
HAL Id: hal-02354252
https://hal.science/hal-02354252

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analyzing Requirements Using Environment Modelling
Dominique Mery, Neeraj Kumar Singh

To cite this version:
Dominique Mery, Neeraj Kumar Singh. Analyzing Requirements Using Environment Modelling. DHM
2015 - 6th International Conference on Digital Human Modeling Applications in Health, Safety, Er-
gonomics and Risk Management: Ergonomics and Health, Aug 2015, Los Angeles, United States.
pp.345-357, �10.1007/978-3-319-21070-4_35�. �hal-02354252�

https://hal.science/hal-02354252
https://hal.archives-ouvertes.fr


Any correspondence concerning this service should be sent to the 
repository administrator: 

staff-oatao@listes-diff.inp-toulouse.fr 

To link to this article : DOI: 10.1007/978-3-319-21070-4_35 

URL : https://doi.org/10.1007/978-3-319-21070-4_35 

Open Archive Toulouse Archive Ouverte (OATAO) 
OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible.  

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 23591 

To cite this version: Mery, Dominique and Singh, Neeraj Kumar  
Analyzing Requirements Using Environment Modelling. (2015) In: Digital 
Human Modeling - Applications in Health, Safety, Ergonomics and Risk 
Management: Ergonomics and Health - 6th International Conference 
(DHM 2015), 2 August 2015 - 7 August 2015 (Los Angeles, United 
States) 

mailto:staff-oatao@listes-diff.inp-toulouse.fr
https://doi.org/10.1007/978-3-319-21070-4_35
http://oatao.univ-toulouse.fr/
http://www.idref.fr/159807883


Analyzing Requirements Using
Environment Modelling

Dominique Méry1 and Neeraj Kumar Singh2(B)

1 Université de Lorraine, LORIA, BP 239, Nancy, France
Dominique.Mery@loria.fr

2 McMaster Centre for Software Certification,
McMaster University, Hamilton, Canada

singhn10@mcmaster.ca

Abstract. Analysing requirements is a major challenge in the area of
safety-critical software, where requirements quality is an important issue
to build a dependable critical system. Most of the time, any project
fails due to lack of understanding of user needs, missing functional and
non-functional system requirements, inadequate methods and tools, and
inconsistent system specification. This often results from the poor qual-
ity of system requirements. Based on our experience and knowledge,
an environment model has been recognized to be a promising approach
to support requirements engineering to validate a system specification.
It is crucial to get an approval and feedback in early stage of system
development to ensure completeness and correctness of requirements
specification. In this paper, we propose a method for analysing sys-
tem requirements using a closed-loop modelling technique. A closed-loop
model is an integration of system model and environment model, where
both the system and environment models are formalized using formal
techniques. Formal verification of the closed-loop model helps to identify
missing system requirements or new emergent behaviours, which are not
covered earlier during the requirements elicitation process. Moreover, an
environment model assists in the construction, clarification, and valida-
tion of the given system requirements.

Keywords: Environment modelling · Closed-loop modelling · Analy-
sing requirements · Verification

1 Introduction

Requirements engineering (RE) provides a framework for simplifying a complex 
system to get a better understanding of system requirements by using several for-
mal and informal techniques. It plays an important role in early stage of system 
development to meet system qualities, success of the system, and reducing the cost 
of overall development. The prime causes of project failure are lack of understand-
ing of system behaviour, missing functional and non-functional requirements, and 
inconsistent system requirements, which often lead to poor quality of require-
ments specification. Increasing complexities and system requirements require to

Springer International Publishing Switzerland 2015
V.G. Duffy (Ed.): DHM 2015, Part II, LNCS 9185, pp. 345–357, 2015.
DOI: 10.1007/978-3-319-21070-4 35



pay more attention towards requirements engineering to omit a system failure [1].
“what the system should do?” is an initial goal of requirements engineering. Incom-
pleteness, ambiguity, inconsistencies, and vagueness, are the most common prob-
lems encountered during the elicitation and specification of system requirements.
However, the prime objective of any requirements engineering tool is to address
these common problems [1].

