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SHAPE OPTIMIZATION OF A DIRICHLET TYPE ENERGY FOR

SEMILINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

Antoine Henrot1, Idriss Mazari2,* and Yannick Privat3

Abstract. Minimizing the so-called “Dirichlet energy” with respect to the domain under a volume
constraint is a standard problem in shape optimization which is now well understood. This article is
devoted to a prototypal non-linear version of the problem, where one aims at minimizing a Dirichlet-
type energy involving the solution to a semilinear elliptic PDE with respect to the domain, under a
volume constraint. One of the main differences with the standard version of this problem rests upon the
fact that the criterion to minimize does not write as the minimum of an energy, and thus most of the
usual tools to analyze this problem cannot be used. By using a relaxed version of this problem, we first
prove the existence of optimal shapes under several assumptions on the problem parameters. We then
analyze the stability of the ball, expected to be a good candidate for solving the shape optimization
problem, when the coefficients of the involved PDE are radially symmetric.
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1. Introduction

1.1. Motivations and state of the art

Existence and characterization of domains minimizing or maximizing a given shape functional under con-
straint is a long story. Such issues have been much studied over the last decades (see e.g. [1, 7, 11, 13, 17]). Recent
progress has been made in understanding such issues for problems involving for instance spectral functionals
(see e.g. [12]).

The issue of minimizing the Dirichlet energy (in the linear case) with respect to the domain is a basic and
academical shape optimization problem under PDE constraint, which is by now well understood. This problem
reads:

Let d ∈ N∗ and D be a C 2 compact set of Rd. Given g ∈ L2(D) and m 6 |D|, minimize the Dirichlet
energy

J(Ω) =
1

2

∫
Ω

|∇uΩ|2 −
∫

Ω

guΩ,
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2 A. HENROT ET AL.

where uΩ is the unique solution of the Dirichlet problem1 on Ω associated to g, among all open
bounded sets Ω ⊂ D of Lebesgue measure |Ω| 6 m.

As such, this problem is not well-posed and it has been shown (see e.g. [10] or [13, Chap. 4] for a survey of
results about this problem) that optimal sets only exist within the class

Om = {Ω ∈ A(D), |Ω| 6 m}, (1.1)

where A(D) denotes the class of quasi-open sets2 of D.
This article is motivated by the observation that, in general, the techniques used to prove existence, regularity

and even characterization of optimal shapes for this problem rely on the fact that the functional is ”energetic”,
in other words that the PDE constraint can be handled by noting that the full shape optimization problem
rewrites

min
Ω∈A(D)
|Ω|6m

min
u∈W 1,2

0 (Ω)

{
1

2

∫
Ω

|∇uΩ|2 −
∫

Ω

guΩ

}
.

In this article, we introduce and investigate a prototypal problem close to the standard “Dirichlet energy shape
minimization”, involving a nonlinear differential operator. The questions we wish to study here concern existence
of optimal shapes and stability issues for “non energetic” models. We note that the literature regarding existence
and qualitative properties for non-energetic, non-linear optimization problems is scarce. We nevertheless mention
[18], where existence results are established in certain asymptotic regimes for a shape optimization problem
arising in population dynamics.

Since our aim is to investigate the optimization problems in the broadest classes of measurable domains, we
consider a volume constraint, which is known to lead to potential difficulties. Indeed, the literature in shape
optimization is full of optimization problems that are not well-posed under such constraints.

In the perturbed version of the Dirichlet problem we will deal with, the linear PDE solved by uΩ is changed
into a nonlinear one but the functional to minimize remains the same. Since, in this case, the problem is not
”energetic” anymore (in the sense described above), the PDE constraint cannot be incorporated into the shape
functional. This calls for new tools to be developed in order to overcome this difficulty. Among others, we are
interested in the following issues:

– Existence: is the resulting shape optimization problem well-posed?
– Stability of optimal sets: given a minimizer Ω∗0 for the Dirichlet energy in the linear case, is Ω∗0 still a

minimizer when considering a “small enough” non-linear perturbation of the problem?

This article is organized as follows: the main results, related to the existence of optimal shapes for Problem
(1.3) and the criticality/stability of the ball are gathered in Section 2. Section 3 is dedicated to the proofs of
the existence results whereas Section 4 is dedicated to the proofs of the stability results.

1.2. The shape optimization problem

In what follows, we consider a modified version of the problem described above, where the involved PDE
constraint is now nonlinear.

1in other words

uΩ = argmin
u∈W1,2

0 (Ω)

{
1

2

∫
Ω
|∇uΩ|2 −

∫
Ω
guΩ

}
.

2Recall that Ω ⊂ D is said quasi-open whenever there exists a non-increasing sequence (ωn)n∈N such that

∀n ∈ N, Ω ∪ ωn is open and lim
n→+∞

cap(ωn) = 0
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Let d ∈ N∗, D be a compact set of Rd with a C 2 boundary , g ∈ Lp(D) where p > d
2 and p > 2, and

f ∈W 1,∞(R). For a small enough positive parameter ρ, let uΩ ∈W 1,2
0 (Ω) be the unique solution of

the problem {
−∆uρ,Ω + ρf(uρ,Ω) = g in Ω

uρ,Ω ∈W 1,2
0 (Ω).

(1.2)

For m 6 |D|, solve the problem:

inf
Ω∈Om

Jρ(Ω) where Jρ(Ω) =
1

2

∫
Ω

|∇uρ,Ω|2 −
∫

Ω

guρ,Ω, (1.3)

and where Om is defined in (1.1).

Remark 1.1. The assumption p > d
2 guarantees that that the embedding W 2,p(D) ↪→ L∞(D) holds and is

continuous. It will be used here to obtain regularity properties (see Lem. 2.2), namely, that the solutions of
the involved elliptic PDEs belong to L∞(D). This is for instance true whenever g ∈ L2(D) and d = 2, 3. The
assumption p > 2 ensures that g ∈ L2(D), which enables us to work directly with the weak formulation of the
equations in W 1,2

0 (Ω) or later in W 1,2
0 (D).

In this problem, the smallness assumption on the parameter ρ guarantees the well-posedness of the PDE
problem (1.2) for generic choices of nonlinearities f .

Lemma 1.2. There exists ρ > 0 such that, for any Ω ∈ Om, for any ρ ∈ [0, ρ), equation (1.2), understood

through its variational formulation, has a unique solution in W 1,2
0 (Ω).

This follows from a simple fixed-point argument: let λ1(Ω) be the first eigenvalue of the Dirichlet Laplacian
on Ω. We note that the operator

T : W 1,2
0 (Ω) −→ W 1,2

0 (Ω)
u 7−→ wΩ,

where wΩ is the unique solution of {
−∆w − g = −ρf(u) in Ω

w ∈W 1,2
0 (Ω),

is Lipschitz with Lipschitz constant CT (Ω) such that CT (Ω) 6 ρ 1
λ1(Ω)‖f‖W 1,∞ . By the monotonicity of λ1 with

respect to domain inclusion (see [11]), we have, for every Ω ∈ Om, λ1(D) 6 λ1(Ω), so that CT (Ω) 6 ρ‖f‖W1,∞
λ1(D) .

