G. A. Rodan and T. J. Martin, Therapeutic approaches to bone diseases, Science, vol.289, pp.1508-1514, 2000.

C. R. Jacobs, S. Temiyasathit, and A. B. Castillo, Osteocyte mechanobiology and pericellular mechanics, Annu. Rev. Biomed. Eng, vol.12, pp.369-400, 2010.

T. Nakashima, M. Hayashi, and H. Takayanagi, New insights into osteoclastogenic signaling mechanisms, Trends Endocrinol. Metab, vol.23, pp.582-590, 2012.

S. Takeda and G. Karsenty, Central control of bone formation, J. Bone Miner. Metab, vol.19, pp.195-198, 2001.

T. Nakamura, Y. Imai, T. Matsumoto, S. Sato, K. Takeuchi et al.,

H. Takayanagi, D. Metzger, J. Kanno, K. Takaoka, T. J. Martin et al., Estrogen prevents bone loss via estrogen receptor ? and induction of Fas ligand in osteoclasts, Cell, vol.130, pp.811-823, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00188977

A. J. Houben and W. H. Moolenaar, Autotaxin and LPA receptor signaling in cancer, Cancer Metastasis Rev, vol.30, pp.557-565, 2011.

J. P. Mansell, M. Nowghani, M. Pabbruwe, I. C. Paterson, A. J. Smith et al., Lysophosphatidic acid and calcitriol co-operate to promote human osteoblastogenesis: requirement of albumin-bound LPA, Prostaglandins Other Lipid Mediat, vol.95, pp.45-52, 2011.

D. M. Lapierre, N. Tanabe, A. Pereverzev, M. Spencer, R. P. Shugg et al., Lysophosphatidic acid signals through multiple receptors in osteoclasts to elevate cytosolic calcium concentration, evoke retraction, and promote cell survival, J. Biol. Chem, vol.285, pp.25792-25801, 2010.

S. A. Karagiosis, K. , and N. J. , Lysophosphatidic acid induces osteocyte dendrite outgrowth, Biochem. Biophys. Res. Commun, vol.357, pp.194-199, 2007.

W. H. Moolenaar, Development of our current understanding of bioactive lysophospholipids, Ann. N.Y. Acad. Sci, vol.905, pp.1-10, 2000.

T. Eichholtz, K. Jalink, I. Fahrenfort, and W. H. Moolenaar, The bioactive phospholipid lysophosphatidic acid is released from activated platelets, Biochem. J, vol.291, pp.677-680, 1993.

A. Boucharaba, C. Serre, S. Grès, J. S. Saulnier-blache, J. Bordet et al., Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer, J. Clin. Invest, vol.114, pp.1714-1725, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00110127

N. Panupinthu, J. T. Rogers, L. Zhao, L. P. Solano-flores, F. Possmayer et al., P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis, J. Cell Biol, vol.181, pp.859-871, 2008.

J. W. Choi, D. R. Herr, K. Noguchi, Y. C. Yung, C. W. Lee et al., LPA receptors: subtypes and biological actions, Annu. Rev. Pharmacol. Toxicol, vol.50, pp.157-186, 2010.

T. Mutoh, R. Rivera, C. , and J. , Insights into the pharmacological relevance of lysophospholipid receptors, Br. J. Pharmacol, vol.165, pp.829-844, 2012.

K. Noguchi, D. Herr, T. Mutoh, C. , and J. , Lysophosphatidic acid (LPA) and its receptors, Curr. Opin. Pharmacol, vol.9, pp.15-23, 2009.

K. U. Choi, J. S. Yun, I. H. Lee, S. C. Heo, S. H. Shin et al., Lysophosphatidic acidinduced expression of periostin in stromal cells: Prognostic relevance of periostin expression in epithelial ovarian cancer, Int. J. Cancer, vol.128, pp.332-342, 2010.

S. M. Sims, N. Panupinthu, D. M. Lapierre, A. Pereverzev, and S. J. Dixon, Lysophosphatidic acid: A potential mediator of osteoblastosteoclast signaling in bone, Biochim. Biophys. Acta, vol.1831, pp.109-116, 2013.