To identify missing system requirements, inconsistency or new emergent
behaviours in early stage of system development for developing a quality, safety,
and dependable system, we need to look beyond the system itself, and into the
working environment, including human interactions. Requirements traceability
is a branch of the requirements management within the software development.
Requirements traceability is concerned with documenting the life of require-
ments and to allow bi-directional traceability in the system requirements, and
product produced like source codes and test cases. It enables users to identify
the origin of each requirement and track every change, which was made to this
requirement. Validation of requirements specification is an integral and essential
part of requirements engineering. Validation is a process of checking, together
with stakeholders, whether the requirements specification meets its stakeholders’
intentions and expectations [2].

In this paper, we propose a method for analysing system requirements using
environment modelling. The environment model and system model form a closed-
loop system to trace missing requirements or new emergent behaviours. The
closed-loop model is an integration of system model and environment model,
where both the system and environment models are formalized using formal
techniques. Formal verification of this closed-loop model helps to identify missing
system requirements or new emergent behaviours, which are not covered earlier
during the requirements elicitation process. This closed-loop modelling approach
helps to get confidence in early stage of system development. This approach offers
numerous benefits of the proposed approach as follows:

– Closed-loop modelling in early stage of system development;
– Identifying gaps or inconsistencies in system requirements;
– Strengthening the given system requirements;
– To support “what-if” analysis during formal reasoning;
– Traceability of missing behaviours that leave the system in undesired state;
– Automatic identification of an emergent behaviour;
– Validation of the system assumptions;
– Financial benefits that can allow to change the system requirements.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 presents a short description of requirements engineering.
Section 4 presents an overview of environment modelling. Section 5 presents a
case study to model a closed-loop system for verifying system requirements.
Section 6 discusses the environment modelling approach for analysing system
requirements. Section 7 concludes the paper.



2 Related Work

Requirements analysis is an important step in the software development lifecycle
that allows for eliciting, analysing, and recording the system requirements. The
requirements should be unambiguous, satisfying completeness, formally verified,
proper documented, and traceable. A list of errors related to software require-
ments is given in [3]. This paper also presents a detailed survey on different
types of errors that are the root causes for failing the critical systems. The root
causes are program faults, human errors, and process flaws. There are several
methods are applicable for requirements analysis like prototyping and simula-
tion. The exiting methodologies are not sufficient, and we are still striving for
better methods for improving the requirements analysis process.

Prototype refers to an incomplete version of the system development that
simulates a system partially when system requirements are indefinite and system
behaviours are unclear [4]. Goguen et al. [5] have proposed a novel approach for
constructing a prototype using formal specification, where this work advocates
the use of an algebraic specification language for executing the given specifica-
tion. A run-time technique for monitoring the system requirements for satisfac-
tion purpose is presented in [6], where the system requirements are monitored
for violations, and system behaviour is dynamically adapted a new behaviour.
New introduced behaviour changes the system requirements that must meet the
higher-level goals.

There are few approaches reported in the literature related to environment
modelling. Kishi et al. [7] have proposed an environment modelling approach
for an embedded system. A new language is proposed in [8] for modelling an
environment and required behaviour to simulate an environment. The UML
class diagram and sequence diagram are also used together for modelling and
simulating an environment in [9]. Kreiner et al. [10] have presented a process to
develop an environment model for simulation purpose, where this environment
model can be used to simulate the automatic logistic systems.

An environment modelling is not limited for simulation purpose only. There
are some works reported in the literatures that discuss testing based on an
environment of a system. This type of environment modelling is applicable for
rigorous testing of a given system. Auguston et al. [11] have discussed the devel-
opment of environment behavioural models using Attributed Event Grammar
for testing an embedded system. Heisel et al. [12] have proposed the use of a
requirement model and an environment model using the UML state machines
for testing. A testing approach for synchronous reactive software is presented
in [13] using the temporal logic based on the environmental constraints.

