramírez, and A. Zalts, Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E, Bioresour. Technol, vol.99, pp.5574-5581, 2008.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2019 by the authors. Licensee MDPI