2. Main results of the paper

2.1. Existence results

We state hereafter a partial existence result inherited from the linear case. Indeed, we will exploit a mono-
tonicity property of the shape functional Jρ together with its lower-semi continuity for the γ-convergence to
apply the classical theorem by Buttazzo-DalMaso (see Sect. 3.1). Our approach takes advantage of the analysis
of a relaxed formulation of problem (1.3). To introduce it, let us first consider the given box D ⊂ Rn (which we
recall is compact subset of Rn with a C 2 boundary) such that |D| > m.
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In the minimization problem (1.3), let us identify a shape Ω with its characteristic function 1Ω. This leads
to introducing the “relaxation” set

Ôm =

{
a ∈ L∞(D, [0, 1]) such that

∫
D

a 6 m

}

For a given positive relaxation parameter M , we define the (relaxed) functional ĴM,ρ by

ĴM,ρ(a) =
1

2

∫
D

|∇uM,ρ,a|2 +
M

2

∫
D

(1− a)u2
M,ρ,a −

∫
D

guM,ρ,a, (2.1)

for every a ∈ Ôm, where uM,ρ,a ∈W 1,2
0 (D) denotes the unique solution of the non-linear problem{

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) = g in D

uM,ρ,a ∈W 1,2
0 (D).

(2.2)

Our existence result involves a careful asymptotic analysis of uM,ρ,a as ρ→ 0 to derive a monotonicity property.

Standard elliptic estimates entail that, for every M > 0 and a ∈ Ôm, one has uM,ρ,a ∈ C 0(Ω).

Remark 2.1. Such an approximation of uρ,Ω is rather standard in the framework of fictitious domains. The
introduction of the term M(1− a) in the PDE has an interpretation in terms of porous materials (see e.g. [8])
and it may be expected that uM,ρ,a converges in some sense to uρ,Ω as M → +∞ and whenever a = 1Ω. This
will be confirmed in the analysis to follow.

Roughly speaking, the existence result stated in what follows requires the right-hand side of equation
(1.2) to have a constant sign. To write the hypothesis down, we need a few notations related to the relaxed
problem (2.2), which is the purpose of the next lemma.

Lemma 2.2. Let m ∈ [0, |D|], a ∈ Ôm and g ∈ Lp(D) with p > d
2 , p > 2, be a nonnegative function. There

exists a positive constant Nm,g such that

∀a ∈ Ôm, ∀M > 0, ∀ρ ∈ [0, ρ), ‖uM,ρ,a‖∞ 6 Nm,g, (2.3)

where ρ is defined in Lemma 1.2, uM,ρ,a denotes the unique solution to (2.2). In what follows, Nm,g will denote
the optimal constant in the inequality above, namely

Nm,g = sup{‖uM,ρ,a‖∞, a ∈ Ôm,M > 0, ρ ∈ [0, ρ)}.

This follows from standard arguments postponed to Appendix A.
We now state the main results of this section. Let us introduce the assumptions we will consider hereafter:

(H1) There exist two positive numbers g0, g1 such that g0 < g1 and g0 6 g(·) 6 g1 a.e. in D.
(H2) One has f ∈ W 1,∞(R) ∩ D2(R), where D2(R) is the set of twice differentiable functions (with second

derivatives not necessarily continuous). Moreover, f(0) 6 0 and there exists δ > 0 such that the mapping
x 7→ xf(x) is non-decreasing on [0, Nm,g + δ] where Nm,g is given by Lemma 2.2.

Theorem 2.3. Let us assume that one of the following assumptions holds true:

• g or −g satisfies assumption (H1);
• g is non-negative, g ∈ Lp(D) with p > d

2 and p > 2, and the function f satisfies assumption (H2) or g is

non-positive, g ∈ Lp(D) with p > d
2 and p > 2, and the function −f satisfies assumption (H2);
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Then, there exists a positive constant ρ0 = ρ0(D, f(0), ‖f‖W 1,∞ , g0, g1) such that the shape optimization
problem (1.3) has a solution Ω∗ for every ρ ∈ (0, ρ0).

Furthermore, there exists at least one optimal shape Ω∗ such that |Ω∗| = m.

Remark 2.4. The proof of Theorem 2.3 rests upon a monotonicity property of the relaxed functional ĴM,ρ

given by (2.1). This is the first ingredient that subsequently allows the well-known existence result of Buttazzo
and Dal-Maso to be applied.

It is natural to wonder whether or not it would be possible to obtain this result in a more direct way, for
instance by using shape derivatives to obtain a monotonicity property. In other words, an idea could be to
consider, for a set E, and for a regular vector field V : Rn → Rn, the shape derivative

lim
ε→0

Jρ((Id +εV )E)− Jρ(E)

ε

and to prove that this quantity is positive for any vector field enlarging the domain (basically such that V · ν > 0
on ∂E if E is regular). Writing in a tractable way this shape derivative would require some minimal regularity
for the sets under consideration. Thus our approach seems more natural since it allows to handle the general
case of quasi-open sets.

It is interesting to note that Theorem 2.3 also yields an existence result when restricting ourselves to the set
Õm := {Ω quasi-open, Ω ⊂ D , |Ω| = m}, since Theorem 2.3 ensures that, under the appropriate assumption,
there exists an optimizer fulfilling the volume constraint.

We end this section by providing an example where existence within the class of open sets does not hold. It
thus shows that it is in general hopeless to get a general existence property for this kind of problem, even by
assuming stronger regularity on f and g. Let us consider the case where g = 0 and the function f is such that

f(0) < 0 and x 7→ xf(x) is decreasing. (H4)

An example of such f is f(x) = −ex2

. In order to make it a globally W 1,∞(R) function, one can truncate f
outside of a large interval [−M,M ] and retain Property (H4).

Theorem 2.5. If g = 0 and f satisfies (H4), if the optimization problem (1.3) has a solution Ω, then Ω has
no interior point. In particular, the problem of minimizing Jρ(Ω) given by (1.3) over the set of non-empty open
domains Ω such that |Ω| 6 m has no solution.

Remark 2.6. As will be emphasized in the proof of Theorem 2.5, the key ingredient is the use of topological
derivatives. More precisely, we will argue by contradiction that, under the assumptions that g = 0 and f
satisfies (H4), if a maximiser Ω∗ exists and has an interior point x0, then for ε > 0 small enough, the set
Ω∗ε := Ω∗\B(x0; ε) satisfies Jρ(Ω

∗
ε) < Jρ(Ω

∗).

2.2. Stability results

In what follows, we will work in R2. We assume that D is a centered ball D = B(0, RD) strictly containing
a centered ball B∗ = B(0, R) of volume m, in other words we assume that R < RD. We denote by R > 0 the
radius of B∗ and introduce S∗ = ∂B∗. The notation ν stands for the outward unit vector on S∗, in other words
ν(x) = x/|x| for all x ∈ S∗.

In this section, we will discuss the local optimality of the ball for small nonlinearities. We will in particular
highlight that the local optimality of the ball can be either preserved or lost depending on the choice of the right-
hand side g. Indeed, if ρ = 0 and if g is radially symmetric and non-increasing, the Schwarz rearrangement3

ensures that, for any Ω ∈ Om, J0(Ω) > J0(B∗). Without such assumptions, not much is known about the
qualitative properties of the optimizers.

3see e.g. [16] for an introduction to the Schwarz rearrangement.
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According to the considerations above, we assume in the whole section that the following hypothesis holds:

(H3) D = B(0, RD) is a ball containing B∗ = B(0, R), |B∗| = m, R < RD, g is a non-increasing, radially
symmetric and non-negative function in L2(D) and f is C 2(R) ∩W 1,∞(R).

Notice that the analysis to follow can be generalized to sign-changing g. Here, this assumption allows us to
avoid distinguishing between the cases where the signs of normal derivatives on S∗ are positive or negative. For
the sake of simplicity, for every ρ > 0, we will call uρ the solution of the PDE{

−∆uρ + ρf(uρ) = g in B∗
uρ ∈W 1,2

0 (B∗) on ∂B∗ = S∗. (2.4)

Proving a full stationarity result4 seems too intricate, since we do not know the minimizers’ topology. Here-
after, we investigate the local stability of the ball B∗: we will prove that the ball is always a critical point, and
show that we obtain different stability results, related to the non-negativity of the second shape derivative of
the Lagrangian, depending on f and g.