3 Requirements Engineering

Requirements characterize a system related to functional and non-functional
behaviours, system properties and safety constraints that must be satisfied by a
developing system. The Institute of Electrical and Electronics Engineers (IEEE)



defines a requirement as a condition or capability that must be met or pos-
sessed by a system or system components to satisfy the contract, standard,
specification, or other formally imposed document [14]. Requirements engineer-
ing allows the use of systematic techniques for ensuring completeness, consistency
and relevance of system requirements [15]. Requirements engineering has numer-
ous phases for requirements elicitation, analysis, specification, verification, and
management. The requirement elicitation is a process for identifying, reviewing,
checking, and documenting a stakeholder needs for a given system. The require-
ments analysis is a process that allows to check a stakeholder needs and system
constraints using formal and informal techniques. The requirements specification
is a process for documenting a stakeholder needs and constraints unambiguously
and precisely using formal or semi-formal techniques. The requirements verifica-
tion allows to ensure completeness, correctness, understandable and consistent of
system behaviour according to stakeholders. The requirements management uses
for managing, coordinating, and documenting the system development life-cycle.

In requirements engineering the elicitation process is important to capture
rationales and sources precisely in order to understand the requirements evo-
lution and verification. Requirements analysis advocates desirable properties of
the software development processes, and numerous problems are identified dur-
ing the development process. It involves for finding variations and commonalities
in the system development process. Moreover, it also allows feedback mechanism
to provide essential information for reducing complexity by eliminating complex
requirements by simple requirements. There are several techniques that are use-
ful for improving the quality of requirements for dependable critical systems. In
this paper, we propose a new technique for analysing requirements using envi-
ronment modelling by developing a closed-loop model. A closed-loop model is an
integration of system model and environment model, where both the system and
environment models are specified using formal modelling language. This approach
has potential benefits to trace missing requirements or new emergent behaviours.
All these approaches, methods, techniques and tools proposed for analysing the
requirements are useful as long as its adoption decision is present preferably dur-
ing the early stages of the projects, and we need to understand how a decision
on analysing requirements is made and which factors influence an adoption of the
requirements engineering. Here, we present the conceptual treatment for analysing
the system requirements using environment modelling for identifying peculiar
requirements, which eventually provide us with a theoretical lens to examine this
adoption in a systematic manner.

4 Environment Modelling

If environment models are to be used for safe dependable critical systems, they
should not only be sufficiently detailed, but should also be easy to understand
and modify as an environment and critical system evolve. To handle the complex-
ity of a realistic system environment, a modelling language should have provision
for modelling at several levels of abstraction. A modelling language should also



have well-defined syntax and semantics for the tools to specify an environment
model accurately that should be understandable by humans. A modelling language
should also provide features for modelling real world concepts, real-time features,
and other concepts, such as non-determinism, required by the components of an
environment. Formal methods based modelling languages, such as Event-B, Z and
VDM can be used to fulfill the required features for modelling an environment.

In this work, we are using the same notations to model an environment that
are used for modelling the software systems. It is important to note that the
methodology for environment modelling is significantly different from the sys-
tem modelling. While modelling for an industrial case, we have abstracted the
functional details of the environment components to an extent that hide the sys-
tem complexities. For modelling an environment behaviour, non-determinism is
widely used, which is not nearly as common when modelling an internal behav-
iour of a system.

For verifying and tracing the missing requirements or new emergent behav-
iours of a system based on its environment, the behaviour details of the envi-
ronment are as important as its structural details. Structural details of a critical
system environment are important to understand the overall composition of an
environment using actuators and sensors, characteristics of various components,
and their relationships. We select the Event-B modelling language to model
these details using stepwise incremental refinement, where each refinement step
is built by the correct-by-construction approach. The incremental refinement also
adds the required safety properties to develop a safe and correct environment.
The behavioural details of environment components are required to specify the
dynamic aspects of an environment, for example, to determine the possible envi-
ronment states, before and after its interactions whenever system is in effect,
and to specify the possible interactions between the system and its environment.