J. J. Contos, N. Fukushima, J. A. Weiner, D. Kaushal, C. et al., Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.13384-13389, 2000.

J. H. Hecht, J. A. Weiner, S. R. Post, C. , and J. , Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex, J. Cell Biol, vol.135, pp.1071-1083, 1996.

M. A. Kingsbury, S. K. Rehen, J. J. Contos, C. M. Higgins, C. et al., Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding, Nat. Neurosci, vol.6, pp.1292-1299, 2003.

M. Inoue, M. H. Rashid, R. Fujita, J. J. Contos, J. Chun et al., Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling, Nat. Med, vol.10, pp.712-718, 2004.

Y. C. Yung, T. Mutoh, M. E. Lin, K. Noguchi, R. R. Rivera et al., Lysophosphatidic acid signaling may initiate fetal hydrocephalus, Sci. Transl. Med, vol.3, pp.99-87, 2011.

A. M. Tager, P. Lacamera, B. S. Shea, G. S. Campanella, M. Selman et al., The lysophosphatidic acid receptor LPA(1) links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak, 2008.

. Med, , vol.14, pp.45-54

S. Lin, S. Yeruva, P. He, A. K. Singh, H. Zhang et al., Lysophosphatidic acid stimulates the intestinal brush border Na ? /H ? exchanger 3 and fluid absorption via LPA(5) and NHERF2, Gastroenterology, vol.138, pp.649-658, 2010.

M. Panchatcharam, S. Miriyala, F. Yang, M. Rojas, C. End et al., Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure, Circ. Res, vol.103, pp.662-670, 2008.

R. Dusaulcy, D. Daviaud, J. P. Pradère, S. Grès, P. Valet et al., Altered food consumption in mice lacking lysophosphatidic acid receptor-1, J. Physiol. Biochem, vol.65, pp.345-350, 2009.

I. Gennero, S. Laurencin-dalicieux, F. Conte-auriol, F. Briand-mésange, D. Laurencin et al., Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass, Bone, vol.49, pp.395-403, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00615224

J. J. Contos, I. Ishii, N. Fukushima, M. A. Kingsbury, X. Ye et al., Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: signaling deficits without obvious phenotypic abnormality attributable to lpa(2), Mol. Cell. Biol, vol.22, pp.6921-6929, 2002.

X. Ye, K. Hama, J. J. Contos, B. Anliker, A. Inoue et al., LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing, Nature, vol.435, pp.104-108, 2005.

X. Ye, M. K. Skinner, G. Kennedy, C. , and J. , Age-dependent loss of sperm production in mice via impaired lysophosphatidic acid signaling, Biol. Reprod, vol.79, pp.328-336, 2008.

H. Sumida, K. Noguchi, Y. Kihara, M. Abe, K. Yanagida et al., regulates blood and lymphatic vessel formation during mouse embryogenesis, Blood, vol.116, pp.5060-5070, 2010.

Y. B. Liu, Y. Kharode, P. V. Bodine, P. J. Yaworsky, J. A. Robinson et al., LPA induces osteoblast differentiation through interplay of two receptors: LPA1 and LPA4, J. Cell. Biochem, vol.109, pp.794-800, 2010.

M. E. Lin, R. R. Rivera, C. , and J. , Targeted deletion of LPA5 identifies novel roles for lysophosphatidic acid signaling in development of neuropathic pain, J. Biol. Chem, vol.287, pp.17608-17617, 2012.

S. An, T. Bleu, O. G. Hallmark, and E. J. Goetzl, Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid, J. Biol. Chem, vol.273, pp.7906-7910, 1998.

C. E. Heise, W. L. Santos, A. M. Schreihofer, B. H. Heasley, Y. V. Mukhin et al., Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist, Mol. Pharmacol, vol.60, pp.1173-1180, 2001.

H. Ohta, K. Sato, N. Murata, A. Damirin, E. Malchinkhuu et al., Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors, Mol. Pharmacol, vol.64, pp.994-1005, 2003.