To compute the first and second order shape derivatives, it is convenient to consider vector fields V ∈
W 3,∞(R2,R2) and to introduce, for a given vector field V inW 3,∞ (note that since B∗ ( D, one has (Id +tV )B∗ ∈
Om for t small enough), the mapping

fV : t 7→ Jρ ((Id +tV )B∗) .

The first (resp. second) order shape derivative of Jρ in the direction V is defined as

J ′ρ(B∗)[V ] := f ′V (0) , (resp. J ′′ρ (B∗)[V, V ] := f ′′V (0)).

To enforce the volume constraint |Ω| = m, we work with the unconstrained functional

LΛρ : Ω 7→ Jρ(Ω)− Λρ (Vol(Ω)−m) ,

where Vol denotes the Lebesgue measure in R2 and Λρ denotes a Lagrange multiplier associated with the volume
constraint. Recall that, for every domain Ω with a C 2 boundary and every vector field V ∈ W 3,∞(R2,R2), we
have

Vol′(Ω)[V ] =

∫
∂Ω

V · ν and Vol′′(Ω)[V, V ] =

∫
∂Ω

H(V · ν)2,

where H stands for the mean curvature of ∂Ω. The local first and second order necessary optimality conditions
for problem (1.3) read as follow:

L′Λρ(Ω)[V ] = 0

L′′Λρ(Ω)[V, V ] > 0

}
for every V ∈W 3,∞(R2,R2) such that

∫
S∗
V · ν = 0.

For further informations about shape derivatives, we refer for instance to [13], Chapitre 5. Let us state the main
result of this section. In what follows, ρ is chosen small enough so that equation (1.2) has a unique solution.

Theorem 2.7. Let f and g satisfying the assumption (H3). Let V ∈ W 3,∞(R2,R2) denote a vector field such
that

∫
S∗ V · ν = 0.

1. (Shape criticality) B∗ is a critical shape, in other words J ′ρ(B∗)[V ] = 0.

4in other words, proving that, for any ρ 6 ρ∗, B∗ is the unique minimizer of Jρ in Om.
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2. (Shape stability) Assume that

2πR2g(R) 6
∫
B∗
g and 0 <

∫
B∗
g, (2.5)

where R denotes the radius of the ball B∗. Let Λρ be the Lagrange multiplier associated with the volume
constraint. There exists ρ > 0 and C > 0 such that, for any ρ 6 ρ,

(Jρ − Λρ Vol)′′(B∗)[V, V ] > C‖V · ν‖2
H

1
2 (∂B∗)

. (2.6)

3. (Shape instability) Assume that g is the constant function equal to 1 and that f is a non-negative function
such that f ′ < −1 on [0, 2‖u0‖∞), where u0 is the solution of (1.2) with ρ = 0 and Ω = B∗. Then, the
second order optimality conditions are not fulfilled on B∗: there exists ρ > 0 and V̂ ∈W 3,∞(R2,R2) such
that

∫
S∗ V̂ · ν = 0 and, for any ρ 6 ρ,

(Jρ − Λρ Vol)′′(B∗)[V̂ , V̂ ] < 0.

Remark 2.8. Although we do not tackle this issue in this article, we believe that the coercivity norm obtained
in (2.6) could also be obtained in the three-dimensional case. We comment on it in Remark 4.11.

Remark 2.9. Let us comment on the strategy of proof. It is known that estimates of the kind (2.6) can lead
to local quantitative inequalities [5]. We first establish (2.6) in the case ρ = 0, and then extend it to small
parameters ρ with the help of a perturbation argument. Assumptions of the type (2.5) are fairly well-known,
and amount to requiring that B∗ is a stable shape minimizer [6, 14]. Finally, the instability result rests upon the
following observation: if g = 1 and if V is the vector field given by V (r cos(θ), r sin(θ)) = cos(θ)(r cos(θ), r sin(θ)),
then one has

(J ′′0 − Λ0 Vol)′′(B∗)[V, V ] = 0

while higher order modes are stable [6, 14]. It therefore seems natural to consider such perturbations when
dealing with small parameters ρ.

It should also be noted that our proof uses a comparison principle, which shortens many otherwise lengthy
computations.

Remark 2.10. The H1/2 coercivity norm obtained for the second order shape derivative of the Lagrangian in
Estimate (2.6) is the natural one in the framework of shape optimization, see for instance [5]. We emphasize
that in the case of the functional under study here, completely explicit computations are not available, but
that we obtain this norm through a very careful analysis of the diagonalized shape hessian, using comparison
principles.

Although this is not the primary focus of this article, we believe that, with this coercivity property at hand,
one can apply the techniques and results of [5] to derive a local quantitative inequality at the ball.

3. Proof of Theorem 2.3

3.1. General outline of the proof

The proof of Theorem 2.3 rests upon an adaptation of the standard existence result by Buttazzo-DalMaso
(see either the original article [2] or [13], Thm 4.7.6 for a proof), based on the notion of γ-convergence, that we
recall below.
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Definition 3.1. For any quasi-open set Ω, let RΩ be the resolvent of the Laplace operator on Ω. We say that
a sequence of quasi-open sets (Ωk)k∈N in Om γ-converges to Ω ∈ Om if, for any ` ∈ W−1,2(D), (RΩk(`))k∈N
converges in W 1,2

0 (D) to RΩ(`).

The aforementioned existence theorem reads as follows.

Theorem (Buttazzo-DalMaso). Let J : Om → R be a shape functional satisfying the two following assumptions:

1. (monotonicity) For every Ω1,Ω2 ∈ Om, Ω1 ⊆ Ω2 ⇒ J(Ω2) 6 J(Ω1).
2. (γ-continuity) J is lover semi-continuous for the γ-convergence.

Then the shape optimization problem

inf
Ω∈Om

J(Ω)

has a solution.

As is customary when using this result, the lower semi-continuity for the γ-convergence is valid regardless of
any sign assumptions on g or of any additional hypothesis on f . This is the content of the next result, whose
proof is standard, and thus postponed to Appendix B.

Proposition 3.2. Let f ∈W 1,∞(R) and ρ > 0. The functional Jρ is continuous for the γ-convergence.

It hence remains to investigate the monotonicity of Jρ. Our approach uses a relaxed version of Jρ, namely

the functional ĴM,ρ defined by (2.1). More precisely, we will prove under suitable assumptions that

∀M > 0 ,∀a1, a2 ∈ Ôm , a1 6 a2 =⇒ ĴM,ρ(a1) > ĴM,ρ(a2). (3.1)

It now remains to pass to the limit in (3.1) to obtain monotonicity of the functional Jρ.
One could expect, for any Ω ∈ Om, that choosing a = 1Ω and taking the limit M →∞ would give

ĴM,ρ(1Ω) −−−−−→
M→+∞

Jρ(1Ω).

This is not true in general, but it holds for sets Ω that are stable, see [13], Theorem 3.4.6; we recall that a set Ω
is said to be stable if, for any w ∈ W 1,2(D), the property “w = 0 almost-everywhere on D\Ω” is equivalent to
the property “w = 0 quasi-everywhere on D\Ω”. We underline the fact that, if Ω1 and Ω2 are two admissible
sets that are equal almost everywhere but not quasi-everywhere, we expect the limits limM→∞ JM,ρ(1Ω1

) and
limM→∞ JM,ρ(1Ω2

) to be equal. Our strategy is then to first use this relaxation to prove that the functional
Jρ is monotonous on the set of stable quasi-open sets and then to use the continuity of Jρ with respect to the
γ-convergence to establish its monotonicity on Om.