In the following subsections, we discuss a modelling methodology for devel-
oping an environment model (the heart). Then the heart model will be used to
develop a closed-loop model for a cardiac pacemaker. This closed-loop model of
the pacemaker and heart can be used further for analysing system requirements
and to identify missing requirements or new emergent behaviours.

4.1 Heart Model

The heart is a muscular organ that functions as the body’s circulatory pump.
It contains four chamber (see Fig. 1(a)), which contract and relax periodically.
For contracting and relaxing, the heart requires an electrical stimulus that is
generated by the sinus node. This electrical stimulus travels down through the
conduction pathways. The electrical current flows progressively in the heart mus-
cle using special conduction cells. To design an environment model of the heart,
we select a set of landmark nodes (A, B, C, D, E, F, G, H) on the conduction
network (see Fig. 1(b)), that controls the contraction and relaxing functionalities
of the heart. Here, we describe only core idea for developing the heart model.
Interested readers can find the modelling process in [16,17]. We introduce the
necessary elements using formal notations to define the heart system as follows:



Fig. 1. The electrical conduction and landmarks of the heart system [16]

Definition 1 (The Heart System). Given a set of nodes N, a transition (con-
duction) t is a pair (i, j), with i, j ∈ N. A transition is denoted by i � j. The
heart system is a tuple HSys = (N, T, N0, TWtime, CWspeed) where:

• N = { A, B, C, D, E, F, G, H } is a finite set of landmark nodes in the
conduction pathways of the heart system;

• T ⊆ N × N = { A �→ B, A �→ C, B �→ D, D �→ E, D �→ F, E �→ G, F �→ H }
is a set of transitions to represent electrical impulse propagation between two
landmark nodes;

• N0 = A is the initial landmark node (SA node);
• TWtime ∈ N →TIME is a weight function as time delay of each node, where

TIME is a range of time delays;
• CWspeed ∈ T → SPEED is a weight function for the impulse propagation

speed of each transition, where SPEED is a range of propagation speeds.

Property 1 (Impulse Propagation Time). In the heart system, the elec-
trical impulse originates from the SA node (node A), travels through the entire
conduction network and terminates at the atrial muscle fibres (node C) and
at the ends of the Purkinje fibres in both sides of the ventricular chambers
(node G and node H). The impulse propagation time delay differs for each land-
mark node. The impulse propagation time is represented as the total function
TWtime ∈ N → P(0..230). The impulse propagation time delay for each node
is represented as: TWtime(A) = 0..10, TWtime(B) = 50..70, TWtime(C) =
70..90, TWtime(D) = 125..160, TWtime(E) = 145..180, TWtime(F ) = 145..180,
TWtime(G) = 150..210 and TWtime(h) = 150..230.

Property 2 (Impulse Propagation Speed). The impulse propagation speed
also differs for each transition (i � j, where i, j ∈ N). The impulse propagation
speed is represented as the total function CWspeed ∈ T → P(5..400). The Impulse
propagation speed for each transition is represented as: CWspeed(A �→ B) =



Fig. 2. Impulse propagation through landmark nodes [16]

30..50, CWspeed(A �→ C) = 30..50, CWspeed(B �→ D) = 100..200, CWspeed(D �→
E) = 100..200, CWspeed(E �→ G) = 300..400 and CWspeed(F �→ H) = 300..400.

The generated electrical stimulus from the sinus node propagates through the con-
duction network and selected landmark nodes (see Fig. 2). This electrical activity
synchronizes the contraction of atria and ventricles. Changing conduction speed
affects the natural rhythm and produces abnormalities. The abnormalities lead to
various types of arrhythmias. The bradycardia is generated due to slow conduc-
tion speed, and the tachycardia is generated due to fast conduction speed. Prop-
erty 1 and Property 2 describe a range of values for impulse propagation time delay
for each landmark node and impulse propagation speed for each conduction path,
respectively.

