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Vincent Taupin a,c, Ricardo A. Lebensohn b
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Abstract

In this paper, we present an enhanced crystal plasticity elasto-viscoplastic fast

Fourier transform (EVPFFT) formulation coupled with a phenomenological Mesoscale

Field Dislocation Mechanics (MFDM) theory here named MFDM-EVPFFT formu-

lation. In contrast with classic CP-EVPFFT, the model is able to tackle plastic flow

and hardening due to polar dislocation density distributions or geometrically nec-

essary dislocations (GNDs) in addition to statistically stored dislocations (SSDs).

The model also considers GND mobility through a GND density evolution law nu-

merically solved with a recently developed filtered spectral approach, which is here

coupled with stress equilibrium. The discrete Fourier transform method combined
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with finite differences is applied to solve both lattice incompatibility and Lippmann-

Schwinger equations in an augmented Lagrangian numerical scheme. Numerical re-

sults are presented for two-phase laminate composites with plastic channels and

elastic second phase. It is shown that both GND densities and slip constraint at

phase boundaries influence the overall and local hardening behavior. In contrast

with the CP-EVPFFT formulation, a channel size effect is predicted on the shear

flow stress with the present MFDM-EVPFFT formulation. The size effect origi-

nates from the progressive formation of continuous screw GND pile-ups from phase

boundaries to the channel center. The effect of GND mean free path on local and

global responses is also examined for the two-phase composite.

Keywords: dislocations; crystal plasticity; two-phase composites; Mesoscale Field

Dislocation Mechanics; FFT; elastoviscoplastic material

1 Introduction

Many efforts have been made in the past to predict the size dependence of me-

chanical material’s response during the transition from millimeter to micron or sub

micron material length scales. Generally, size effects are due non local effects inher-

ent to strain/slip gradients and usually manifest as an increase of the flow strength

of the material with diminishing the characteristic size of the microstructure (i.e.

grain size, particle size...). For example, in dispersion-hardened alloys, it was ob-

served that the flow strength of the composite material increases as the average

particle size and the average particle spacing decrease (Ashby, 1970; Lloyd, 1994;

Nan and Clarke, 1996). Therefore, to deal with such size effects, different strain
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gradient plasticity theories have been developed during the last decades (Aifantis,

1984, 1987; Mülhaus and Aifantis, 1991; Fleck and Hutchinson, 1993, 1997; Gao

et al., 1999; Fleck and Hutchinson, 2001; Bassani, 2001; Gurtin, 2000, 2002, 2004;

Gudmundson, 2004; Gurtin and Anand, 2005, 2009; Fleck and Willis, 2009; Fleck

et al., 2015). Strain gradient plasticity theories were also coupled with crystal plas-

ticity theories incorporating both SSDs (statistically stored dislocations) and GNDs

(geometrically necessary dislocations) (Arsenlis and Parks, 1999, 2002; Acharya and

Bassani, 2000; Acharya and Beaudoin, 2000; Evers et al., 2002, 2004; Gurtin et al.,

2007; Han et al., 2005; Cordero et al., 2010, 2012; Wulfinghoff et al., 2015). Size de-

pendent material behaviors can also be predicted by discrete methods like Discrete

Dislocation Dynamics (DDD) and comparisons between DDD and strain gradient

plasticity theories were reported (Shu et al., 2001; Bassani et al., 2001; Bittencourt

et al., 2003; Danas et al., 2010; Chang et al., 2015). From the continuum and math-

ematical point of view, dislocations were introduced by Volterra (1907). The state

of elastic incompatibility due to dislocations was described smoothly in the elas-

tic theory of continuously distributed dislocations (ECDD) through the use of the

Nye’s dislocation density tensor (Nye, 1953; Kröner, 1958; Fox, 1966; Willis, 1967;

Eisenberg, 1970; Ashby, 1970; Han and Jaunzemis, 1973; Kosevich, 1979; Kröner,

1981). ECDD was recently revisited by Acharya (2001, 2003, 2004) through the so-

called Field Dislocation Mechanics theory (FDM). A recently proposed continuum

approach, called Phenomenological Mesoscopic Field Dislocation Mechanics (here-

fafter abbreviated MFDM) was seen to be successful in modeling different problems

in plasticity at mesoscopic scale and small strains (Acharya and Roy, 2006; Acharya

et al., 2006; Roy and Acharya, 2006). This theory can be seen as a combination of

field dislocation mechanics theory (Acharya, 2001, 2003; Roy and Acharya, 2005)

and strain gradient crystal plasticity at small strains integrating the mobilities of

both GNDs and SSDs (Acharya and Roy, 2006). A comparison of the MFDM theory
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(full and reduced versions) with lower order strain gradient crystal plasticity models

were provided in Roy et al. (2007). In this mesoscale theory, the constitutive equa-

tions for strain-hardening models, slip rule for SSDs and velocity of GNDs need to

be specified phenomenologically, but it allows performing simulations at reasonable

strain rates compared to DDD. Transport of GND density was numerically solved by

the Finite Element (FE) method in Roy and Acharya (2005, 2006) and in Varadhan

et al. (2006). Different size effects for single crystalline materials and multicrys-

talline thin films have been predicted with the MFDM theory as reported in Roy

and Acharya (2006), Puri et al. (2009) and Puri et al. (2011). Grain size distribution

and crystallographic orientation effects in multicrystalline thin films were discussed

in Puri and Roy (2012). Using the MFDM theory, Taupin et al. (2008) examined the

role of GNDs on the directionality of yield stress in strain-aged steels. The role of the

transport of GNDs in ice single- or multi-crystals was highlighted in Taupin et al.

(2007) and Richeton et al. (2017). Varadhan et al. (2009) and Gupta et al. (2017)

coupled the MFDM equations with a dynamic strain aging (DSA) model in order to

predict the strain-aging behaviors of single crystalline and polycrystalline Al alloys.

Regarding non local theories for grain boundaries as obstacles to crystallographic

slip, different formulations have been developed this last decade to describe grain

boundaries as being impenetrable or penetrable to slip and dislocations (Gurtin and

Needleman, 2005; Aifantis and Willis, 2005; Acharya, 2007; Pardoen and Massart,

2012). Among these formulations, Acharya (2007) formulated a jump condition at a

material interface, like a phase or a grain boundary, adapted for both the FDM and

the MFDM theories based on the conservation of Burgers vector. For a fixed inter-

face, this condition states a tangential continuity of the plastic distortion rate which

has consequences on interfacial GND content and slip. Such continuity constraints

at material interfaces were seen to have consequences on the mechanical responses

of bicrystals (Puri et al., 2010), multicrystalline thin flims (Puri et al., 2011) and
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metal matrix composites (Richeton et al., 2011; Taupin et al., 2012).

Micromechanical models for heterogeneous materials require solving partial differen-

tial equations (PDEs) with appropriate constitutive equations and boundary condi-

tions. Polycrystal plasticity models can be formulated and numerically implemented

using finite elements (FE) for the solution of the governing PDEs combined with

crystal plasticity (CP) constitutive descriptions at the level of each single crystal ma-

terial point in the FE discretization (Mika and Dawson, 1998; Delaire et al., 2000;

Barbe et al., 2001; Cailletaud et al., 2003; Roters et al., 2010). However, the large

number of degrees of freedom may limit the size of the polycrystalline microstruc-

tures that can be simulated with FE. An efficient spectral alternative to CP-FE

based on computationally efficient fast Fourier transform (FFT) algorithm, origi-

nally proposed by Moulinec and Suquet (1994, 1998) for composites, was extended

by Lebensohn (2001) to solve the micromechanical behavior of polycrystals. This

formulation solves, for periodic unit cells, the PDEs associated with stress equilib-

rium and strain compatibility. This solution is obtained from convolution integrals

involving the periodic Green’s function associated with the displacement field of a

homogeneous linear reference medium, and a stress polarization field that contains

all the information of the materials heterogeneity and non-linearity. The material

properties and micromechanical response are given at each point in a regular and

periodic grid. With this discretization, and applying fast Fourier transform (FFT)

to those convolution integrals, their computation is replaced by simple products in

Fourier space, which, in turn, are anti-transformed back to Cartesian space. An iter-

ative procedure involving these back-and-forth transformations between Fourier and

Cartesian spaces is generally required to converge to strain and stress fields satisfy-

ing compatibility and equilibrium, respectively, as well as the constitutive relation at

each grid point. In Moulinec-Suquet original FFT-based basic scheme (Moulinec and
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Suquet, 1994, 1998), the solution is obtained using a fixed-point iterative algorithm.

