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Abstract In the quest for biocompatible nanocarri-

ers for biomedical applications, a great deal of effort is

put on engineering the nanocomposites surface in

order to render them specific to the particular purpose.

We developed biocompatible PLGA-b-PEG-based

nanoparticles carrying a double functionality (i.e.,

carboxylic and acetylenic) able to serve as flexible

highly selective grafting centers for cancer diagnosis

and treatment. As a proof of concept, the nanocarrier

was successfully functionalized with a tailored fluo-

rescent molecule by means of click chemistry and with

a targeting agent specific for glioblastoma multiforme

via amidic bond formation.

Keywords Click � Fluorescein � Functionalized

polymers � Nanochemistry � Glioblastoma

Introduction

The addition of functional groups to the surface of

nanoparticles (NPs) is usually highly required to

enable the bioconjugation, and therefore, to obtain

multifunctional nanobiomaterials. Generally, linkers

with terminal amino, thiol, or carboxylic groups are

preferred (Hermanson 2008). However, these func-

tional groups are quite common and abundant in the

biomolecules; thus, even though often used, in some

cases, they could compromise selective conjugation.

Moreover, charged species (NH2 or COOH) give rise

to electrostatic (unspecific) interactions that could lead

to particles aggregation.

Nevertheless, the multiple presence of functional

groups on nanocarriers would certainly be an impor-

tant item for the synthesis of biohybrid polymeric

nanoparticles (PNPs) (Metallo et al. 2003) and the

combination of tracking agents, synthetic polymers,

and biomolecules into new classes of nanomaterials

has indeed gained much interest in recent years and

has now become an important field in diagnostics.

Among the most important synthetic polymers, the

poly(lactic-co-glycolic acid)-block-poly(ethylenegly-

col) (PLGA-b-PEG) deserves a special mention (Gu

et al. 2008). Our interest is (Locatelli and Comes

Franchini 2012; Gentili et al. 2009) in the PLGA-b-

PEG–COOH due to special properties, such as amph-

iphilicity and its simple synthesis. It is indeed a unique

biomaterial: it possess both the biodegradability and

biocompatibility of PLGA polymer and the stealth
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behavior of PEG. Due to its well-distinct lipophilic

(PLGA) and hydrophilic (PEG) portions, it can form

micelles displaying internally the hydrophobic PLGA

part and externally the hydrophilic PEG, which forms

a stabilizing external shell. These unique physico-

chemical characteristics and behavior make the

micelles extremely versatile and able to easy entrap,

in the inner core constituted of PLGA chains,

lipophilic molecules such as drugs or smaller nano-

structures. The residual functional groups on the outer

shell linked to the PEG can be further be elaborated

from the synthetic point of view.

Taking into consideration, the above mentioned

problem related to the common functional groups,

there is a well-established combination of functional

groups that emerged in the last years. Huisgen 1,3-

dipolar cycloaddition (1,3-DC), involves the reaction

of an azido group to an alkyne group and provide fast

access to an enormous variety of robust and stable

heterocycles called triazoles (Huisgen 1984). This so

called ‘‘click-chemistry’’ is therefore an attractive

reaction because these two organic functional groups

are hardly present in proteins and oligomers. The

application of click-chemistry in bioconjugation reac-

tions works for molecularly dissolved species, but can

also be used to functionalize the nanostructured

materials, giving thus an easy entry to hybrid multi-

functional nanobiomaterials (Opsteen et al. 2008).

Moreover, the catalytic effect of Cu(I) ions of this

cycloaddition, discovered by Meldal (Tornøe et al.

2002) and Sharpless (Rostovtsev et al. 2002), gave a

great stimulus to the application of this reaction

(Moses and Moorhouse 2007). Notably, in terms of

biological applications, as the bioconjugation, the

metal-catalyzed click 1,3-DC proceeds in high yields

and occurs at room temperature in aqueous solution at

neutral pH.

Therefore, a polymeric nanocarrier based on

PLGA-b-PEG carrying a double functionality of such

kinds at its hydrophilic surface, and so enabling easy

docking of diverse organic bioactive species and

tracking agents, would represents a perfect support for

theranostic purposes or drug delivery.