The heart blocking is an important term for describing a disorder of
conduction of the impulse that stimulates heart muscle contraction. Disturbances
in conduction may appear as slow conduction, intermittent conduction failure
or complete conduction failure. These three kinds of conduction failure are also
known as 1st, 2nd and 3rd degree blocks. We can show these different kinds of
heart block throughout the conduction network using selected landmark nodes
(see Fig. 3).

A set of spatially distributed cells forms a CA (Cellular Automata) model,
which contains a uniform connection pattern among neighbouring cells and local
computation laws. The CA is a discrete dynamic system corresponding to space
and time that provides uniform properties for state transitions and intercon-

Fig. 3. Impairments in impulse propagation due to the heart blocks [16]



nection patterns. The cardiac muscle cells of the heart are presented in the
following states: Active, Passive or Refractory. Initially, all cells are Passive,
where each cell is discharged electrically and has no influence on its neighbouring
cells. When an electrical impulse propagates, the cell becomes charged and even-
tually activated (Active state). The Active cell transmits an electrical impulse
to its neighbour cells. The electrical impulse is propagated to all the cells in
the heart muscle. After activation, the cell becomes discharged and enters in the
Refractory state within which the cell cannot be reactivated. After a time, the
cell changes its state to the Passive state to await the next impulse [17].

5 Case Studies

This section describes a closed-loop model of the cardiac pacemaker and heart,
where the cardiac pacemaker responses according to functional behaviour of the
heart [16,17]. The main objective of this closed-loop model is for finding inconsis-
tencies, verifying essential safety properties, identifying an emergent behaviour,
and strengthening the given system requirements. Due to limited space, we only
provide a brief description of the closed-loop system development. A detailed
formalization, including safety properties is available in [17,18].

5.1 Abstract Model

To define an abstract model of a closed-loop system, we develop a combined
model of the cardiac pacemaker and heart, where the cardiac pacemaker actu-
ates and senses according to the heart behaviour. The environment model of
the heart behaves according to observations of an impulse propagation in the
conduction network. For developing an abstract model, initially we capture the
electrical features thorough defining a set of landmark nodes, impulse propa-
gation times, impulse propagation paths, and impulse propagation speeds. The
given parameters describe possible normal and abnormal behaviours of the heart.
The cardiac pacemaker model contains sensors, actuators, and timing intervals.
The timing intervals are upper rate limit, lower rate limit, and refectory peri-
ods for atria and ventricular chambers. The abstract model contains numerous
events related to the heart and cardiac pacemaker models to describe the closed-
loop model considering several interesting safety properties to establish a desired
behaviour for satisfying the given system requirements. We introduce a clock,
where time increases progressively by 1 (ms). This clock event controls the time
line of pacing and sensing activities including heart impulse propagation.

5.2 Refinement 1: Threshold and Impulse Propagation

This refinement step introduces the impulse propagation that originates from the
sinus node and travels down through the conduction network using the landmark
nodes. The electrical impulse reaches at the Purkinje fibers of the ventricles. We
describe the impulse propagation activities using a set of events, where electrical



impulse passes through the several intermediate landmark nodes and finally sinks
to the terminal nodes (C, G, H). The conduction model uses a clock counter
to model a real-time system to satisfy the required temporal properties. A set
of new events simulates a desired behaviour of the impulse propagation into
the heart conduction network, where each new refined event formalizes impulse
flow between two landmark nodes. The cardiac pacemaker model is enriched
by introducing concrete behaviour of sensors for both the atrial and ventricular
chambers, where sensors filter a desired sensing value through comparing with
selected standard threshold values. The standard threshold value for atria is
always lower than the ventricular chamber. The heart conduction behaviour is
continue monitored by the cardiac pacemaker model to allow or inhibit to pace
into the heart chamber to control a desired behaviour of the heart according to
the standard threshold value under the required timing intervals.