The contrast in local mechanical properties of the heterogeneous material affects the

convergence rate of the method, with higher contrast requiring more iterations to

achieve convergence. The properties of the linear reference material do not change

the predicted micromechanical fields, but do affect the convergence rate, as well.

Since its inception, several improvements to the basic scheme have been proposed

(Eyre and Milton, 1999; Michel et al., 2001; Brisard and Dormieux, 2010, 2012;

Monchiet and Bonnet, 2013; Kabel et al., 2014; Schneider, 2017), based on modi-

fications of the iterative algorithm to accelerate convergence. FFT-based methods

were initially developed and applied to composite materials (Moulinec and Suquet,

1994, 1998; Eyre and Milton, 1999; Michel et al., 2001), in which the heterogeneity is

given by the spatial distribution of phases with different mechanical properties, and

later adapted to polycrystals (Lebensohn, 2001), where the heterogeneity is related

to the spatial distribution of anisotropic crystals with different orientations. This

original CP-FFT implementation showed the feasibility of efficiently solving the mi-

cromechanical behavior of complex polycrystalline unit cells. Subsequent numerical

implementations of the FFT-based method for polycrystals have been developed,

for different constitutive descriptions of the behavior of each single crystal material

point. For polycrystals, the different constitutive regimes solved with FFT-based

methods include: linear elasticity (Lebensohn, 2001; Brenner et al., 2009); linear

viscosity (Lebensohn et al., 2005); thermoelasticity (Vinogradov and Milton, 2008;

Anglin et al., 2014; Donegan and Rollett, 2015); rigid-viscoplasticity (Lebensohn,

2001; Lebensohn et al., 2008, 2009; Lee et al., 2011; Rollett et al., 2010); small-

strain crystal plasticity elasto-viscoplasticity, i.e. CP-EVPFFT (Lebensohn et al.,

2012; Grennerat et al., 2012; Suquet et al., 2012); large-strain elasto-viscoplasticity

(Eisenlohr et al., 2013; Shanthraj et al., 2015; Kabel et al., 2016; Vidyasagar et al.,

2018; Lucarini and Segurado, 2018); dilatational plasticity (Lebensohn et al., 2011,
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2013); lower-order (Lucarini and Segurado, 2018) and higher-order strain-gradient

plasticity (Lebensohn and Needleman, 2016); curvature-driven plasticity (Upadhyay

et al., 2016); transformation plasticity (Richards et al., 2013; Otsuka et al., 2018);

fatigue (Rovinelli et al., 2017a,b); and quasi-brittle damage (Li et al., 2012; Sharma

et al., 2012). FFT-based methods were also applied to field dislocation mechanics

(FDM) and field disclination mechanics (Brenner et al., 2014; Berbenni et al., 2014;

Djaka et al., 2015; Berbenni et al., 2016; Djaka et al., 2017; Berbenni and Taupin,

2018), and discrete dislocation dynamics (DDD) problems (Bertin et al., 2015; Gra-

ham et al., 2016; Bertin and Capolungo, 2018), providing the efficiency needed for

the implementation of these powerful and numerically-demanding formulations. The

need for better numerical performance and stability of spectral approaches to avoid

spurious oscillations of the local fields, known as the Gibbs phenomenon or aliasing,

motivated the development of modified Green operators for the calculation of the

displacement field and gradients of the latter in Fourier space (Willot and Pellegrini,

2008). For this, a successful numerical strategy (Berbenni et al., 2014; Lebensohn

and Needleman, 2016) based on earlier works (Müller, 1996, 1998; Dreyer et al.,

1999) consists in approximating derivatives in Cartesian space using finite differ-

ences (FD), and taking discrete Fourier transforms to these FD expressions. Among

these FD-based schemes, a modified discrete Green operator based on centered FD

on a rotated grid was proposed (Willot, 2015) and adopted in different subsequent

FFT-based implementations (Djaka et al., 2017; Bertin and Capolungo, 2018; Lu-

carini and Segurado, 2018) given its good numerical performance. In their Galerkin

discretization of the Lippmann-Schwinger equation, Brisard and Dormieux (2010)

and Brisard and Dormieux (2012) proposed a numerical strategy based on a dis-

crete Green operator which was adapted to a general variational framework based

on the Hashin-Shtrikman energy principle. Another discrete Green operator was

also recently proposed by Eloh et al. (2018) to numerically solve the Lippmann-
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Schwinger equation for periodic heterogeneous composites with eigenstrains devoid

of numerical oscillations. FFT-based predictions have been compared with other mi-

cromechanical solvers. For composites, Michel et al. (1999) carried out the first of

these comparative studies with FE computations. Later on, CP-FEM and CP-FFT

predictions for polycrystals deforming in different regimes were compared (Prakash

and Lebensohn, 2009; Eisenlohr et al., 2013; Rovinelli et al., 2012), both in terms

of microstructure and micromechanical field predictions. These comparisons were

performed under several caveats, related to the different numerical strategies em-

ployed to solve the PDEs (weak form of equilibrium with FE vs. strong form with

FFT-based methods), different discretization (mesh vs. grid), different boundary

conditions (periodic unit cell required by FFT-based computations), and, in some

cases, different kinematic assumptions and time integration schemes. Due to these

differences, the corresponding predictions were not coincident point by point at local

level, but the observed trends were, in general, qualitatively - and, in some cases,

also quantitatively - similar.

All numerical implementations of the MFDM theory was carried out using FE.

However, for polycrystalline materials, such a mechanics based formulation may

take advantage of FFT-based methods, which were seen to be numerically efficient

for elasto-static FDM (Berbenni et al., 2014; Djaka et al., 2017) and for the nu-

merical spectral resolution of the dislocation density transport equation at constant

applied GND velocity (Djaka et al., 2015). Therefore, the objective of the paper

is to develop an EVPFFT-based method for MFDM in its reduced version, for de-

scribing size effects, slip constraints, flow stress due to both GNDs and SSDs and

local GND dislocation density evolutions in the course of monotonous plastic de-

formation. Starting from the EVPFFT formulation developed by Lebensohn et al.

(2012), it is based on five new pillars in comparison to the classic crystal plasticity
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(CP-EVPFFT) formulation: (i) a new expression of the Jacobian for the augmented

Lagrangian scheme inferred from MFDM, (ii) a numerical spectral resolution of the

dislocation density transport equation involved in the MFDM theory, (iv) a harden-

ing law accounting for GND density and a geometric mean free path due to GND,

(iv) an interfacial jump condition on plastic distortion rate describing the conserva-

tion of Burgers vector content at material discontinuities between plastic channels

and elastic second phase, and, (v) a spectral discrete method based on finite differ-

ence schemes to treat both lattice incompatibility and integral Lippmann-Schwinger

equations.

The paper is organized as follows. In section 2, the constitutive equations of the

Mesoscale Field Dislocation Mechanics (MFDM) are recalled. In this section, the

jump condition on plastic distorsion rate across a material interface between elas-

tic and plastic phases in laminate microstructures is also formulated. In section

3, the elasto-viscoplastic FFT-based numerical implementation for MFDM, named

MFDM-EVPFFT, is presented. Section 4 is devoted to the numerical application

of the MFDM-EVPFFT to periodic two-phase laminate microstructures with elas-

tic and elasto-viscoplastic phases under shear loading. Plastic channel size effects

will be reported for the MFDM-EVPFFT. Comparisons of the results regarding

stresses, plastic distortions and dislocation densities between MFDM-EVPFFT and

CP-EVPFFT will be discussed.

Notation

A bold symbol denotes a tensor or a vector. The symmetric part of tensor A is

denoted Asym. Its skew-symmetric part is Askew and its transpose is denoted by At.