Using the relaxation for stable quasi-open sets The following result, whose proof is postponed to
Appendix C for the sake of clarity, allows us to make the link between ĴM,ρ and Jρ.

Lemma 3.3. Let Ω ∈ Om be a stable quasi-open set. One has

lim
M→+∞

ĴM,ρ(1Ω) = Jρ(Ω).

Setting a1 = 1Ω1
, a2 = 1Ω2

, and passing to the limit in (3.1) as M →∞ gives the monotonicity of Jρ on the
set

Om,s := {Ω ∈ Om ,Ω is stable} .
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Passing from stable quasi-open sets to Om The monotonicity of Jρ on Om is established using the
following Lemma, whose proof is postponed to Appendix D:

Lemma 3.4. If Jρ is monotonous on Om,s, then it is monotonous on Om.

Combining Lemma 3.4 with Lemma 3.3 and equation (3.1) gives the required monotonicity of the functional
Jρ.

In the next sections, we will concentrate on showing the monotonicity property (3.1). To this aim, we will
carefully analyze the so-called “switching function” (representing the gradient of the functional ĴM,ρ).

3.2. Structure of the switching function

It is notable that, in this section, we will not make any assumption on g or f other than f ∈ W 1,∞(R) and
g ∈ L2(D). Let M > 0. Considering the following relaxed version of Problem (1.3)

inf
a∈Ôm

ĴM,ρ(a), (3.2)

it is convenient to introduce the set of admissible perturbations in view of deriving first order optimality
conditions.

Definition 3.5 (tangent cone, see e.g. [4]). Let a∗ ∈ Ôm and Ta∗ be the tangent cone to the set Ôm at a∗. The
cone Ta∗ is the set of functions h ∈ L∞(D) such that, for any sequence of positive real numbers εn decreasing
to 0, there exists a sequence of functions hn ∈ L∞(D) converging to h for the weak-star topology of L∞(D) as

n→ +∞, and a∗ + εnhn ∈ Ôm for every n ∈ N.

In what follows, for any a ∈ Ôm, any element h of the tangent cone Ta will be called an admissible direction.

Lemma 3.6 (Differential of ĴM,ρ). Let a ∈ Ôm and h ∈ Ta. Let vM,ρ,a be the unique solution of{
−∆vM,ρ,a +M(1− a)vM,ρ,a + ρf ′(uM,ρ,a)vM,ρ,a = ρf(uM,a) in D

vM,ρ,a ∈W 1,2
0 (D).

(3.3)

Then, ĴM,ρ is differentiable in the sense of Fréchet at a in the direction h and its differential reads

〈dĴM,ρ(a), h〉 =
∫
D
hΨa, where Ψa is the so-called “switching function” defined by

Ψa = −M
(
vM,ρ,a +

uM,ρ,a

2

)
uM,ρ,a.

Proof of Lemma 3.6. The Fréchet-differentiability of ĴM,ρ and of the mapping Om 3 a 7→ uM,ρ,a ∈W 1,2
0 (D) at

m∗ is standard (see e.g. [13], Chap. 5). Let us consider an admissible perturbation h of a and let u̇M,ρ,a be the
differential of uM,ρ,a at a in direction h. One has

〈dĴM,ρ(a), h〉 =

∫
D

∇uM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)uM,ρ,au̇M,ρ,a −
M

2

∫
D

hu2
M,ρ,a

−
∫
D

gu̇M,ρ,a,

where u̇M,ρ,a solves the system{
−∆u̇M,ρ,a +M(1− a)u̇+ ρf ′(uM,ρ,a)u̇M,ρ,a = MhuM,a in D

u̇M,ρ,a ∈W 1,2
0 (D).

(3.4)
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Let us multiply the main equation of (2.2) by u̇M,ρ,a and then integrate by parts. We get∫
D

∇uM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)uM,ρ,au̇M,ρ,a + ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a =

∫
D

gu̇M,ρ,a

and therefore

〈dĴM,ρ(a), h〉 = −M
2

∫
D

hu2
M,ρ,a∗ − ρ

∫
D

f(uM,ρ,a∗)u̇M,ρ,a∗

Let us multiply the main equation of (3.4) by vM,ρ,a and then integrate by parts. We get∫
D

∇vM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)vM,ρ,au̇M,ρ,a + ρ

∫
D

f ′(uM,a)u̇M,avM,ρ,a = M

∫
D

huM,avM,ρ,a.

Similarly, multiplying the main equation of (3.3) by u̇M,ρ,a and then integrating by parts yields∫
D

∇vM,ρ,a · ∇u̇M,ρ,a +M

∫
D

(1− a)vM,ρ,au̇M,ρ,a + ρ

∫
D

f ′(uM,ρ,a)u̇M,ρ,avM,ρ,a = ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a.

Combining the two relations above leads to

ρ

∫
D

f(uM,ρ,a)u̇M,ρ,a = M

∫
D

huM,ρ,avM,ρ,a.

Plugging this relation into the expression of 〈dĴM,ρ(a), h〉 above yields the expected conclusion.

3.3. Proof that (3.1) holds true whenever ρ is small enough

Let us consider each set of assumptions separately.

Existence under the first assumption: g or −g satisfies the assumption (H1).

According to the discussion carried out in Section 3.1, proving Theorem 2.3 boils down to proving mono-
tonicity properties for the functional ĴM,ρ whenever ρ is small enough, which is the purpose of the next
result.

Lemma 3.7. Let a1 and a2 be two elements of Ôm such that a1 6 a2 a.e. in D. If g or −g satisfies the
assumption (H1), then there exists ρ1 = ρ1(D, g0, g1, ‖f‖W 1,∞) > 0 such that

∀M > 0 , ∀ρ ∈ (0, ρ1)⇒ ĴM,ρ(a1) > ĴM,ρ(a2).

Proof of Lemma 3.7. Assume without loss of generality that 0 < g0 6 g 6 g1,, the case 0 < g0 6 −g 6 g1 being
easily inferred by modifying all the signs in the proof below. Then, one has

−∆uM,ρ,a +M(1− a)uM,ρ,a = g − ρf(uM,ρ,a) > 0 in D,

whenever ρ ∈ (0, g0/‖f‖∞), and therefore one has uM,ρ,a > 0 by the comparison principle.
Similarly, notice that

−∆uM,ρ,a 6 g1 + ρ‖f‖∞ in D,



SHAPE OPTIMIZATION OF A DIRICHLET TYPE ENERGY 11

which implies that uM,ρ,a 6 (g1 + ρ‖f‖∞)wD were wD is the torsion function of D. By the classical Talenti’s

estimate of the torsion function [21], we have ‖wD‖∞ 6 1
2d

(
|D|
ωd

)2/d

(where ωd is the volume of the unit ball).

Thus

‖uM,ρ,a‖∞ 6 (g1 + ρ‖f‖∞)
1

2d

(
|D|
ωd

)2/d

:= C(g0, ρ, ‖f‖∞, D). (3.5)

Setting UM,ρ,a = 1
2uM,ρ,a + vM,ρ,a, elementary computations show that UM,ρ,a solves the problem{

−∆UM,ρ,a + (M(1− a) + ρf ′(uM,ρ,a))UM,ρ,a = ρ
2 (f(uM,ρ,a) + uM,ρ,af

′(uM,ρ,a)) + g
2 in D,

UM,ρ,a = 0 on ∂D.
(3.6)

Before we conclude the proof of Lemma 3.7, we need the following intermediate result on the sign of UM,ρ,a.