5.3 Refinement 2: Hysteresis and Perturbation the Conduction

This refinement step introduces an abnormal behaviour by introducing the heart
blocking activities, and hysteresis operating mode. The blocking behaviour spec-
ifies perturbation in the heart conduction network to realize an actual abnormal
behaviour of the heart. A set of events is introduced using progressive refinement
to simulate possible desired blocking behaviours. This blocking activities gen-
erate abnormalities into the electrical impulse propagation, which are destined
through partition the landmark nodes in the conduction network. The cardiac
pacemaker model introduces a new operating mode known as hysteresis, which
prevents the constant pacing. This mode allows a patient to have his or her own
underlying rhythm as much as possible. The hysteresis is a programmed feature
whereby the pacemaker paces at a faster rate than the sensing rate. A list of
events describes this feature for the cardiac pacemaker model.

5.4 Refinement 3: Rate Modulation and Cellular Model

This is the last refinement of the closed-loop system, where a cellular level
description is added to the heart, and the rate modulation is added to the car-
diac pacemaker. This refinement provides a simulation model that allows to
describe the impulse propagation at the cellular level using cellular automata.
An electrical impulse propagates at the cells level. A set of events is used to
formalize a desired behaviour of the heart using cellular automata. The cardiac
pacemaker model is enriched by describing a rate adapting pacing technique. The
rate adapting pacing technique gives freedom to select automatically a desired
pacing rate according to physiological needs. Automatic selection of a desired
pacing rate helps to increase or decrease the pacing rate and assists a patient
for controlling the heart rate according to daily activities. The rate modulation
sensor is used to determine the maximum exertion performed by a patient. This
increased pacing rate refers to the sensor indicated rate. Reducing the physical
activities helps to progressively decrease the pacing rate down to the lower rate.
A set of new refined events models increasing and decreasing pacing rates of the
cardiac pacemaker.



5.5 Proof Statics

Table 1. Proof statistics
Model Total num-

ber of POs

Automatic

proof

Interactive

proof

Closed-loop model of One-electrode pacemaker

Abstract model 304 258 (85%) 46 (15%)

First refinement 1015 730 (72%) 285 (28%)

Second refinement 72 8 (11%) 64 (89%)

Third refinement 153 79 (52%) 74 (48%)

Closed-loop model of Two-electrode pacemaker

Abstract model 291 244 (84%) 47 (16%)

First refinement 1039 766 (74%) 273 (26%)

Second refinement 53 2 (4%) 51 (96%)

Third refinement 122 60 (49%) 62 (51%)

Total 3049 2147 (70%) 902 (30%)

In this section, we briefly dis-
cuss how a closed-loop sys-
tem modelling approach can
be used to analyse system
requirements for finding missing
requirements. Table 1 expresses
the proof statistics of the devel-
opment of the closed-loop model
of the cardiac pacemaker within
the heart environment. These
statistics measure the size of
the model, the proof obligations
(POs) generated and discharged
by the Rodin prover and those
that are interactively proved.

This closed-loop development results in 3049 (100 %) POs, in which 2147
(70 %) POs are proved automatically, and the remaining 902 (30 %) POs are
proved interactively using the Rodin prover. The environment (heart) model
is used together with the system (pacemaker) model for verification purpose,
that generates automated oracles. These oracles are new proof obligations those
are not appeared independently in the system (pacemaker) and environment
(heart) models. These generated proof obligations are produced according to
the expected system behaviour corresponding to the environment model. A set
of new generated POs helps to discover new behaviours by checking formal proofs
or undischarged POs. However this approach also helps to check validation of the
given assumptions, and identification of new emergent behaviours in the cardiac
pacemaker.

6 Analysing Requirements Based on Environment
Models

In this section, we briefly discuss how our environment modelling approach
is used to analyse system requirements for identifying missing system require-
ments or new emergent behaviours. The formal model of environment (heart) in
Event-B describes the environmental properties in various refinement layers. The
developed environment model is used together with the system (cardiac pace-
maker) model for verification purpose, that generates automated oracles. These
oracles are new proof obligations that do not appear independently in the sys-
tem model and in the environment model. These generated POs are produced
according to the expected system behaviour corresponding to the environment
model. However, these generated POs also allow to have more precise actions
corresponding to the given guards that should be strengthen to meet expected
dynamic behaviours of the cardiac pacemaker, including timing constraints and



pacing and sensing activities. Moreover, the closed-loop model can be used for
various purposes during the system development, such as automated code gen-
eration and automated test case generation.