The tensor A·B, with rectangular Cartesian components AikBkj, results from the dot
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product of tensors A and B, and A⊗B is their tensorial product, with components

AijBkl. The vector A · V, with rectangular Cartesian components AijVj, results

from the dot product of tensor A and vector V. The symbol “ : ” represents the

trace inner product of the two second order tensors A : B = AijBij, in rectangular

Cartesian components, or the product of a higher rank with a second rank tensor,

e.g., A : B = AijklBkl. The cross product of a second rank tensor A and a vector

V, the div and curl operations for second rank tensors are defined row by row, in

analogy with the vectorial case. For any base vector ei of the reference frame:

(A×V)t · ei = (At · ei)×V (1)

(div A)t · ei = div(At · ei) (2)

(curl A)t · ei = curl(At · ei) (3)

In rectangular Cartesian components:

(A×V)ij = ejklAikVl (4)

(divA)i =Aij,j (5)

(curl A)ij = ejklAil,k = −(grad A : X)ij (6)

where ejkl is a component of the third rank alternating Levi-Civita tensor X and the

spatial derivative with respect to a Cartesian coordinate is indicated by a comma

followed by the component index. The notation Â(ξ) will be used for the Fourier

transform of A(x).
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2 Theory: Mesoscale Field Dislocation Mechanics (MFDM)

2.1 Field equations of the Mesoscale Field Dislocation Mechanics (MFDM) theory

(reduced version)

In a continuum mechanics setting, the displacement vector field u is defined con-

tinuously at any point of an elasto-viscoplastic body with volume V with external

boundary S. At mesoscale, the total average distortion tensor, defined as the gradient

of the average displacement U = grad u, is curl-free. In the presence of dislocation

ensembles (Acharya, 2001; Roy and Acharya, 2005; Acharya and Roy, 2006), both

the average plastic distortion Up, which results from dislocation motion, and the

average elastic (or lattice) distortion Ue are incompatible fields. To solve the stress

field σ and the displacement field u, the following equations are solved in small de-

formation with standard traction/displacement boundary conditions on St and Su

respectively where S = StUSu:

divσ = 0

σ = C : Ue

U = grad u = Ue + Up

σ · n = T on St

u = u on Su

(7)

where C is the fourth order elastic stiffness tensor with classic minor and major

symmetries such that Cijkl = Cjikl = Cijlk = Cklij.

In non local crystal plasticity theories based on continuum dislocation mechanics,

dislocation ensembles can be categorized as Geometrically Necessary Dislocations

(GNDs) and as Statistically Stored Dislocations (SSDs) (Ashby, 1970). This classi-

fication depends on the adopted resolution scale. Indeed, for a sufficiently fine scale
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resolution (microscopic scale), all dislocations are polarized, i.e. GNDs. However at

a fairly high resolution scale (mesoscopic scale), the presence of SSDs becomes more

probable. SSDs accumulate within grains and only contribute to the overall plastic

flow and not to long-range internal stresses, unlike GNDs which contribute to both.

Therefore, considering a Burgers circuit at a microscopic scale, a single or an en-

semble of polarized dislocations are represented by the dislocation density (or Nye)

tensor α. Acharya (2001, 2003) used the dislocation density evolution equation to

give a fundamental basis to the constitutive equation for the plastic strain rate. The

expression of the plastic distortion rate U̇p due to dislocation motion as a function

of the dislocation velocity v was given by Acharya (2011):

U̇p = α× v. (8)

At a mesoscopic scale represented by a larger Burgers circuit, the average value α of

the dislocation density tensor α can vanish. For example, this is the case when two

densities of opposite signs and of the same nature statistically offset. However, their

average plastic distortion rate α× v is non-vanishing and is not equal to α × v.

It is due to the mobility of SSDs, represented by the mesoscale plastic strain rate

denoted Lp where the averaging procedure was defined by Acharya and Roy (2006)

as follows:

Lp = (α−α)× v = α× v −α× v (9)

The mesoscale FDM theory (MFDM) is based on such considerations on the scale

dependance. Here, a reduced version of the MFDM is considered (Roy et al., 2007),

where all the fields of the latter are assumed to be as smooth as necessary. Hence,

the average plastic distortion rate becomes:
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U̇
p

= α× v + Lp (10)

From this equation, the plastic strain rate is deduced from the symmetric part of

U̇
p
:

ε̇
p

= U̇
p,sym

= (α× v + Lp)sym (11)

The space-time evolution of the dislocation density tensor α is obtained from the

conservation of dislocation flux and is prescribed as (Mura, 1963, 1964):

α̇ = −curl U̇
p
. (12)

Constitutive specifications on the dislocation velocity v, and the slip distortion rate

Lp are required for the MFDM theory. Therefore, Lp and v are discussed using

thermodynamic considerations following the theory introduced by Acharya and Roy

(2006). For the sake of simplicity in the notation, the overbars denoting the space-

time average quantity of a given tensor field or a vector field will be omitted in the

remaining part of the paper. Therefore, eqs. 11 and 12 can be written in component

forms:

ε̇pij =
1

2

(
U̇p
ij + U̇p

ji

)
=

1

2

(
Lpij + Lpji

)
+

1

2

(
(α× v)ij + (α× v)ji

)
(13)

and:

α̇ij =− (αijvk),k + (αikvj),k − ejklL
p
il,k

(14)

2.2 Constitutive equations

The constitutive equations for Lp and v are based on the rate of plastic work denoted

D with the requirement to be positive and assuming pressure insensitive plasticity
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(i.e. plastic incompressibility: U̇p
ii = 0). The expression of D was given by Acharya

and Roy (2006):

D =
∫
V
σ : U̇p dV =

∫
V
σ : Lp dV +

∫
V
σ : (α× v) dV ≥ 0 (15)

The last expression can be simplified using the third order Levi-Civita tensor X (see

section 1) such that finally eq. 15 reads:

D =
∫
V
σ : Lp dV +

∫
V

Fα · v dV ≥ 0 (16)

where Fα is the Peach-Koehler driving force for GND motion which is the thermo-

dynamic conjugate of v. The GND velocity vector v depends on the stress field σ.

In component form, the Peach-Koehler thermodynamic force Fα is defined as:

Fl
α = eiklσijαjk (17)

In crystal plasticity, the plastic distortion rate tensor Lp due to slip inferred from

SSDs is defined as:

Lp =
N∑
s=1

γ̇sbs ⊗ ns =
N∑
s=1

γ̇sms, (18)

where N , γ̇s and ms are the number of slip systems, the slip rate and the crystallo-

graphic orientation tensor such that ms = bs ⊗ ns. For each slip system s, the unit

vector bs denotes the slip direction and ns the slip plane unit normal. Therefore,

the expression of Lp is similar to the classic crystal plasticity formulations as the

one used in the FFT-based model for elasto-viscoplastic polycrystals (Lebensohn

et al., 2012). Let us note that the expression of Lp is based on a crystal plasticity

formulation as in Puri et al. (2011), which is different from the works of Acharya and

Roy (2006), Roy et al. (2007) and Puri et al. (2009) who considered a J2 isotropic

plastic flow theory. Plastic flow incompressibility is considered from the fact that Lp
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Figure 1. Vectorial representation of the thermodynamic driving force Fα for GND motion.

Geometric definitions of the glide force g such that g is parallel to the average GND velocity

vector v and the dilatant vector d is defined such that d is orthogonal to v.

and α× v are traceless. Therefore, this property yields:

Lpii = 0 from ms
ii = 0 for all s (19)

and:

eiklαikvl = 0 =⇒ dlvl = 0 (20)

with:

dl = emnlαmn (21)

where d is the dilatant direction such that d ⊥ v as defined in Fig. 1.

To fulfill these thermodynamics requirements, the GND velocity v is prescribed as

follows:

v =
g

|g|
v̄ with v̄ ≥ 0, (22)

where g and v̄ are the glide force parallel to v and the magnitude of v respectively.

The glide force is defined from geometry using Fig. 1:

g = Fα −
(

Fα · d

|d|

)
d

|d|
, (23)

After further derivations, the glide force g can be explicitly written as (Acharya and

Roy, 2006):

g = b−
(

b · a

|a|

)
a

|a|
(24)
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where b and a are given in component form:

br = eikrαjkSij

ar = eikrαik

(
1

3
σkk

)
= dr

(
1

3
σkk

) (25)

where Sij = σij −
1

3
σkkδij is the deviatoric stress tensor.

Using eq. 22 together with eq. 23, the component form of g is given by:

gr = eikrαjkSij − eikrαik
Smnαnp(αmp − αpm)

αij(αij − αji)
, (26)

The constitutive equations adopted for v̄ and γ̇s are based on the Orowan law for

GND and SSD mobile dislocations, respectively and an empirical Taylor-Bailey-

Hirsch relationship for the shear strength of the material. Here, a mechanistic for-

mulation for v̄ similar to Puri et al. (2010, 2011) is adopted:

v̄ =
η2 b

N

(
µ

τc

)2 N∑
s=1

|γ̇s| (27)

where η is a material constant close to 1/3 (Ashby, 1970), b is the magnitude of the

Burgers vector, τc is the shear strength and µ is the isotropic elastic shear modulus

of the material. The slip rate γ̇s is defined with a classic viscoplastic flow rule as a

power law:

γ̇s = γ̇0
(
|τ s|
τc

)1/m

sgn(τ s) (28)

where m represents the rate sensitivity of the material, τ s = ms : σ is the resolved

shear stress, γ̇0 is the reference slip rate and τc is considered identical for all slip

systems.