Concerning the tracking, fluorescence imaging is

one of the most powerful technique currently avail-

able for continuous observation of dynamic intracel-

lular processes in living cells (Johnson 1998;

Agarwal et al. 2008; Urano et al. 2005). Fluorescein

was first developed in the nineteenth century (Weber

and Teale 1958), and has become widely known as a

highly fluorescent molecule that emits longer wave-

length light upon excitation at around 500 nm in

aqueous media. Bioconjugation on polymeric

micelles with fluorescent moieties is still an important

challenge (Wang et al. 2009), therefore, the func-

tionalization of the commercially available fluores-

cein isothiocyanate (FITC) in order to link the

fluorescent part onto the surface of PNPs would be

an important synthetic goal.

We report an innovative biohybrid nanomaterial

based on the copolymer PLGA-b-PEG, having multi-

ple outer shell decoration for selective double func-

tionalization. In details, one functional group is an

acetylenic group to develop a click-reaction with a

synthetic azidofluorescein. The second functional

group, the carboxylic group, is used to conjugate the

Chlorotoxin (Cltx), a specific peptide for in vitro

targeting of the human primary brain tumor glioblas-

toma U87MG cell line.

Results and discussion

While the PLAG-b-PEG–COOH has been previously

fabricated (Cheng et al. 2007) and it was reproduced

in this work following a similar methodology, the

copolymer ending with an acetylenic (CCH) group

PLGA-b-PEG–CCH was synthesized for the first

time by readapting the same procedure and replacing

the NH2–PEG–COOH reagent by its acetylenic

commercial counterpart NH2–PEG–CCH. The two-

steps protocol is straightforward and leads to a clean

and stable co-polymer in 85 % yield (Scheme 1). A

derivative of fluorescein, which was synthesized for

the first time by a common nucleophilic addition

reaction between the FITC and the amino group of a

p-azidoaniline, was chosen as a fluorescent dye. As

reported in Scheme 1, the reaction was carried out in

N,N-dimethylformamide (DMF) with triethylamine

(TEA) giving 1-(4-azidophenyl)-3-(30,60-dihydroxy-

3-oxo-3H-spiro[isobenzofuran-1,90-xanthen]-5-yl)thio-

urea 1 in 90 % yield. A similar approach to obtain

azido-terminal fluorescein was already pursued

exploiting more expensive and hazardous linkers

(Lin et al. 2006). The substituted fluorescein 1 carries

now a pendant azido group which can react with an

acetylenic moiety via the copper-catalyzed cycloaddi-

tion (CuAAC) reaction.
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The PNPs fabrication was achieved through the

nanoprecipitation technique (Comes Franchini et al.

2010) by solubilizing in DMSO a 50:50 blend of the

two copolymers PLGA-b-PEG–COOH and PLGA-b-

PEG–CCH, and subsequently mixing it with water

under vigorous stirring and maintaining the water/

organic ratio 10:1 with constant removal of the

solution (Scheme 2). The as-fabricated nanocarrier

PNPs–C/CCH presents a hydrodynamic size of

136.4 ± 0.9 nm with a rather small polydispersity

(PDI = 0.067 ± 0.018). The bifunctionalized surface

of the PNPs leads to a multimodal distribution of the f-

potential with peaks falling in a voltage range lower

than -50 mV, indicating very high stability of the NPs

(see DLS results in the supporting information). The

DLS analyses were repeated over time up to 4 months

showing no major changes. Thus, we can assume that

the NPs are stable for several months if stored at 4 �C.

Next, we focused our attention on the tailoring of the

surface functionalities in order to exploit the fertile

docking centers. Indeed, the polymeric nanocarriers

PNPs–C/CCH represent a perfect support enabling

easy docking of diverse organic bioactive species and

tracking agents. In order to prove the applicability, the

nanocarrier was functionalized with, on one hand, the

as-synthesized fluorescent dye 1 and, on the other

hand, the peptide Cltx.

The click-reaction ensures high specificity as well

as processability in water (Rostovtsev et al. 2002). The

water solution of PNPs–C/CCH was mixed with 1 in

the presence of a catalytic amount of CuSO4 and

sodium ascorbate (Scheme 2). Upon reacting over-

night at room temperature, the fluorescent moiety was

linked, creating a triazole ring, onto the surface giving

PNPs–C/Fluo, and leaving the COOH group still

available. Using the typical 1-ethyl-3-(3-dimethyl-

aminopropyl) carbodiimide (EDC) chemistry, we then

chemically linked the commercially available Cltx to

the outer surface (COOH, ratio Cltx:COOH 8.5:1) of

the PNPs–C/Fluo. The reaction was carried out

overnight at room temperature, and after purification

we obtained PNPs-Fluo/Cltx. It is worth mentioning

that the two organic molecules attached on the surface

sparingly decrease the stability of the particle leading

to a hydrodynamic size of 180.3 ± 3.1 nm with a PDI

of 0.146 ± 0.014 and a f-potential of -38.1 mV at

nearly neutral pH.