M. David, J. Ribeiro, F. Descotes, C. M. Serre, M. Barbier et al., Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis, Int. J. Oncol, vol.40, pp.1133-1141, 2012.

C. W. Lee, R. Rivera, S. Gardell, A. E. Dubin, C. et al., GPR92 as a new G 12/13 -and G q -coupled lysophosphatidic acid receptor that increases cAMP, LPA5, J. Biol. Chem, vol.281, pp.23589-23597, 2006.

K. Yanagida, K. Masago, H. Nakanishi, Y. Kihara, F. Hamano et al., Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6, J. Biol. Chem, vol.284, pp.17731-17741, 2009.

S. Jung, J. Aliberti, P. Graemmel, M. J. Sunshine, G. W. Kreutzberg et al., Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion, Mol. Cell. Biol, vol.20, pp.4106-4114, 2000.

M. Ishii, J. G. Egen, F. Klauschen, M. Meier-schellersheim, Y. Saeki et al., Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis, Nature, vol.458, pp.524-528, 2009.

T. D. Schmittgen and K. J. Livak, Analyzing real-time PCR data by the comparative C(T) method, Nat. Protoc, vol.3, pp.1101-1108, 2008.

S. L. Teitelbaum and F. P. Ross, Genetic regulation of osteoclast development and function, Nat. Rev. Genet, vol.4, pp.638-649, 2003.

J. Lattin, D. A. Zidar, K. Schroder, S. Kellie, D. A. Hume et al., G-protein-coupled receptor expression, function, and signaling in macrophages, J. Leukocyte Biol, vol.82, pp.16-32, 2007.

M. Fueller, D. A. Wang, G. Tigyi, and W. Siess, Activation of human monocytic cells by lysophosphatidic acid and sphingosine-1-phosphate, Cell. Signal, vol.15, pp.367-375, 2003.

C. Q. Duong, S. M. Bared, A. Abu-khader, C. Buechler, A. Schmitz et al., Expression of the lysophospholipid receptor family and investigation of lysophospholipid-mediated responses in human macrophages, Biochim. Biophys. Acta, vol.1682, pp.112-119, 2004.

P. Jurdic, F. Saltel, A. Chabadel, and O. Destaing, Podosome and sealing zone: specificity of the osteoclast model, Eur. J. Cell Biol, vol.85, pp.195-202, 2006.

Q. Zhang, M. K. Magnusson, and D. F. Mosher, Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction, Mol. Biol. Cell, vol.8, pp.1415-1425, 1997.

D. N. Kalu, The ovariectomized rat model of postmenopausal bone loss, Bone Miner, vol.15, pp.175-191, 1991.

J. P. Rissanen, M. I. Suominen, Z. Peng, and J. M. Halleen, Secreted tartrate-resistant acid phosphatase 5b is a marker of osteoclast number in human osteoclast cultures and the rat ovariectomy model, Calcif. Tissue Int, vol.82, pp.108-115, 2008.

M. David, E. Wannecq, F. Descotes, S. Jansen, B. Deux et al., Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts, PLoS ONE, vol.5, p.9741, 2010.

B. K. Mcmichael, S. M. Meyer, and B. S. Lee, 2010) c-Src-mediated phosphorylation of thyroid hormone receptor-interacting protein 6 (TRIP6) promotes osteoclast sealing zone formation, J. Biol. Chem, vol.285, pp.26641-26651

S. Ory, H. Brazier, G. Pawlak, and A. Blangy, Rho GTPases in osteoclasts: orchestrators of podosome arrangement, Eur. J. Cell Biol, vol.87, pp.469-477, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02323478

N. Fukushima, Y. Kimura, C. , and J. , A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.6151-6156, 1998.

W. H. Moolenaar, O. Kranenburg, F. R. Postma, and G. C. Zondag, Lysophosphatidic acid: G-protein signalling and cellular responses, Curr. Opin. Cell Biol, vol.9, pp.168-173, 1997.