In contrast with Puri et al. (2010, 2011), no intra-crystalline phenomenological back-

stress evolution is considered since the applications (see section 4) will not be con-
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cerned by cyclic plasticity. The cumulated slip rate on all slip systems due to both

GNDs and SSDs is given by:

Γ̇ = |α× v|+
N∑
s=1

|γ̇s| (29)

The evolution law for the shear strength τc follows the same hypotheses as the strain-

hardening model developed by Puri et al. (2010, 2011), which is an extension of the

earlier models derived by Mecking and Kocks (1981) and Acharya and Beaudoin

(2000):

τ̇c = θ0
τs − τc
τs − τ0

Γ̇ + k0
η2µ2 b

2 (τc − τ0)

(
N∑
s=1

|α · ns| |γ̇s|+
N∑
s=1

|α · ns| |α× v|
)

(30)

where τ0 is the yield strength due to lattice friction (this value is relatively low

for face-centered cubic (FCC) metals), τs is the saturation stress, θ0 is the stage II

hardening rate for FCC metals. Furthermore, the material parameter k0 is related

to a geometric mean free path due to GND forest on slip system s (Acharya and

Beaudoin, 2000):

Lg =
1

k0 |α · ns|
(31)

In the next simulations reported in section 4, a value for k0 close to one fitted by

Acharya and Beaudoin (2000) for FCC metals will be used. For comparison, in the

case of a model based on conventional crystal plasticity (no GND, i.e. α = 0), eq.

30 reduces to classic Voce-type law (Kocks, 1976):

τ̇c = θ0
τs − τc
τs − τ0

Γ̇ (32)

with:

Γ̇ =
N∑
s=1

|γ̇s| (33)
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instead of eq. 29.

2.3 Explicit dislocation density transport equation

The numerical treatment for solving the space-time evolution of the dislocation den-

sity tensor (see eq. 12) was reported by Varadhan et al. (2006) and Djaka et al. (2017)

in the framework of Field Dislocation Mechanics (FDM). In these contributions, an

explicit forward Euler scheme was derived to numerically solve this equation starting

from an implicit backward Euler scheme together with a Taylor expansion at first

order of αt+4tij where 4t is the time step. In the case of MFDM, eq. 12 together

with eq. 10 can be first written in component form using an implicit backward Euler

scheme:

αt+4tij =αtij −4t
(
(αijvk)

t+4t − (αikvj)
t+4t + ejkl (L

p
il)
t+4t

)
,k

(34)

and using αt+4tij = αtij +4t α̇tij + 0
(
4t2

)
and (Lij

p)t+4t = (Lij
p)t +4t ˙(Lij

p)
t

+

0
(
4t2

)
. Then, the first order Taylor approximation of αij

t+4t and (Lij
p)t+4t in eq.

34 leads to the explicit forward explicit scheme (Varadhan et al., 2006):

αt+4tij =αtij −4t
(
(αijvk)

t − (αikvj)
t + ejkl (L

p
il)
t
)
,k

(35)

This equation will be solved later in the Fourier space (see section 3) with an efficient

numerical spectral approach that uses an exponential low-pass filter (Djaka et al.,

2015).
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Figure 2. Schematic figure of a material interface I between two different media + and

− with n is the unit outward normal vector to the interface directed from medium − to

medium +.

2.4 Jump condition on plastic distorsion rate across a material interface

In contrast with conventional elasto-viscoplastic crystal plasticity theories, the evo-

lution equations for MFDM impose a jump condition on plastic distorsion rate across

a material interface (Fig. 2). This jump condition allows modeling specific require-

ments regarding the interaction of dislocations with impenetrable or penetrable in-

terfaces. Following Acharya (2007), the general condition for a fixed (i.e. non moving)

interface writes:

[U̇p]× n = [α× v + Lp]× n = 0 (36)

where n is the unit outward normal vector to the interface I (Fig. 2) and [U̇p] =

U̇p(+) − U̇p(−) is the jump of U̇p between both media + and −.

Here, two-phase laminate microstructures are considered (see Fig. 3 in section 4),

which are constituted of purely elastic inclusions (elastic second phase, blue col-

ored) and plastic channels (elasto-viscoplastic phase, red colored). Therefore, U̇p is

non zero only in the plastic channels, i.e. the elasto-viscoplastic phase. In the case
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of impenetrable grain/phase boundaries to dislocations, which corresponds to the

modeling of completely constrained plastic flow at the interface, this condition yields

according to Puri et al. (2011):

U̇p × n = 0 (37)

A sufficient condition to satisfy eq. 37 is that:

Lp × n = 0 and α× v × n = 0 (38)

with Lpii = 0 and eiklαikvl = 0 due to plastic incompressibility from eqs. 19 and 20,

respectively. Furthermore, Acharya (2007) showed that α× v × n writes:

α× v × n = −αtan (v · n) +α · n⊗ vtan (39)

where αij
tan = αij − (αiknk)nj and vi

tan = vi − (vjnj)ni.

Using the Cartesian coordinates chosen in Fig. 3, the unit vectors along the y-, z-,

x- directions are defined as e2 = n, e3 = l et e1 = n× l, respectively. Therefore, the

first equation of eq. 38 yields the interfacial condition on Lp:

Lp =



0 Lp12 0

0 0 0

0 Lp32 0


(40)

which corresponds to a single slip situation with slip plane parallel to the interface

and non zero slip rate (γ̇s 6= 0). Such condition was also discussed by Gurtin and

Needleman (2005) who named this condition as a microhard condition which is

different from the so-called hard slip condition (γ̇s = 0). Using eq. 39, the second
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equation of eq. 38 yields:

α× v × e2 = −αtan (v · e2) +α · e2 ⊗ vtan = 0 (41)

A physical sufficient condition to satisfy α × v × n = 0 is to assume that both

v · e2 = v2 = 0 and α · e2 = αi2 = 0. Furthermore, plastic incompressibility (eq. 20)

leads to α23 = α32 = 0 and α21 = α12 = 0. Therefore, the interfacial jump condition

on GND density tensor α writes:



α12 = α32 = α23 = α21 = α22 = 0 such that:

α =



α11 0 α13

0 0 0

α31 0 α33


. (42)

According to these assumptions, both eqs. 40 and 42 constitute interfacial conditions

which produce a change of plastic distortion rate due to impenetrable interfaces that

is not specified by the above constitutive equations reported in section 2.2.

3 Elasto-viscoplastic FFT-based numerical implementation for MFDM:

MFDM-EVPFFT formulation

3.1 Elasto-viscoplastic FFT formulation with augmented Lagrangian scheme

Here, an elasto-viscoplastic crystal plasticity formulation is adopted in a small de-

formation setting. Using a backward Euler implicit time discretization and the gen-

eralized Hooke’s law, the expression of the stress at t+ Mt is given by:
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σt+Mt = C : εe,t+Mt = C :
(
εt+Mt − εp,t − ε̇p,t+Mt(σt+Mt)Mt

)
, (43)

where, σ is the Cauchy stress tensor, C is the elastic stiffness tensor, ε, εe and εp

are the total, elastic and plastic strain tensors, and ε̇p is the plastic strain rate which

represents the symmetric part of the plastic distortion rate defined in Eq. 13. In what

follows, the supra-indices t+ Mt are omitted for sake of simplicity, and only the fields

corresponding to the previous time step t will be explicitly indicated. Therefore, the

constitutive equation and its inverse read in component forms (Lebensohn et al.,

2012):

σij = Cijkl
(
εkl − εp,tkl − ε̇

p
kl(σ)Mt

)
εij = C−1ijklσkl + εp,tij + ε̇pij(σ)Mt

(44)

For periodic heterogeneous media, the balance of linear momentum without body

forces and inertia forces (see first equation in eq. 7) can be solved using the Green’s

function technique (Mura, 1987) through an integral Lippmann-Schwinger equation.

Assuming a homogeneous reference medium with linear elastic moduli C0, such that

C = C0 + δC, the stress equilibrium equation yields, in component form:

C0
ijkluk,lj + τij,j = 0 (45)

In this equation, u represents the displacement vector and τ represents the stress

polarization tensor field due to heterogeneities and defined in component form as

follows:

τij = σij − C0
ijkluk,l = σij − C0

ijklεkl (46)

Since τ contains the unknown total strain field ε, eq. 45 is solved through an integral

Lippmann-Schwinger equation for the unknown strain field ε:

εij(x) = 〈εij〉 −
∫
V

Γ0
ijkl(x− x′)τkl(x

′)dV ′ (47)
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where 〈ε〉 represents the average value of the ε in V and Γ0
ijkl is the modified Green

tensor associated with the homogeneous elastic moduli C0:

Γ0
ijkl(x− x′) = −1

4
(Gik,jl(x− x′) +Gjk,il(x− x′) +Gil,kj(x− x′) +Gjl,ki(x− x′))

(48)

where G(x− x′) is the classic elastic Green tensor associated with C0. In the fol-

lowing, eq. 47 together with eq. 44 will be solved using a computationally efficient

scheme based on Fast Fourier Transform (FFT) and augmented Lagrangian intro-

duced by Michel et al. (2001).