Lemma 3.8. Let us choose ρ1 in such a way that

ρ1(‖f‖∞ + C(g0, ‖f‖∞, D)‖f ′‖∞) < g0, and ρ1‖f ′‖∞ 6
λ1(D)

2
, (3.7)

where λ1(D) denotes the first eigenvalue of the Dirichlet-Laplacian operator on D and C(g0, ‖f‖∞, D) is given
by estimate (3.5). For every ρ ∈ [0, ρ1), UM,ρ,a is non-negative in D.

Proof of Lemma 3.8. The result follows immediately from the generalized maximum principle which claims that
if a function v satisfies

−∆v + a(·)v > 0 with a(·) > −λ1(D) (3.8)

and v = 0 on ∂D, then v > 0 a.e. in D. This is readily seen by multiplying the above inequality by the negative
part v− of v and integrating by part. Here we have chosen ρ1 in such a way that

M(1− a) + ρf ′(uM,ρ,a) > −λ1(D)

and the right-hand side of (3.6) is non-negative which yields the result.

Coming back to the proof of Lemma 3.7, consider h = a2 − a1. According to the mean value theorem, there
exists ε ∈ (0, 1) such that

ĴM,ρ(a2)− ĴM,ρ(a1) = 〈dĴM,ρ(a1 + εh), h〉 = −M
∫
D

huM,a1+εhUM,a1+εh 6 0,

according to the combination of the analysis above with Lemma 3.6. The expected conclusion follows.

Existence under the second assumption: g is non-negative and the function f satisfies the
assumption (H2) or g is non-positive and the function −f satisfies the assumption (H2).

The main difference with the previous case is that g might possibly be zero. Deriving the conclusion is
therefore trickier and relies on a careful asymptotic analysis of the solution uM,ρ,a as ρ→ 0.

Proposition 3.9. There exists C = C(D, ‖f‖∞) > 0 such that, for any M ∈ R+, any a ∈ Ôm, there holds

‖uM,ρ,a − uM,0,a‖L∞(D) 6 Cρ. (3.9)
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Proof. Let us set zρ = uM,ρ,a − uM,0,a for any ρ > 0. A direct computation yields that zρ satisfies

−∆zρ +M(1− a)zρ = −ρf(uM,ρ,a).

By comparison with the torsion function wD of D, this implies

‖zρ‖∞ 6 ρ‖f‖∞‖wD‖∞

and the result follows, with a constant C explicit by Talenti’s Theorem like in the proof of Lemma 3.7.

Let us consider the switching function Ψ = −MUM,ρ,auM,ρ,a where uM,ρ,a and UM,ρ,a respectively solve (2.2)
and (3.6), and we will prove that both uM,ρ,a and UM,ρ,a are non-negative, so that one can conclude similarly
to the previous case.

Lemma 3.10. The functions uM,ρ,a and UM,ρ,a are non-negative whenever ρ is small enough.

Proof. Let us choose ρ such that ρ‖f ′‖∞ < λ1(D). Then uM,ρ,a satisfies

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρ
f(uM,ρ,a)− f(0)

uM,ρ,a
uM,ρ,a > g − ρf(0) > 0

because f satisfies assumption (H2).
The non-negativity of uM,ρ,a is a consequence of the generalized maximum principle (3.8). Indeed, for ρ small

enough, we have

M(1− a) + ρ
f(uM,ρ,a)− f(0)

uM,ρ,a
> −λ1(D).

Since UM,ρ,a satisfies (3.6), the proof follows the same lines assuming the ρ‖f ′‖∞ < λ1(D) and using the
assumption (H2) to get non-negativity of the right-hand side. By mimicking the reasoning done at the end of
the first case, one gets that (3.1) is true if ρ is small enough.

Thus, in both cases, the monotonicity of the functional is established, so that the theorem of Buttazzo and
Dal Maso applies: there exists a solution Ω∗ ∈ Om of (1.3). The fact that there exists at least one optimizer Ω∗

such that |Ω∗| = m is a simple consequence of the monotonicity of the functional.

3.4. Proof of Theorem 2.5: non-existence of regular optimal domains for some (g, f)

This proof is based on the use of topological derivatives of shape functionals [19]. Let us assume the existence
of a minimizer Ω of Jρ in Om and of an interior point x0 in Ω. Notice that existence of such a point x0 is not
guaranteed for general quasi-open sets, see e.g. [22, Remark 4.4.7].

Let us perform a small circular hole within the domain: let Ωε = Ω \ B(x0, ε) where ε > 0 is small enough so
that Ωε ⊂ Ω.

Following [9, 15], the following asymptotic expansion of Jρ holds:

Jρ(Ωε) = Jρ(Ω) + πε2uρ,Ω(x0)Uρ,Ω(x0) + o(ε2), (3.10)

where uρ,Ω solves (1.2) and Uρ,Ω, the adjoint state, solves{
−∆Uρ,Ω + ρf ′(uρ,Ω)Uρ,Ω = ρ

2 (f(uρ,Ω) + uρ,Ωf
′(uρ,Ω)) in Ω

Uρ,Ω ∈W 1,2
0 (Ω).

(3.11)
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Since uρ,Ω satisfies

−∆uρ,Ω + ρ
f(uρ,Ω)− f(0)

uρ,Ω
uρ,Ω = −ρf(0) > 0

according to assumption (H4) and since x0 is an interior point, it follows from the strong maximum principle
that one has uρ,Ω(x0) > 0.

On the other hand, assumption (H4) ensures that

−∆Uρ,Ω + ρf ′(uρ,Ω)Uρ,Ω < 0

so that Uρ,Ω(x0) < 0. As a consequence, for ε > 0 small enough, we have

Jρ(Ωε) < Jρ(Ω),

leading to a contradiction with the minimality of Ω.

Remark 3.11. It is interesting to observe that the asymptotic expansion (3.10) can be formally obtained by
using the relaxation method: for a given M > 0, for a = 1Ω and hε := −1B(x0,ε), Lemma 3.6 yields

〈dĴM,ρ(a), hε〉 = −
∫
D

hεuM,ρ,aUM,ρ,a =

∫
B(x0,ε)

uM,ρ,aUM,ρ,a ≈
ε→0

πε2uM,ρ,a(x0)UM,ρ,a(x0).

Passing to the limit M →∞ provides the expected expression. Of course, such a method is purely formal.

4. Proof of Theorem 2.7

Note first that the functional Jρ is shape differentiable, which follows from standard arguments, see e.g. [13],
Chapitre 5.
Our proof of Theorem 2.7 is divided into two steps: after proving the criticality of B∗ for ρ small enough, we
compute the second order shape derivative of the Lagrangian associated with the problem at the ball. Next, we
establish that, under Assumption (2.5), there exists a positive constant C0 such that, for any regular V , one has

(J0 − Λ0 Vol)′′(B∗)[V, V ] > C0‖V · ν‖2L2(Ω). (4.1)

Finally, we prove that, for any radially symmetric, non-increasing non-negative g, there exists M ∈ R such that,
for any admissible V , one has

(Jρ − Λρ Vol)′′(B∗)[V, V ] > (J0 − Λ0 Vol)′′(B∗)[V, V ]−Mρ‖V · ν‖2L2(Ω). (4.2)

Local shape minimality of B∗ for ρ small enough can then be inferred in a straightforward way.
If V is an admissible vector field, we will denote by u′ρ,V and u′′ρ,V the first and second order (eulerian) shape

derivatives of uρ at B∗ with respect to V .