S. Yu, M. M. Murph, Y. Lu, S. Liu, H. S. Hall et al., Lysophosphatidic acid receptors determine tumorigenicity and aggressiveness of ovarian cancer cells, J. Natl. Cancer Inst, vol.100, pp.1630-1642, 2008.

Y. Daaka, Mitogenic action of LPA in prostate, Biochim. Biophys. Acta, vol.1582, pp.265-269, 2002.

A. Boucharaba, B. Guillet, F. Menaa, M. Hneino, A. J. Van-wijnen et al., Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms, Oncol. Res, vol.18, pp.173-184, 2009.

N. Sakai, J. Chun, J. S. Duffield, T. Wada, A. D. Luster et al., LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation, vol.27, pp.1830-1846, 2013.

H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems, Nat. Rev. Immunol, vol.7, pp.292-304, 2007.

R. Faccio, S. Takeshita, A. Zallone, F. P. Ross, and S. L. Teitelbaum, ) c-Fms and the ?v?3 integrin collaborate during osteoclast differentiation, J. Clin. Invest, vol.111, pp.749-758, 2003.

J. A. Spencer and R. P. Misra, Expression of the SRF gene occurs through a Ras/Sp/SRF-mediated-mechanism in response to serum growth signals, Oncogene, vol.18, pp.7319-7327, 1999.

M. E. Lin, D. R. Herr, C. , and J. , Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance, Prostaglandins Other Lipid Mediat, vol.91, pp.130-138, 2010.

O. Peyruchaud, R. Leblanc, D. , and M. , Pleiotropic activity of lysophosphatidic acid in bone metastasis, Biochim. Biophys. Acta, vol.1831, pp.99-104, 2013.

U. C. Marx, K. Adermann, P. Bayer, W. G. Forssmann, and P. Rösch, Solution structures of human parathyroid hormone fragments hPTH(1-34) and hPTH(1-39) and bovine parathyroid hormone fragment bPTH(1-37), Biochem. Biophys. Res. Commun, vol.267, pp.213-220, 2000.

J. J. Wysolmerski, Parathyroid hormone-related protein: an update, J. Clin. Endocrinol. Metab, vol.97, pp.2947-2956, 2012.

P. D. Delmas, P. Vergnaud, M. E. Arlot, P. Pastoureau, P. J. Meunier et al., The anabolic effect of human PTH(1-34) on bone formation is blunted when bone resorption is inhibited by the bisphosphonate tiludronate-is activated resorption a prerequisite for the in vivo effect of PTH on formation in a remodeling system, Bone, vol.16, pp.603-610, 1995.

S. L. Ferrari, D. D. Pierroz, V. Glatt, D. S. Goddard, E. N. Bianchi et al., Bone response to intermittent parathyroid hormone is altered in mice null for ?-arrestin2, Endocrinology, vol.146, pp.1854-1862, 2005.

J. E. Onyia, L. M. Helvering, L. Gelbert, T. Wei, S. Huang et al., Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: an analysis by DNA microarray, J. Cell. Biochem, vol.95, pp.403-418, 2005.

R. Coleman, The use of bisphosphonates in cancer treatment, Ann. N.Y. Acad. Sci, vol.1218, pp.3-14, 2011.

A. Boucharaba, C. M. Serre, J. Guglielmi, J. C. Bordet, P. Clézardin et al., The type 1 lysophosphatidic acid receptor is a target for therapy in bone metastases, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.9643-9648, 2006.

M. J. Rogers, New insights into the molecular mechanisms of action of bisphosphonates, Curr. Pharm. Des, vol.9, pp.2643-2658, 2003.

J. Gidley, S. Openshaw, E. T. Pring, S. Sale, and J. P. Mansell, Lysophosphatidic acid cooperates with 1?,25(OH)2D3 in stimulating human MG63 osteoblast maturation, Prostaglandins Other Lipid Mediat, vol.80, pp.46-61, 2006.

Y. Miyabe, C. Miyabe, Y. Iwai, A. Takayasu, S. Fukuda et al., Necessity of lysophosphatidic acid receptor 1 for development of arthritis, Arthritis Rheum, vol.65, pp.2037-2047, 2013.