In the Fourier space, let ξ be the Fourier vector of magnitude ξ =
√
ξ · ξ and

components ξi in a general three-dimensional Cartesian coordinate system setting.

The complex imaginary number is denoted i and defined as i =
√
−1. Let ε̂(ξ) and

Γ̂0(ξ) be, respectively, the continuous Fourier transform of ε(x) and Γ0(x). The

Fourier transform of the integral Lippmann-Schwinger equation (eq. 47) yields:

ε̂(ξ) = −Γ̂0(ξ) : τ̂ (ξ) ∀ξ 6= 0

ε̂(0) = 〈ε〉
(49)

The Fourier Transform of the modified Green operator Γ0, is given by the following

formula:

Γ̂0
ijkl(ξ) =

1

4

(
Ĝik(ξ)ξlξj + Ĝjk(ξ)ξlξi + Ĝil(ξ)ξkξj + Ĝjl(ξ)ξkξi

)
(50)

with: 
Ĝij(ξ) =

Nij(ξ)

D(ξ)
∀ξ 6= 0

Ĝij(0) = 0

(51)

where Nij(ξ) denotes the rectangular components of the cofactor matrix related to

the acoustic tensor Kij = Co
ijklξkξl and D(ξ) is the determinant of Kij. Due to the

symmetry properties of Co
ijkl, Nij(ξ) satisfies: Nij(ξ) = Nji(ξ), therefore Ĝij = Ĝji
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and Γ̂0
ijkl = Γ̂0

jikl = Γ̂0
ijlk = Γ̂0

klij. For isotropic elasticity using the two Lamé con-

stants, the expression of Γ̂0
ijkl was given in Moulinec and Suquet (1994, 1998).

Let us assume now that λ
(n)
ij and e

(n)
ij are, respectively, the auxiliary guess stress and

strain fields at iteration (n). The stress polarization tensor (Eq. 46) becomes (Michel

et al., 2001):

τ
(n)
ij = λ

(n)
ij − C0

ijkle
(n)
kl

(52)

The new guess for the strain field is given in Fourier space as:

ê
(n+1)
ij (ξ) = −Γ̂0

ijkl(ξ)τ̂
(n)
kl (ξ) ∀ξ 6= 0

ê
(n+1)
ij (0) = 〈εn〉

(53)

An alternative fixed-point expression, which requires computing the Fourier trans-

form of the stress field instead of that of the polarization field was reported in Michel

et al. (2001):

ê
(n+1)
ij (ξ) = ê

(n)
ij (ξ)− Γ̂0

ijkl(ξ)λ̂
(n)
kl (ξ) ∀ξ 6= 0

ê
(n+1)
ij (0) = 〈εn〉

(54)

Once e
(n+1)
ij = FT−1(ê

(n+1)
ij (ξ)) is obtained in the real space by using the inverse

Fourier transform (FT−1), the nullification of the residual R, which depends on the

stress and strain tensors σ(n+1) and ε(n+1), is solved:

Rij(σ
(n+1)) = σ

(n+1)
ij + C0

ijmnε
(n+1)
mn (σ(n+1))− λ(n)ij − C0

ijmne
(n+1)
mn = 0 (55)

This nonlinear equation was solved by Lebensohn et al. (2012) using a Newton-

Raphson-type scheme. The (p + 1)-guess for the stress field σ
(n+1)
ij is given by:
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σ
(n+1,p+1)
ij = σ

(n+1,p)
ij −

((
∂Rij

∂σmn

)
σ(n+1,p)

)−1
Rmn

(
σ(n+1,p)

)
(56)

Using the constitutive specifications (eq. 44) and eq. 55, the Jacobian in the above

expression reads:

(
∂Rij

∂σmn

)
σ(n+1,p)

= δimδjn + C0
ijklC

−1
klmn + Mt C0

ijkl

(
∂ε̇pkl
∂σmn

)
σ(n+1,p)

(57)

Once the convergence is achieved on σ(n+1) and ε(n+1), the new guess for the auxiliary

stress field λ is given by using the Uzawa descent algorithm:

λ
(n+1)
ij = λ

(n)
ij + C0

ijkl

(
ekl

(n+1) − εkl(n+1)
)

(58)

and the algorithm is stopped when the normalized average differences between the

stress fields σ and λ, and the strain fields ε and e, are smaller than a given threshold

error (typically 10−5). This condition implies the fulfillment of both stress equilib-

rium and strain compatibility up to sufficient accuracy.

In the algorithm described above, an overall macroscopic strain E = 〈εn〉 is applied

to the periodic unit cell V in the form of:

Eij = Et
ij + Ėij4t (59)

In cases of mixed boundary conditions with imposed macroscopic strain rate Ėij and

stress Σij, the (n + 1)-guess of the macroscopic strain E
(n+1)
ij is (Michel et al., 2001;

Lebensohn et al., 2012):

E
(n+1)
ij = E

(n)
ij + C0−1

ijkl ω
[kl]
(
Σkl − 〈λ(n+1)

kl 〉
)

(60)

where ω[kl] = 1 if component Σkl is imposed and zero otherwise.
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3.2 New expression of the Jacobian for augmented Lagrangian scheme inferred from

MFDM

In eq. 57, the new expression of ∂ε̇pkl/∂σmn considering the constitutive equations of

the MFDM theory yields:

(
∂ε̇pkl
∂σmn

)
σ(n+1,p)

=
1

2

(
∂Lpkl
∂σmn

+
∂Lplk
∂σmn

)
σ(n+1,p)

+
1

2

(
∂ (α× v)kl
∂σmn

+
∂ (α× v)lk
∂σmn

)
σ(n+1,p)

(61)

According to eqs. 18 and 28, an approximation expression of ∂Lpkl/∂σmn is given by:

(
∂Lpkl
∂σmn

)
σ(n+1,p)

' nγ̇0
N∑
s=1

ms
klP

s
mn

|P s
mnσmn|n−1

(τc)n
(62)

where Ps = (ms)sym. In eq. 62, the approximation lies in the fact that the derivatives

∂τ c/∂σ and ∂Ps/∂σ are neglected.

The determination of the expression of ∂ (α× v)kl/∂σmn is new compared to the

standard EVPFFT formulation:

(
∂(α× v)kl
∂σmn

)
σ(n+1,p)

= elqrαkq

(
∂vr
∂σmn

)
σ(n+1,p)

(63)

Eq. 63 can be written more explicitly by considering eqs. 22 and 23 as:

(
∂(α× v)kl
∂σmn

)
σ(n+1,p)

= elqrαkq

(
∂ (gr/|g|)
∂σmn

v̄ +
gr
|g|

∂v̄

∂σmn

)
σ(n+1,p)

(64)

with:
∂ (gr/|g|)
∂σmn

=

(
δrs|g|2 − grgs

|g|3

)(
eoksαqk − eiksαik

αqp(αop − αpo)
αij(αij − αji)

)
(
δomδqn −

1

3
δmnδoq

) (65)

and using eq. 27 with the same approximation as in eq. 62:

(
∂v̄

∂σmn

)
σ(n+1,p)

' nγ̇0
η2 b

N

(
µ

τc

)2 N∑
s=1

P s
mn

|P s
mnσmn|

n−1

(τc)n
(66)
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3.3 Spectral resolution of the dislocation density transport equation

Let α̂(ξ) be the continuous Fourier transform of α(x). Therefore the Fourier trans-

form of Eq. 35 is given by:

α̂t+4tij =α̂tij −4t i ξk

(
(̂αijvk)

t

− (̂αikvj)
t

+ ejkl
̂(Lpil)t) (67)

As pointed out in Djaka et al. (2015), the resolution of Eq. 67 in the Fourier space

without the source term ejkl
̂(Lpil)t leads to non accurate and unstable solution due to

the occurrence of high-frequency Gibbs oscillations inherent to the Fourier method

and to the fast-growing numerical instabilities resulting from its hyperbolic nature.

Therefore, an exponential second order spectral low-pass filter was used to stabilize

the numerical approximation by eliminating high frequencies leading to spurious

oscillations. The exponential filter is defined as function of frequencies η as:

κ (η) = exp
(
−β (η)2p

)
, (68)

According to Gottlieb and Hesthaven (2001), the damping parameter β is defined as

β = −log εM , where εM is low value parameter that was optimized by Djaka et al.