4.1. Preliminary material

Lemma 4.1. Under the assumptions of Theorem 2.7, i.e. when g is radially symmetric and non-increasing
function, for ρ small enough, the function uρ is radially symmetric nonincreasing. We write it uρ = ϕρ (| · |).
Furthermore, if ρ = 0, one has

−∂u0

∂ν
>
R

2
g(R).
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Proof of Lemma 4.1. The fact that uρ is a radially symmetric nonincreasing function follows from a simple
application of the Schwarz rearrangement. Integrating the equation on the ball B∗ yields

−
∫
B∗

∆u0 = −
∫
∂B∗

∂u0

∂ν
= −2πR

∂u0

∂ν

on the one-hand, while using the fact that g is decreasing:

−
∫
B∗

∆u0 =

∫
B∗
g > 2πg(R)

∫ R

0

rdr = πR2g(R)

By differentiating the main equation (1.2) with respect to the domain and the boundary conditions (see e.g.
[13], Chapt. 5), we get that the functions u′ρ,V and u′′ρ,V satisfy

{ −∆u′ρ,V + ρf ′ (uρ)u
′
ρ,V = 0 in B∗

u′ρ,V = −∂uρ∂ν V · ν on ∂B∗ (4.3)

and {
−∆u′′ρ,V + ρf ′ (uρ)u

′′
ρ,V + ρf ′′(uρ)

(
u′ρ,V

)2
= 0 in B∗

u′′ρ,V = −2
∂u′ρ,V
∂ν V · ν − (V · ν)2 ∂

2uρ
∂ν2 on ∂B∗.

(4.4)

4.2. Proof of the shape criticality of the ball

Proving the shape criticality of the ball boils down to showing the existence of a Lagrange multiplier Λρ ∈ R
such that for every admissible vector field V ∈W 3,∞(R2,R2), one has

(Jρ − Λρ Vol)′(B∗)[V ] = 0 (4.5)

Standard computations (see e.g. [13], chapt. 5) yield

J ′ρ(B∗)[V ] =

∫
B∗
〈∇uρ,∇u′ρ,V 〉 −

∫
B∗
gu′ρ,V +

∫
S∗

1

2
|∇uρ|2V · ν

=

∫
S∗
u′ρ,V

∂uρ
∂ν
− ρ

∫
B∗
u′ρ,V f(uρ) +

∫
S∗

1

2
|∇uρ|2V · ν

= −
∫
S∗

(
∂uρ
∂ν

)2

V · ν +

∫
S∗

1

2
|∇uρ|2V · ν − ρ

∫
B∗
u′ρ,V f(uρ)

= −1

2

∫
S∗
|∇uρ|2V · ν − ρ

∫
B∗
u′ρ,V f(uρ).

We introduce the adjoint state pρ as the unique solution of

{
−∆pρ + ρpρf

′(uρ) + ρf(uρ) = 0 in B∗
pρ = 0 on S∗. (4.6)
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Since uρ is radially symmetric, so is pρ. Multiplying the main equation of (4.6) by u′ρ,V and integrating by parts
yields

−ρ
∫
B∗
u′ρ,V f(uρ) =

∫
S∗

∂pρ
∂ν

∂uρ
∂ν

V · ν,

and finally

J ′ρ(B∗)[V ] =

∫
S∗

(
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
)
V · ν.

Observe that
∂pρ
∂ν and

∂uρ
∂ν are constant on S∗ since uρ and pρ are radially symmetric. Introduce the real number

Λρ given by

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗
, (4.7)

we get that (4.5) is satisfied, whence the result.
In what follows, we will exploit the fact that the adjoint state is radially symmetric. In the following definition,

we sum-up the notations we will use.

Definition 4.2. Recall that ϕρ (defined in Lem. 4.1) is such that

uρ(x) = ϕρ(|x|), ∀x ∈ B∗.

Since pρ is also radially symmetric, introduce φρ such that

pρ(x) = φρ(|x|), ∀x ∈ B∗.

4.3. Second order optimality conditions

Let us focus on the second and third points of Theorem 2.7, especially on (2.6). Since B∗ is a critical
shape, it is enough to work with normal vector fields, in other words vector fields V such that V = (V · ν)ν
on S∗. Consider such a vector field V . For the sake of notational simplicity, let us set J ′′ρ = J ′′ρ (B∗)[V, V ],
L′′Λρ = (Jρ − Λρ Vol)′′(B∗)[V, V ], u = uρ, u

′ = u′ρ,V and u′′ = u′′ρ,V .

4.3.1. Computation of the Second Order Derivative at the Ball

To compute the second order derivative, we use the Hadamard second order formula ([13], Chap. 5, p. 253)
for normal vector fields, namely

d2

dt2

∣∣∣∣
t=0

∫
(Id +tV )B∗

k(t) =

∫
B∗
k′′(0) + 2

∫
S∗
k′(0)V · ν +

∫
S∗

(
1

R
k(0) +

∂k(0)

∂ν

)
(V · ν)2,

applied to k(t) = 1
2 |∇ut|

2 − gut, where ut denotes the solution of (1.2) on (Id +tV )B∗.
The Hadamard formula along with the weak formulation of equations (4.3)-(4.4) yields

J ′′ρ =

∫
B∗
〈∇u,∇u′′〉 −

∫
B∗
gu′′ +

∫
B∗
|∇u′|2 + 2

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

∫
S∗
gu′V · ν
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+

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= − ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗
u′′
∂u

∂ν
+

∫
S∗
u′
∂u′

∂ν

+ 2

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

∫
S∗
gu′V · ν +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= − ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗

(
−2

∂u′

∂ν
V · ν − ∂2u

∂ν2
(V · ν)2

)
∂u

∂ν

−
∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν + 2

∫
S∗

(
∂u

∂ν

∂u′

∂ν
− gu′

)
V · ν +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= − ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u)−
∫
S∗

∂u

∂ν

∂2u

∂ν2
(V · ν)2 −

∫
S∗

∂u

∂ν

∂u′

∂ν
(V · ν)

+ 2

∫
S∗
g
∂u

∂ν
(V · ν)2 +

∫
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= − ρ
∫
B∗
f(u)u′′ − ρ

∫
B∗

(u′)2f ′(u) +

∫
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2 −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν.

As such, the two first terms of the sum in the expression above are not tractable. Let us rewrite them.
Multiplying the main equation of (4.6) by u′′ and integrating two times by parts yields

−ρ
∫
B∗
f(u)u′′ =

∫
S∗
u′′
∂pρ
∂ν
− ρ

∫
B∗

(u′)2pρf
′′(u).

To handle the last term of the right-hand side, let us introduce the function λρ defined as the solution of

{
−∆λρ + ρλρf

′(u) + ρu′pρf
′′(u) = 0 in B∗

λρ = 0 on S∗. (4.8)

Multiplying this equation by u′ and integrating by parts gives

−ρ
∫
B∗
f ′′(u)(u′)2 =

∫
S∗
u′
∂λρ
∂ν

.

To handle the term −ρ
∫
B∗(u

′)2f ′(u) of J ′′ρ , we introduce the function ηρ, defined as the only solution to

{
−∆ηρ + ρηρf

′(u) + ρu′f ′(u) = 0 in B∗
ηρ = 0 on S∗. (4.9)

Multiplying this equation by u′ and integrating by parts gives

−ρ
∫
B∗

(u′)2f ′(u) =

∫
S∗
u′
∂ηρ
∂ν

= −
∫
S∗
V · ν ∂ηρ

∂ν

∂u

∂ν
.
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Gathering these terms, we have

J ′′ρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2.