In this work, we have focused on formalizing the closed-loop system behaviour
of a cardiac pacemaker using several incremental refinements. The goal of this
closed-loop model is to provide the nondeterministic behaviour such that an
environmental error state is reached during the formal verification, if any fault is
present. In fact, to have effective heuristics we need to have precise knowledge of
the error states. This information is easily added in the models using stereotypes.
All the relevant states/transitions that lead to those error states can be exploited
for the automatic derivation of a desired function.

In some relevant cases, it is possible to automatically derive very precise
desired functions. This happens when time constraints need to be satisfied, for
example a cardiac pacemaker must actuate at exact time interval. Modellers do
not need to write these heuristics, they are in fact automatically derived from the
given environment model. This is essential, because in general software modellers
do not have access to such expertise to write proper desired functions for search
algorithms. The results of this experiments show that our closed-loop modelling
methodology can be used for a fully automated system verification that is effec-
tive in revealing new emergent behaviours, missing system requirements and
inconsistencies in the given system. Although the system modelling and envi-
ronment modelling can be designed in many ways using different strategies,
the closed-loop modelling methodology and analysing requirements technique
described here would still remain the same.

7 Conclusion

In this paper, we have discussed system requirements analysis using environment
modelling. The integration of system model and environment model forms a
closed-loop system to trace new emergent behaviours or missing requirements.
For practical reason and to facilitate to handle a large complex system, we use
the Event-B modelling language to support incremental refinement for modelling,
structuring and defining the safety constraints. We have briefly discussed how
an environment model is used to simulate required operating environment for a
given system using formal logics. The main advantage of this environment model
is to assist in the construction, clarification, and validation of the given system
requirements.

We have modelled an environment model for the heart for investigating the
expected behaviours of a cardiac pacemaker. Given that a cardiac pacemaker
interacts with the heart exactly at this level (i.e., electrical impulses), this
model is a very promising “environmental model” to be used in parallel with
a pacemaker model to form a closed-loop system. This model therefore has an
immediate use in “the grand challenges in formal methods” where an indus-
trial pacemaker specification has been elected as a benchmark. The closed-loop
modelling of the heart and cardiac pacemaker involves formalizing and reason-
ing about pacemaker behaviour under normal and abnormal heart conditions.



A set of requirements is given in the closed-loop model for modelling general
and patient specific conditions. Based on these requirements, we have presented
an interactive and physiologically relevant closed-loop model for verifying basic
and complex operations of a cardiac pacemaker. The main benefits of this work
are as follows:

– To support verification and validation activities;
– Identifying gaps or inconsistencies in system requirements;
– Strengthen the given system requirements;
– To support “What-if” analysis during formal reasoning;
– Closed-loop modelling in early stage of system development;
– Analysing requirements, reducing cost, and virtualization;
– Increase confidence level and decrease the failure risks;
– To satisfy V&V requirements for domain specific certification standards;
– Automatic identification of new emergent behaviours;
– Validation of the system assumptions.

The main objectives of our work are to promote the use of such kind of closed-
loop modelling approach to bridge a gap between software engineers and stake-
holders to build a quality system, and to discover all ambiguous information
from the requirements. Moreover, this approach helps to verify the correctness
of behaviour of a system according to stakeholder requirements. There are sci-
entific and legal applications as well, where the formal model based closed-loop
modelling approach has certain scenarios to glean more information or better
understandings of a system and assist to improve the final given system.

Acknowledgement. This work was supported by grant ANR-13-INSE-0001 (The
IMPEX Project http://impex.loria.fr) from the Agence Nationale de la Recherche
(ANR).