(2015). Both parameters εM and p will be specified in section 4.1 for the present

application. Applying the exponential filter to eq. 67 yields:

α̂t+4tij =κ (η)
(
α̂tij −4t i ξk

(
(̂αijvk)

t

− (̂αikvj)
t
))
−4t i ξk ejkl

̂(Lpil)t (69)

To fix the time step 4t in eq. 69 to satisfy stability requirements for numerically

solving the dislocation density transport equation, a user-specified fraction denoted

c of Courant-Freidrichs-Levy (CFL) limit will be used in the numerical applications

(see section 4):
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4tCFL = c
δ

v̄max
(70)

where δ is the voxel size and v̄max is the maximal GND velocity.

3.4 Discrete Fourier Transform (DFT) and differentiation rules for spatial deriva-

tives in the Fourier space

The direct and the inverse Fourier transforms are computed here by using Fast

Fourier Transform (FFT) algorithm. The representative volume element (RVE) or

unit cell is assumed to be periodic with spatial periods T1, T2 and T3 in the x1, x2

and x3 directions, respectively, and discretized by a regular rectangular grid with

N1×N2×N3 voxels with position vector x = (i1δ1, i2δ2, i3δ3), where i1 = 0→ N1−1,

i2 = 0→ N2− 1, i3 = 0→ N3− 1 and δ1, δ2, δ3 are the voxel sizes in the x1, x2 and

x3 directions. The computational grid is constituted of a total of Ntot = N1×N2×N3

voxels.

In the expression of the exponential filter presented above, the discrete represen-

tation of ηd is taken to be md/Nd (Gottlieb and Hesthaven, 2001). Therefore, the

exponential filter for a three-dimensional computational grid is parametrized by β

and p as:

κ
(
m1

N1

,
m2

N2

,
m3

N3

)
= exp

(
−β

((
m1

N1

)2p

+
(
m2

N2

)2p

+
(
m3

N3

)2p
))

. (71)

where mj (j = 1 → 3) are arranged in Fourier space as follows (Moulinec and

Suquet, 1998):

mj =
((
−Nj

2
+ 1

)
,
(
−Nj

2
+ 2

)
, ...,−1, 0, 1, ...,

(
Nj

2
− 1

)
,
(
Nj

2

))
(72)
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if Nj is even, and

mj =
((
−Nj − 1

2

)
, ...,−1, 0, 1, ...,

(
Nj − 1

2

))
(73)

if Nj is odd.

According to Moulinec and Suquet (1994, 1998), the classical approximation of the

partial first derivative with respect to xj is defined as:

iξj = i
2π

Tj
mj (74)

In this paper, this approximation is not used to consider the modified Green ten-

sor in the Lippmann-Schwinger equation or the curl operator because it was shown

(Willot and Pellegrini, 2008; Berbenni et al., 2014; Lebensohn and Needleman, 2016;

Djaka et al., 2017) that this approximation may lead to spurious oscillations in inho-

mogeneous media near material discontinuities, dislocations and when slip gradients

are constrained by interfaces.

The calculation of the modified Green tensor in the Lippmann-Schwinger equation

is performed using a centered finite difference scheme on a rotated grid introduced

by Willot (2015). In this scheme, the first order partial derivative operator in the

Fourier space is obtained as follows. First, the displacement field is expressed in the

Fourier space at the four corners (in two dimensions) of a voxel in a 45◦ rotated basis

with respect to the original Cartesian basis. The corresponding stress/strain fields

are obtained in the center of the voxel in the 45◦ rotated basis using centered finite

difference. Such stress/strain fields are expressed back in the original Cartesian basis,

and then casted in the real space through the inverse DFT. The details of the method

were reported in Willot (2015). Hence, the corresponding multiplier in the Fourier

space between continuous and discrete Fourier transform for partial derivative of
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first order can be easily deduced as follows:

iξRj =
i

4δ
tan

(
πmj

Nj

)(
1 + exp

(
i
2πm1

N1

))(
1 + exp

(
i
2πm2

N2

))(
1 + exp

(
i
2πm3

N3

))
(75)

where mj is defined with eqs. 72 or 73. The accuracy of such centered finite difference

approximation on a rotated grid was successfully tested by Willot (2015) for inho-

mogeneous elastic media and by Djaka et al. (2017) for static FDM in heterogeneous

media.

Following Berbenni et al. (2014), Lebensohn and Needleman (2016) and Djaka et al.

(2017), the differentiation rule for the term iξkejkl
̂(Lpil) in eq. 67 is based on a cen-

tered finite difference scheme (no rotated grid was needed for this term to have

enough accuracy) such that the corresponding multipliers in the Fourier space be-

tween continuous and discrete Fourier transforms for partial derivative of first order

reads:

iξCj =
i

δj
sin

(
2πmj

Nj

)
(76)

where, mj are defined with Eqs. 72 or 73.
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4 Application to the deformation of two-phase laminate microstruc-

tures: results and discussion

In the following, two different models will be investigated and discussed for periodic

laminate microstructures with elastic and plastic phases (Fig. 3). A first approach, to

be called here CP-EVPFFT, is based on the conventional crystal plasticity EVPFFT

method where excess dislocation densities α are disregarded in the above equations

and follows the initial formulation developed by Lebensohn et al. (2012). A second

approach, to be called here MFDM-EVPFFT, is based on the MFDM crystal plastic-

ity model where excess dislocation (GND) densities α were considered as described

previously. The objective of this application is to show the numerical feasibility

and stability of the FFT-based schemes presented in section 3 for a simple two-

phase microstructure and the role of material parameters on the model predictions.

Moreover, the role of interfacial jump condition discussed in section 2.4 will be also

investigated.

4.1 Material and simulation parameters

In the following numerical simulations, a two-phase periodic laminate composite

is considered to have a purely elastic phase (called second phase) and an elasto-

viscoplastic phase (called plastic channels). The period of the composite in the

y-direction (corresponding to e2) is denoted H and H = s + 2h where s is the

plastic channel size and 2h is the total size of elastic second phase along the y-

direction. Elasticity is assumed to be isotropic and homogeneous with Young’s mod-

ulus E = 69GPa and Poisson ratio ν = 0.33 for Aluminium (Al). Therefore, the

elastic shear modulus is µ = 25.9GPa. For plastic channels, the material parameters

related to slip rule, GND velocity (γ̇0, m and η) and hardening model (τ0, τs, θ0 and
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k0) were consistent with pure Al. However, a specific fit to experimental data has

not been carried out. The Burgers vector magnitude for Al is b = 2.86 × 10−10m.

Since the composite effect or volume fraction effect is not investigated and only the

channel size effect is studied, the volume fraction of second phase is always fixed

to f = 2h/H = 0.3125 for all simulations. The reference material parameters used

for next simulations are reported in Table 1. Among these parameters, the influence

of material parameter k0 will be investigated in the next examples. As reference

parameter, k0 is chosen following the value fitted by Acharya and Beaudoin (2000)

for the case of FCC metals, i.e. k0 = 20.

The unit cell is submitted to a pure shear loading with mixed strain/stress boundary

conditions and applied shear strain rate Ė13 = Ė31 = 0.001s−1. The crystallographic

orientation of the plastic single crystal channel is given by the three Bunge-Euler

angles: φ1 = 300◦, φ = 54.7358◦, φ2 = 45◦ so that a predominant single slip mode

corresponding to the slip system (111) < 101̄ > is activated in the channel. As

a result, a Schmid factor of 0.5 is obtained for this single crystalline orientation

under this specific shear loading. In this configuration, using the MFDM model,

the main GND density created during this shear loading is due to screw dislocations

extended along the x- direction (along e1) corresponding to a α11 dislocation density

component. The MFDM theory should predict a progressive accumulation of such

GND density in the course of plastic deformation, particularly important near the

elastic / plastic interfaces.

Table 1

List of reference material parameters used for simulations

E (GPa) ν γ̇0(s−1) m η b (m) τ0 (MPa) τs (MPa) θ0 (MPa) k0

69 0.33 1 0.05 0.33 2.86 ×10−10 3 12 150 20

The specific numerical parameters used for GND density transport equation are
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Figure 3. Two-phase laminate microstructure with plastic channel (red colored) and elastic

second phase (blue colored) in Cartesian coordinates.

taken from a previous study (Djaka et al., 2015) where these parameters were opti-

mized (see Table 2).

Table 2

Numerical parameters for the spectral resolution of GND density transport equation

c εM p

0.25 0.2 1

The new numerical algorithm MFDM-EVPFFT contains some modifications with

respect to the CP-EVPFFT (Lebensohn et al., 2012) that are briefly explained now.