The sequence of the reaction proved not to be

indifferent. Trials were also carried out conjugating

the Cltx onto the nanocarrier surface as a first step,

prior to the cycloaddition reaction. The as-fabricated

nanocarriers presented bigger size as well as higher

polydispersity at the DLS (data not shown). Evidently,

once the 36-amino acids peptide is linked on the

surface, it constitutes an obstacle to the copper-

catalyzed click reaction.

The luminescence properties of the PNPs-Fluo/Cltx

together with the one of azidofluorescein and of the
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bare PNPs were monitored using a spectrofluorometer.

The excitation and emission spectra are depicted in

Fig. 1a, b, respectively. The excitation of the azido-

terminal fluorescein occurs at 460 nm and it under-

goes a red shift to 491 upon linkage onto the particle

surface. The green intense emission falls at 522 and at

516 nm for the p-azidofluorescein and the PNPs-Fluo/

Cltx, respectively. As expected, the polymeric NPs

absorb in the near UV (309 nm), and consequently do

not emit when excited in the blue spectral range.

We decided to link the Cltx, a peptide that

specifically binds to metalloproteinase 2 (MMP-2), a

receptor over-expressed by brain cancer (glioblastoma

cells) due to our interest in this research (Comes

Franchini et al. 2010; Locatelli et al. 2012), therefore,

U87MG cells (a stabilized cell line derived from

human glioma) were exposed to 0.88 lg/mL of PNPs-

Fluo/Cltx. This testing concentration is no toxic, as

previously observed (Locatelli et al. 2012). In fact,

U87MG cells were exposed to 50 lg/mL of PNPs-

Cltx for 72 h, and by trypan blue exclusion dye test,

we observed cell viability of 84 % of the unexposed

cells (negative control) (Locatelli et al. 2012).

As shown in Fig. 2, PNPs-Fluo/Cltx (in green, in

Fig. 2b, e) were internalized by U87MG glioblas-

toma–astrocytoma cells after both 48 (Fig. 2a–c) and

72 h (Fig. 2d–f) of exposure. Micelles were mainly

localized in the cytoplasm and we excluded their

internalization in the nuclei analysing each image of

the slices obtained by Z-stack (ApoTome slide mod-

ule, Carl Zeiss, Germany). At the concentrations tested,

they did not alter the cell morphology (Fig. 2c–f)

showing, also considering the toxicological results,

biocompatibility of the system. Our results suggest that

the PNPs-Fluo/Cltx, thanks to the presence of both a

fluorescent dye and to the specificity of Cltx for cancer

cells, could be potentially used as targeting agent for

diagnostic and therapy.
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Fig. 1 Room temperature excitation (a) and emission (b) spec-

tra of the p-azidofluorescein (solid line), PNPs-Fluo/Cltx

(dashed line), and the PNPs–C/CCH (dotted line)
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Conclusion

In conclusion, we have developed the synthesis of a

simple polymeric NPs based on PLGA-b-PEG having

two functional groups on the outer shell. This nanocar-

rier bears an acetylenic group on which we have linked a

fluorescent tag using a click reaction and, moreover, a

carboxylic group, that is able to conjugate peptides and

proteins through simple amidation chemistry. As

already mentioned, the click chemistry is becoming a

major pathway among the biological conjugations and

many dyes or bioactive molecules carrying an azido

pendant are already commercially available. On the

other hand, engineering the nanocarrier surface by

modifying the pristine polymers instead of venturing on

later modification seems to be a preferable approach

which can be further expanded to a large variety of

terminal groups. Accordingly, this novel targetable

nanocarrier has been tested in the in vitro tracking of a

glioma cell line, and is therefore currently being

investigated in our laboratories for active drug delivery

both in vitro and in vivo against glioblastoma.