Using that

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗

and Vol′′(B∗) =

∫
S∗

1

R
(V · ν)2,

one computes

L′′Λρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2

(4.10)

4.3.2. Expansion in Fourier Series

In this section, we recast the expression of L′′Λρ in a more tractable form, by using the method introduced by
Lord Rayleigh: since we are dealing with vector fields normal to S∗, we expand V · ν as a Fourier series. This
leads to introducing the sequences of Fourier coefficients (αk)k∈N∗ and (βk)k∈N∗ defined by:

V · ν =
∑
k∈N∗

(
αk cos(k·) + βk sin(k·)

)
,

the equality above being understood in a L2(S∗) sense.
Let vk,ρ (resp. wk,ρ) denote the function u′ associated to the perturbation choice Vk given by Vk = V ck :=

cos(k·)ν (resp. Vk = V sk := sin(k·)ν), in other words, vk,ρ = u′ρ,V ck
(resp. wk,ρ = u′ρ,V sk

). Then, one shows easily

(by uniqueness of the solutions of the considered PDEs) that for every k ∈ N, there holds

vk,ρ(r, θ) = ψk,ρ(r) cos(kθ) (resp. wk,ρ(r, θ) = ψk,ρ(r) sin(kθ)),

where (r, θ) denote the polar coordinates in R2, where ψk,ρ solves

{
− 1
r (rψ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ψk,ρ in (0, R)

ψk,ρ(R) = −ϕ′ρ(R).
(4.11)

By linearity, we infer that

u′ =
∑
k∈N∗

αkvk,ρ + βkwk,ρ.
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For every k ∈ N∗, let us introduce ηk,ρ as the solution of (4.9) associated with vk,ρ. One shows that ηk,ρ satisfies{
−∆ηk,ρ + ρf ′(u)ηk,ρ + ρf ′(u)vk,ρ = 0 in B∗
ηk,ρ = 0 on S∗. (4.12)

Similarly, one shows easily that

ηk,ρ(r, θ) = ξk,ρ(r) cos(kθ),

where ξk,ρ satisfies {
− 1
r (rξ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ξk,ρ − ρψk,ρ in (0, R)

ξk,ρ(R) = 0.
(4.13)

Notice that one has ξk,ρ = 0 whenever ρ = 0, which can be derived obviously from (4.9).
We recall that uρ is radially symmetric and that we denote by r 7→ ϕρ(r) the corresponding one-dimensional

function:

uρ(x) = ϕρ(|x|).

Finally, we introduce a last set of equations related to λρ. Let us define ζk,ρ as the solution of{
−(rζ ′k,ρ)

′ = −k
2

r2 ζk,ρ − rρζk,ρf
′(u)− ρrψk,ρφρf ′′(u) in (0, R)

ζk,ρ(R) = 0.
(4.14)

and verify that λρ = ζk,ρ(r) cos(kθ) whenever V = Vk.

Proposition 4.3. The quadratic form L′′Λρ expands as

L′′Λρ =

∞∑
k=1

ωk,ρ
(
α2
k + β2

k

)
, (4.15)

where, for any k ∈ N∗,

ωk,ρ = πR
(
− 2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)

−ξ′k,ρ(R)ϕ′ρ(R)− Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)
)
, (4.16)

the functions ψk,ρ, ξk,ρ, ζk,ρ being respectively defined by (4.11), (4.13), (4.14), and Λρ is given by (4.7).

Proof of Proposition 4.3. Let us first deal with the particular case V · ν = cos(k·). According to (4.3), (4.4) and
(4.10), one has

L′′Λρ =

∫
S∗
u′′
∂pρ
∂ν

+

∫
S∗
u′
∂λρ
∂ν
−
∫
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

∫
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

∫
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2

= R

∫ 2π

0

(
−2 cos(kθ)2ψ′k,ρ(R)− cos(kθ)2ϕ′′ρ(R)

)
φ′ρ(R)dθ −R

∫ 2π

0

cos(kθ)2ϕ′ρ(R)ζ ′k,ρ(R)dθ
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−R
∫ 2π

0

cos(kθ)2ξ′k,ρ(R)ϕ′ρ(R)dθ +R

∫ 2π

0

cos(kθ)2

(
−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)

)
dθ

−R
∫ 2π

0

cos(kθ)2ϕ′ρ(R)ψ′k,ρ(R)dθ

and therefore

L′′Λρ
πR

= −2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)− ξ′k,ρ(R)ϕ′ρ(R)

−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)

We have then obtained the expected expression for this particular choice of vector field V . Similar computations
enable us to recover the formula when dealing with the vector field V given by V · ν = sin(k·). Finally, for
general V , one has to expand the square (V · ν)2, and the computation follows exactly the same lines as before.
Note that all the crossed terms of the sum (i.e. the term that do not write as squares of real numbers) vanish,
by using the L2(S∗) orthogonality properties of the families (cos(k·), sin(k·))k∈N.

4.3.3. Comparison Principle on the Family {ωk,ρ}k∈N∗
The next result allows us to recast the ball stability issue in terms of the sign of ω1,ρ.

Proposition 4.4. There exists M > 0 such that, for any ρ small enough,

∀k ∈ N∗, ωk,ρ − ω1,ρ > −Mρ and |ω1,ρ − ω1,0| 6Mρ.

Proof of Proposition 4.4. Fix k ∈ N and introduce ω̃k,ρ = ωk,ρ/(πR). Using (4.16), one computes

ω̃k,ρ − ω̃1,ρ =
(
−ϕ′ρ(R)− 2φ′ρ(R)

)
(ψ′k,ρ(R)− ψ′1,ρ(R))

−ϕ′ρ(R)
(
ξ′k,ρ(R)− ξ′1,ρ(R) + ζ ′k,ρ(R)− ζ ′1,ρ(R)

)
.

We need to control each term of the expression above, which is the goal of the next results, whose proofs are
postponed at the end of this section.

Lemma 4.5. There exists M > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

max
{
‖ϕ′ρ − ϕ′0‖L∞(0,R), ‖φ′ρ‖L∞(0,R), ‖ξ′k,ρ‖∞

}
6Mρ and ‖ζ ′k,ρ‖∞ 6Mρ2.

According to Lemma 4.1, one has in particular ϕ′0(R) < 0. We thus infer from Lemma 4.5 the existence of
δ > 0 such that

min{−ϕ′ρ(R)− 2φ′ρ(R),−ϕ′ρ(R)} > δ > 0.

for ρ small enough. Furthermore, Lemma 4.5 also yields easily the estimate

|ζ ′k,ρ(R)− ζ ′1,ρ(R)| 6Mρ2

Hence, we are done by applying the following result.
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Lemma 4.6. There exists M̂ > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

ψ′k,ρ(R)− ψ′1,ρ(R) > 0 and
∣∣ξ′k,ρ(R)− ξ′1,ρ

∣∣ (R) 6 M̂ρ. (4.17)

Indeed, the results above lead to

ωk,ρ − ω1,ρ > δ(ψ′k(R)− ψ′k,ρ(R) + ξ′k,ρ(R)− ξ′k,ρ(R)) > 0

for every k > 1 and ρ small enough.
Finally, the proof of the second inequality follows the same lines and are left to the reader.

Proof of Lemma 4.5. These convergence rates are simple consequences of elliptic regularity theory. Since the
reasonings for each term are similar, we only focus on the estimate of ‖φ′ρ‖∞. Recall that pρ solves the equation
(4.6). Multiplying this equation by pρ, integrating by parts and using the Poincaré inequality yield the existence
of C > 0 such that (

1− ρC‖f ′‖L∞(B∗)
)
‖∇pρ‖2L2(B∗) 6 ρ‖f‖L∞(B∗)‖pρ‖L2(B∗),

so that ‖pρ‖W 1,2
0 (B∗) is uniformly bounded for ρ small enough. Hence, the elliptic regularity theory yields

that pρ is in fact uniformly bounded in W 2,2(B∗), and there exists M̂ > 0 such that, defining W 2,2
0 (B∗) :=

W 2,2(B∗) ∩W 1,2
0 (B∗), ‖pρ‖W 2,2

0 (B∗) 6 M̂ρ and, since B∗ ⊂ R2, we get

‖pρ‖L∞(B∗) 6Mρ

for a new constant M . Since ∆pρ = ρpρf
′(uρ) + ρf(uρ) and the right-hand side belongs to Ls(B∗) for all s > 1,

elliptic regularity theory [3], Theorem 6.3 yields the existence of C > 0 such that

‖pρ‖W 2,s
0 (Ω) 6 C (ρ‖pρ‖∞‖f ′‖∞ + ρ‖f‖∞) 6Mρ

and using the embedding W 2,s ↪→ C 1,α for s large enough, one finally gets

‖∇pρ‖L∞(B∗) 6Mρ.