The time step is given as 4t = min (4tCFL, 4tε) where 4tCFL was defined in
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eq. 70 and the time step 4tε is the classic time step used in CP-EVPFFT (here

for Ė13 = Ė13 = 0.001s−1, 4tε = 0.01s). For a given time during the simulation,

the explicit dislocation density transport equation is solved using eq. 69 to give

the new dislocation density tensor, which is used in the GND velocity and in the

strain-hardening model (eq. 30). The FFT-resolution of the Lippmann-Schwinger

used a DFT-scheme coupled to a rotated centered finite difference scheme (see sec-

tion 3.4). It was also seen that the new derivations reported in section 3.2 for the

MFDM-EVPFFT formulation do not modify the number of Newton-Raphson iter-

ations needed for numerical convergence of the augmented Lagrangian scheme in

comparison with the CP-EVPFFT. For these simulations using isotropic homoge-

neous elasticity and with a quasi-linear overall hardening, these ones did not exceed

four iterations to have a same accuracy as in Lebensohn et al. (2012).

4.2 Voxel refinement study

A voxel refinement study was first performed in order to adopt an optimal numerical

resolution for the simulations of size effects and for the next simulation results. For

the case of a unit cell with three different periods: H = 0.0625µm, H = 0.25µm

and H = 1µm, the application of the MFDM-EVPFFT formulation for the studied

configuration introduced in section 4.1 leads to a clear size effect (Fig. 4) on the

overall shear flow stress response of the composite Σ13 =< σ13 > as a function of

applied shear strain E13 =< ε13 >.

For this composite, it is observed that the size effect on overall flow stress is not

dependent on the voxel size, i.e. the resolution of the computational grid (see Fig.

4)). According to Fig. 4, the overall response of the composite is almost not modified

for each period when the cell dimension varies from 32× 32× 32 to 128× 128× 128

voxels, which demonstrates the rapid convergence of the stress/strain response of
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Figure 4. Overall shear stress/ shear strain responses for three different periods:

H = 0.0625µm, H = 0.25µm and H = 1µm obtained from the MFDM-EVPFFT formula-

tion considering three different cell dimensions: 32×32×32, 64×64×64 and 128×128×128

voxels.

the composite. For H = 0.25µm, the local shear stress σ13 distributions and the

internal shear stress profiles σ13− < σ13 > obtained from MFDM-EVPFFT model at

0.2% of macroscopic shear strain are reported on Fig. 5 for two different resolutions:

64×64×64 and 128×128×128 voxels. This example shows that similar profiles and

magnitudes are obtained for the mechanical fields for both resolutions. Therefore,

from the overall stress/strain responses and local stress field profiles, it is not needed

to consider a voxel refinement up to a unit cell with 128×128×128 voxels to predict

the channel size dependent composite’s mechanical response. A good compromise in

terms of accuracy and CPU time for next simulations is the choice of a unit cell

dimension using only 64× 64× 64 voxels.
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Figure 5. Distributions in local shear stress σ13 (in MPa) obtained from MFDM-EVPFFT

at 0.2% of macroscopic shear strain for two different resolutions: 64× 64× 64 voxels (top

left) and 128×128×128 voxels (top right). Shear stress σ13 (bottom left) and internal shear

stress σ13− < σ13 > (bottom right) profiles along the y−direction at 0.2% of macroscopic

shear strain for the two previous cell dimensions.

4.3 Channel size-dependent responses predicted by MFDM-EVPFFT formulation

Five plastic channel sizes were considered, ranging from s = 0.043µm to s =

429.71µm. For all sizes, a constrained interface with jump condition was applied

with the MFDM-EVPFFT formulation. In contrast with the CP-EVPFFT formu-

lation, which is size independent considering either unconstrained or constrained

interface (i.e. [Lp] × n = 0), a channel size effect is successfully predicted with

the MFDM-EVPFFT formulation. This result is consistent with Roy and Acharya

(2006) and Puri et al. (2010) who provided dimensionless arguments for size scale

dependence with the MFDM theory. Here, this size effect is essentially dependent on

the dimensionless parameter b/s since no initial excess dislocation density tensor α0
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was prescribed as an input of these simulations. As it will be shown in the next re-

sults, the size scale dependence on the shear flow stress is due to the self-organisation

of a screw double-ended GND pile up forming in the course of plastic deformation,

which originates from dislocation mobility and strain-hardening in the channel con-

strained by elastic second phase. For the chosen default material parameters reported

in Table 1, the predicted scaling law obtained with the MFDM-EVPFFT model for

the overall shear flow stress at 0.2% of overall shear strain E13 =< ε13 > writes

as follows: < σ13 >=< σ∞13 > +Ksn, where n = −0.5, K = 6.295MPa.µm0.5 and

< σ∞13 >' 35MPa is the size-independent flow stress given by the CP-EVPFFT

model assuming a constrained interface. Therefore, for the studied configuration,

this size dependence is closer to Hall-Petch’s than Orowan’s type behavior for two-

phase laminate microstructures as discussed for example in Cordero et al. (2010,

2012). As reported in Fig. 4, this scaling law is not dependent on voxel size and op-

timized resolution with 64× 64× 64 voxels was used. Furthermore, the predictions

of the MFDM-EVPFFT model for two-phase periodic laminate structures under

shear loading gives a more realistic estimate than the higher order strain gradient

plasticity (SGP) model proposed by Aifantis (1987) or by Gurtin (2002). Indeed,

for the latter, a constant scaling exponent n = −2 was reported for similar periodic

microstructures in Cordero et al. (2010).

37



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
-3

0

20

40

60

80

100

120

140

MFDM-EVPFFT: s=0.043 m
MFDM-EVPFFT: s=0.172 m

MFDM-EVPFFT: s=0.687 m
MFDM-EVPFFT: s=17.19 m

MFDM-EVPFFT: s=429.71 m
CP-EVPFFT (unconstrained)
CP-EVPFFT (constrained)

Figure 6. Channel size-dependent responses for five plastic channel sizes ranging from

s = 0.043µm to s = 429.71µm predicted by the MFDM-EVPFFT model. Comparison

with CP-EVPFFT size-independent responses assuming constrained interface (with jump

condition) and unconstrained interface (without jump condition).

4.4 Responses for constrained/ unconstrained material interface

Using the same default parameters as in Table 1, the effect of a constrained/unconstrained

phase boundary (using or not the jump condition developed in section 2.4 for impen-

etrable grain boundaries) on the overall shear stress responses is now examined for

two channel sizes represented by two different periods: H = 0.0625µm and H = 1µm

(with 64× 64× 64 voxels). Fig. 7 reports an increase of hardening for both channel

sizes due to the application of the jump condition at the phase boundaries between

elastic second phase and plastic channels. However, this non local effect due to in-

terfacial jump condition does not produce the intrinsic size effect for self-similar

microstructures as reported in section 4.3. Thus, most of the size effects come from
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Figure 7. Effect of interfacial jump condition on the overall shear stress responses of the

two-phase composite obtained from MFDM-EVPFFT for H = 1µm and H = 0.0625µm.

the extended GND pile-ups and the resulting increase in strain hardening. In our

simulations, phase boundaries are not considered as dislocation sources as done by

Puri et al. (2010). This hardening effect on shear stress responses effect was already

reported using FE simulations in Richeton et al. (2011) (see their figure 8 for exam-

ple). In addition, the hardening effect described in Fig. 7 is less pronounced than the

one observed by Puri et al. (2010) for bicrystals, where in their case two plastic crys-

tals were considered and some comparisons were made between two extreme cases:

penetrable grain boundary with slip transmission from one crystal to another and

impenetrable grain boundary (slip blocked in one crystal at the grain boundary).
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4.5 Plastic distortion, internal shear stress and GND density profiles in the plastic

channel

In order to explain the clearly observed differences between the size-insensitive classic

CP-EVPFFT model and the present MFDM-EVPFFT formulation, let us consider

the spatial variation along the y-direction (see Fig. 5) of the plastic distortion Up
13,

the shear stress σ13, the internal shear stress defined as σ13− < σ13 > and the

screw GND density component α11 normalized by the Burgers vector magnitude

b. The numerical results are reported on Figs. 8, 9 and 10 respectively considering

H = 0.25µm and an overall shear strain E13 =< ε13 >= 0.2%. According to the

MFDM-EVPFFT formulation, the plastic distortion (or slip) profile (see Fig. 8)

exhibits a spatial gradient in the y-direction of the channel in contrast with the CP-

EVPFFT model, which classically gives a uniform slip in the channel. Intra-granular

slip gradients were also recently reported by Lebensohn and Needleman (2016)using

a higher order non-local formulation in the EVPFFT formulation, introducing a

backstress involving a length scale based on the SGP model of Gurtin (2002). For

the MFDM-EVPFFT formulation, slip is maximal in the middle of the channel and

gradually decreases to zero at the interfaces and in the elastic second phase (no

plastic distortion). The consequences of this plastic distortion gradient is directly

visible on the shear stress and and internal shear stress profiles, which also both

exhibit a spatial gradient starting from the middle of the channel, see Fig. 9 and

Fig. 10 respectively. The small observed cusps observed at the middle of the channel

is explained by the choice of the used numerical resolution (64×64×64 voxels, see Fig.