Experimental section

Synthesis of PNPs–C/CCH

PLGA-b-PEG–COOH (10 kDa, 25 mg, 0.0025 mmol)

and PLGA-b-PEG–CCH (10 kDa, 25 mg, 0.0025 mmol)

were solubilized in 5 mL of DMSO. The organic phase

was mixed to 50 mL of ultrapure water under vigorous

stirring, maintaining water/organic ratio 10/1 with a

constant removal of the solution. The mixture was kept

for 30 min under vigorous stirring. The solution was

concentrated to a volume of 10 mL using a tangential

flow filter (Pellicon XL filter device, Biomax mem-

brane with 500.000 NMWL, Millipore, USA) following

by filtration using a syringe filters SterivexTM-GP of

polyethersulfone (0.22 lm, Millipore, USA). Hydro-

dynamic size = 136.4 ± 0.9 nm, PDI = 0.067 ±

0.018, and f-potential = trimodal, far above the stabil-

ity threshold.

Synthesis of PNPs–C/Fluo and PNPs-Fluo/Cltx

A water solution of PNPs–C/CCH (2 mL, –COOH and

–CCH 1 lmol) was mixed with the p-azidofluorescein

1 (40 mg, 0.076 mmol) together with copper sulfate

hydrate (0.7 mg, 0.0028 mmol) and (?)-sodium L-

ascorbate (0.3 mg, 0.0015 mmol). The mixture was

allowed to stir overnight. The resulting particles were

washed with ultrapure water (up. water) using a

centrifugal (3000 rpm, 15 min) filter devices (Amicon

Ultra, Ultracel membrane with 100.000 NMWL,

Millipore, USA) till the washing water resulted in a

colorless fluid. Finally, the particles were redispersed

in 5 mL of up. water.

To this dispersion, a water solution containing N-

hydroxysulfosuccinimide (0.1 mg, 0.46 lmol) was

added together with 1-ethyl-3-(3-dimethylaminopro-

pyl)carbodiimide (EDC, 2 mg, 0.012 mmol) that was

Fig. 2 Intracellular localization of PNPs-Fluo/Cltx in U87MG

cells. After 48 h (a–c) and 72 h (d–f) exposure, PNPs-Fluo/Cltx

micelles were observed located in the cytoplasm of U87MG

cells. a, d in blue are nuclei stained with Hoechst 33342; b, e in

green are PNPs-Fluo/Cltx micelles; and c, f merge. Size bar:

20 lm. (Color figure online)
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pre-acidified with 0.1 M HCl solution to neutral pH

(*7). The solution was shacked for 30 min to permit

the activation. Next, the Cltx (0.5 mL of a 0.017 M

solution, 0.0085 mmol) was added to the reaction

mixture and it was allowed to shake overnight. The

resulting particles were washed with up. water using a

centrifugal (3000 rpm, 15 min) filter devices (Amicon

Ultra, Ultracel membrane with 100.000 NMWL, Mil-

lipore, USA). Finally, the particles were filtered through

a SterivexTM-GP of polyethersulfone (0.22 lm, Milli-

pore, USA). Hydrodynamic size = 180.3 ± 3.1 nm,

PDI = 0.146 ± 0.014, f-potential = -38.1 mV, and

pH = 7.04. Polymer concentration obtained by weigh-

ing a dried aliquot of the final solution = 1.226 mg/mL.

Intracellular localization of PNPs-Fluo/Cltx

To perform microscopy studies, cells were seeded

onto 4-chamber polystyrene vessel tissue culture-

treated glass slides (BD Falcon, Italy) in 1 mL of

complete cell culture medium and cultured under

standard cells culture conditions (37 �C, 5 % CO2,

95 % humidity). After 24 h, cells were exposed to

0.88 lg/mL of PNPs-Fluo/Cltx for 48 h and 72 h; then

fixed with 4 % (v/v) formaldehyde (Sigma Aldrich,

Italy) solution in PBS and stained using Hoechst-

33342 (Invitrogen, USA) for nuclei. Images were

acquired using an Axiovert 200 M inverted micro-

scope (Carl Zeiss, Germany) equipped with ApoTome

slide module and AxioVision 4.8 software (Carl Zeiss,

Germany), using 409/1.0 objective lens. Images were

acquired using a black and white AxioCam MRm

(Carl Zeiss, Germany) and pseudo-colors were applied

after image acquisition.
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