References

1. Bubenko Jr., J.A.: Challenges in requirements engineering. In: Proceedings of the
Second IEEE International Symposium on Requirements Engineering, pp. 160–162,
March 1995

2. McDermid, J.: Software Engineer’s Reference Book. CRC Press Inc, Boca Raton
(1991)

3. Lutz, R.: Analyzing software requirements errors in safety-critical, embedded sys-
tems. In: Proceedings of IEEE International Symposium on Requirements Engi-
neering, pp. 126–133, January 1993

4. Davis, A.M.: Operational prototyping: a new development approach. IEEE Softw.
9, 70–78 (1992)

5. Goguen, J., Meseguer, J.: Rapid prototyping: in the obj executable specification
language. SIGSOFT Softw. Eng. Notes 7, 75–84 (1982)

6. Fickas, S., Feather, M.S.: Requirements monitoring in dynamic environments. In:
Proceedings of the Second IEEE International Symposium on Requirements Engi-
neering, RE 1995, pp. 140–147. IEEE Computer Society, Washington, DC (1995)

http://impex.loria.fr


7. Noda, N., Kishi, T.: Aspect-oriented modeling for embedded software design. In:
14th Asia-Pacific Software Engineering Conference, APSEC 2007, pp. 342–349,
December 2007

8. Karsai, G., Neema, S., Sharp, D.: Model-driven architecture for embedded software:
a synopsis and an example. Sci. Comput. Program. 73(1), 26–38 (2008)

9. Choi, K., Jung, S., Kim, H., hwan Bae, D.: Uml-based modeling and simulation
method for mission-critical real-time embedded. In: System Development, IASTED
Conference on Software Engineering 2006, pp. 160–165. Mittal, Zeigler and De la
Cruz. (2006)

10. Kreiner, C., Steger, C., Weiss, R.: Improvement of control software for automatic
logistic systems using executable environment models. In: Proceedings of 24th
Euromicro Conference, vol. 2, pp. 919–923, August 1998

11. Auguston, M., Michael, J.B., Shing, M.T.: Environment behavior models for
automation of testing and assessment of system safety. Inf. Softw. Technol. 48(10),
971–980 (2006). Advances in Model-based Testing

12. Heisel, M., Hatebur, D., Seifert, T.S.D.: Testing against requirements using uml
environment models. In: Fachgruppentreffen Requirements Engineering und Test,
Analyse and Verifikation, pp. 28–31 (2008)

13. du Bousquet, L., Ouabdesselam, F., Richier, J.L., Zuanon, N.: Lutess: a
specification-driven testing environment for synchronous software. In: Proceed-
ings of the 21st International Conference on Software Engineering, ICSE 1999, pp.
267–276. ACM, New York (1999)

14. IEEE Standard: IEEE Standard Glossary of Software Engineering Terminology.
IEEE Std 610. 12-1990, pp. 1–84, December 1990

15. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide,
1st edn. Wiley, New York (1997)

16. Méry, D., Singh, N.K.: Formalization of heart models based on the conduction of
electrical impulses and cellular automata. In: Liu, Z., Wassyng, A. (eds.) FHIES
2011. LNCS, vol. 7151, pp. 140–159. Springer, Heidelberg (2012)

17. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer, London
(2013)

18. Méry, D., Singh, N.K.: Closed-loop modeling of cardiac pacemaker and heart. In:
Weber, J., Perseil, I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 151–166. Springer,
Heidelberg (2013)


	Analyzing Requirements Using Environment Modelling
	1 Introduction
	2 Related Work
	3 Requirements Engineering
	4 Environment Modelling
	4.1 Heart Model

	5 Case Studies
	5.1 Abstract Model
	5.2 Refinement 1: Threshold and Impulse Propagation
	5.3 Refinement 2: Hysteresis and Perturbation the Conduction
	5.4 Refinement 3: Rate Modulation and Cellular Model
	5.5 Proof Statics

	6 Analysing Requirements Based on Environment Models
	7 Conclusion
	References