5). However, these ones have no consequence on the composite’s mechanical response

as seen in Fig. 4. From the examination of the major GND density component α11

as a function of x2 (Fig. 11), the GND density is important in the neighborhood

of phase boundaries forming a continuous screw double-ended GND pile up. In the
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center of the channel, it totally cancels due to the annihilation of two GND densities

with opposite signs. In comparison, the classic CP-EVPFFT describes a dipole of

screw GNDs only located at the phase boundaries. This corresponds to Frank-Bilby

interfacial dislocations, which are unrealistic for this plastically deformed two-phase

laminate.
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Figure 8. Plastic distortion profiles Up13 as a function x2 = y (i.e. along the normal to

the phase boundaries) predicted by MFDM-EVPFFT (top) vs. CP-EVPFFT (bottom)

formulations, for an overall shear strain E13 =< ε13 >= 0.2%.

Fig. 12 reports for different steps in the simulation, namely E13 = 0.1%, E13 = 0.2%,

E13 = 0.3% and E13 = 0.45%, the time evolution of the non zero GND density

components along the normal direction to the phase boundary. It can be seen as
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Figure 9. Shear stress profiles σ13 as a function x2 = y (i.e. along the normal to the phase

boundaries) predicted by MFDM-EVPFFT (top) vs. CP-EVPFFT (bottom) formulations,

for an overall shear strain E13 =< ε13 >= 0.2%.

expected, that the jump condition imposes a constraint on the following GND density

components: α23 = α21 = 0 but not on α11, α33, α13 and α31 (see eq. 42). At all

strains, it is clear that the major GND density component is α11 (screw dislocations)
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Figure 10. Internal shear stress profiles σ13− < σ13 > as a function x2 = y (i.e. along the

normal to the phase boundaries) predicted by MFDM-EVPFFT (top) vs. CP-EVPFFT

(bottom) formulations, for an overall shear strain E13 =< ε13 >= 0.2%.

which is due to the applied shear loading (anti-plane shear with respect to the

interface). It can be seen from the numerical values reported on Fig. 12 that the

values of α11/b are at least 1000 times larger than the other components close to the
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Figure 11. Profile of GND density component α11 normalized by b as a function x2 = y

(i.e. along the normal to the phase boundaries) predicted by MFDM-EVPFFT (top) vs.

CP-EVPFFT (bottom) formulations, for an overall shear strain E13 =< ε13 >= 0.2%.

phase boundaries. However, the spatial variation of GND density fields as obtained

here from the spectral resolution of the dislocation density transport equation (see

section 3.3) in a reduced version of the MFDM theory (Roy et al., 2007) is seen to
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Figure 12. Time evolution of the different non zero GND densities normalized by b as a

function of applied shear strain: E13 = 0.1% (magenta), E13 = 0.2% (blue), E13 = 0.3%

(red) and E13 = 0.45% (black).

be smoother near interface that the fields obtained from α = −curl Up after the

numerical implementation of the integration of eq. 10. A numerical improvement

in this direction can be envisaged implementing the full equations of the MFDM

theory as reported in Acharya and Roy (2006) (see their eqs. 23) in the present

MFDM-EVPFFT formulation.
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4.6 Parameter study of the influence of k0 on the mechanical response of the com-

posite

Lastly, let us consider the influence of material parameter k0 on the mechanical

responses of the two-phase composite. This physical parameter is important since

it defines the mean free path of GND (see section 2.2, eq. 31). The effect of k0 on

the overall shear stress responses is reported on Fig. 13 considering three different

values: k0 = 10, k0 = 20, k0 = 40. It is shown that an increase of k0 leads to an

increase of the flow stress for a same shear strain. For these three different values

of k0, a scaling law with n ' −0.5 is observed. Considering now the particular case

of H = 0.25µm, i.e. s = 0.172µm, comparisons of the different mechanical fields

for these three different values of k0 are given in Fig. 14. It is seen that plastic

distortion gradient and internal stress gradient are slightly stronger for larger values

of k0. When k0 is decreased from k0 = 40 to k0 = 10, the cusps observed at the

centre of the channel become less visible. This local hardening effect observed in

Fig. 13 due to an increase of k0 is enhanced by a decrease of the mean free path of

GND. In the regions where the GND density is higher (i.e. in the neighborhood of

phase boundaries), local hardening becomes stronger because the mean free path of

GND scales with the inverse of |α · ns| (see eq. 31).
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Figure 13. Channel size-dependent responses for three plastic channel sizes from

s = 0.043µm (red) to s = 0.687µm (magenta) predicted by the MFDM-EVPFFT model

for three different values of material parameter k0 involved in the mean free path of GND:

k0 = 10 (solid lines), k0 = 20 (dotted lines), k0 = 40 (dashed lines).

5 Summary and outlook

A new spectral formulation called MFDM-EVPFFT was developed to extend the

EVPFFT formulation (Lebensohn et al., 2012) to a reduced version of Mesoscale

Field Dislocation Mechanics that includes GND and SSD effects (Acharya and Roy,

2006). As in the case of the finite element implementation of the MFDM theory,

the present FFT-based approach is able to successfully describe realistic channel

size effects for the mechanical response of two-phase laminate microstructures with

elastic second phase and plastic channels. The MFDM-EVPFFT is based on five

new features as compared to the CP-EVPFFT formulation:

• a new expression of the Jacobian for the augmented Lagrangian scheme consider-
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Figure 14. Effect of k0 on different mechanical fields for k0 = 10 (solid lines), k0 = 20

(dotted lines), k0 = 40 (dashed lines): Up13 (top left), σ13− < σ13 > (top right), U̇p13

(bottom left), α11/b (bottom right) at different shear strains: E13 = 0.1% (magenta),

E13 = 0.2% (blue), E13 = 0.3% (red) and E13 = 0.45% (black).

ing plastic strain rate due to GNDs in addition to the one due to SSDs;

• a numerical spectral resolution of the dislocation density transport equation cou-

pled to stress equilibrium;

• a hardening rule accounting for GND densities with effects on SSD and GND

mobilities;

• a jump condition on plastic distortion rate describing the conservation of Burgers

vector content at material discontinuities between plastic channels and elastic

second phase;

• a spectral discrete method based on finite difference schemes to treat both lattice

incompatibility and integral Lippmann-Schwinger equations.

In this non local formulation, this size scale dependence is closely related to the

generation of continuous dislocation pile-ups from the centre of channels to phase
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boundaries, which are not captured by a classic CP-EVPFFT describing only inter-

facial GND constrained at phase boundaries. The present MFDM-EVPFFT model is

different from the higher order Strain Gradient Plasticity (SGP)-EVPFFT (Leben-

sohn and Needleman, 2016), which is formulated in terms of dissipative and energetic

hardening included in the constitutive equations. However, both approaches revealed

slip gradients and size effects that can be calibrated using the material parameters

of the constitutive models. For the MFDM-EVPFFT model, it is shown that both

GND densities and slip constraint at phase boundaries influence the overall and

local hardening behaviors as well as the calibration of the mean free path of GND

through a material parameter that can be fitted with experiments.

Many other applications can now be pursued, after this first implementation of the

MFDM-EVPFFT formulation. Here, a reduced version of the MFDM theory was

used, which can be improved by a future implementation of the full equations of the

MFDM theory (Acharya and Roy, 2006) in the MFDM-EVPFFT formulation. Fur-

thermore, a study of the Bauschinger effect can be performed considering reversible

and cyclic plasticity to quantify the effects GND polarity and mobility on kinematic

hardening. Also, the present MFDM-EVPFFT model can be applied to polycrystals

with different grain sizes under different slip assumptions at grain boundaries (forth-

coming paper is in preparation). Finally, since robust FFT-based solvers for crystal

elasto-viscoplasticity at finite strains are now available (Eisenlohr et al., 2013; Shan-

thraj et al., 2015), the MFDM-EVPFFT can also be extended to a large deformation

framework using the finite deformation FDM equations (Acharya, 2004).
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