Proof of Lemma 4.6. The two estimates are proved using the maximum principle. Let us first prove that, for
any k and any ρ small enough, ψk,ρ is non-negative on (0, R). First of all, for ρ small enough, −ϕ′ρ(R) is positive,

and therefore ψk,ρ(R) > 0. Since vk belongs to W 1,2
0 , one has necessarily ψk,ρ(0) = 0. Furthermore, according

to (4.11), by considering ρ > 0 small enough so that

− 1

r2
+ ρ‖f ′‖∞ 6 − 1

2r2

it follows that

−1

r
(rψ′k,ρ)

′ = ck,ρ(r)ψk,ρ with ck,ρ = −k
2

r2
− ρf ′(u0) < 0.
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Let us argue by contradiction, assuming that ψk,ρ reaches a negative minimum at a point r1. Because of the
boundary condition, r1 is necessarily an interior point of (0, R). Then, from the equation,

0 > −ψ′′k,ρ(r1) = ck,ρ(r1)ψk,ρ(r1) > 0,

which is a contradiction. Thus there exists ρ > 0 small enough such that, for any ρ 6 ρ and every k ∈ N∗, ψk,ρ
is non-negative on (0, R).

Now, introduce zk = ψk,ρ − ψ1,ρ for every k > 1 and notice that it satisfies

−1

r
(rz′k)′ =

1

r2
ψ1,ρ −

k2

r2
ψk,ρ − ρf ′(u0)zk.

Since ψk,ρ is non-negative, it implies

−1

r
(rz′k)′ 6

(
−k

2

r2
− ρf ′(u0)

)
zk, and zk(R) = zk(0) = 0.

Up to decreasing ρ̄, one may assume that for ρ 6 ρ, −k
2

r2 − ρf
′(u0) < 0 in (0, R). If zk reached a positive

maximum, it would be at an interior point r1, but we would have

0 6 −z′′k (r1) <

(
−k

2

r2
− ρf ′(u0)

)
zk(r1) < 0.

Hence, one has necessarily zk 6 0 in (0, R) and zk reaches a maximum at R, which means in particular that
z′k(R) = ψ′k,ρ(R)− ψ′1,ρ(R) > 0.

4.4. A further comparison result on the family {ωk,ρ}k∈N
While the previous section helps us determine the sign of the sequence {ωk,ρ}k∈N∗ and thus gives us a stability

criterion for the ball, we address here a more precise property, that of the optimal coercivity norm. We keep
the same notation. If we assume that

∀k ∈ N , ωk,ρ > 0

which is guaranteed provided we have ω1,ρ > 0 (see the next subsection 4.5), obtaining the H1/2-coercivity norm
is equivalent to proving that, for some constant L0,ρ > 0 we have

ωk,ρ > L0,ρk > 0 for any k large enough.

This property is established thanks to the following result.

Proposition 4.7. There exist l1 > 0, k1 > 0 and M > 0 such that, for any ρ small enough,

∀k ∈ N∗, k > k1 =⇒ ωk,ρ > l1k −Mρ.

As a consequence if ωk,ρ > 0 for any k ∈ N, then there exists a constant L0,ρ > 0 such that

∀k ∈ N∗ , ωk,ρ > L0,ρk.
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Proof of Proposition 4.7. We know from Lemma 4.5 that, for any k ∈ N, there holds

ω̃k,ρ >
(
−ϕ′ρ(R)− 2φ′ρ(R)

)
ψ′k,ρ(R)−Mρ.

We also recall that there exists δ > 0 such that

min{−ϕ′ρ(R)− 2φ′ρ(R),−ϕ′ρ(R)} > δ > 0.

for ρ small enough.
Let us state the main ingredient of the proof.

Lemma 4.8. There exist l0 > 0, M̂ > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

for any k > k1, ψ′k,ρ(R) > l0k − M̂ρ. (4.18)

According to Lemma 4.6, one has ωk,ρ > δ(l0k − M̂ρ), yielding to the conclusion of Proposition 4.7 for ρ
small enough.

Let us prove Lemma 4.8.

Proof of Lemma 4.8. Observe that, for any k ∈ N, the function yk,ρ : r 7→
(
r
R

) k√
2 (−ϕ′ρ(R)) solves the ODE

{
− 1
r (ry′k,ρ)

′ = − k2

2r2 yk,ρ in (0, 1),

yk,ρ(R) = −ϕ′ρ(R).
(4.19)

Let us consider the function zk := ψk,ρ − yk,ρ. Using the same idea as in the proof of Lemma 4.6, we want to
prove that z′k(R) > 0.

To do so, we note that the function zk satisfies

−1

r
(rz′k)′ = −

(
k2

r2
+ ρf ′(u0)

)
ψk,ρ +

k2

2r2
yk 6 − k2

2r2
(ψk,ρ − yk,ρ).

Indeed, ψk,ρ > 0 and k2

r2 + ρf ′(u0) > k2

2r2 for ρ small enough, uniformly in k ∈ N∗. As a consequence, we have
zk 6 0. Since zk(R) = 0, we have z′k(R) > 0. Since

y′k,ρ(R) =
k√
2R

(−ϕ′ρ(R))

and since we have −ϕ′ρ(R) > δ > 0 according to Lemma 4.5 for any ρ > 0 small enough, one gets the desired
conclusion.

4.5. Shape (in)stability of B∗

4.5.1. Proof of the stability of the ball under assumption (2.5)

Stability under assumption (2.5) is well known (see [6]) in the case ρ = 0. Hereafter, we recall the proof,
showing by the same method a stability result for ρ > 0.

Lemma 4.9. Under assumption (2.5), one has ω1,0 > 0.
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This Lemma concludes the proof of the second part of Theorem 2.7. Indeed, according to Propositions 4.3
and 4.4 we have, for ρ > 0 small enough, and any k ∈ N∗,

ωk,ρ > 0.

From Lemma 4.8, there holds, for some constant L0,ρ > 0,

∀k ∈ N∗ , ωk,ρ > L0,ρk.

L′′Λρ(B
∗)[V, V ] >

∞∑
k=1

L0,ρk
(
α2
k + β2

k

)
= L0,ρ‖V · ν‖2

H
1
2 (S∗)

for ρ small enough.

Proof of Lemma 4.9. To compute ω1,0, recall that, for ρ = 0, the function ψ1,0 solves

−1

r
(rψ′1,0)′ = − 1

r2
ψ1,0 and ψ1,0(R) = −ϕ′0(R),

and therefore, ψ1,0(r) = − r
Rϕ
′
0(R) for all r ∈ [0, R], so that

ω1,0

πR
= −Λ0

R
+

1

2R
(ϕ′0(R))2 + g(R)ϕ′0(R)− ϕ′0(R)ψ′1,0(R)

=
1

R
(ϕ′0(R))2 + g(R)ϕ′0(R) +

1

R
(ϕ′0(R))2

=
2

R
(ϕ′0(R))2 + g(R)ϕ′0(R)

= −ϕ′0(R)

(
− 2

R
ϕ′0(R)− g(R)

)

where the expression of Λ0 is given by (4.7). Since −Rϕ′0(R) =
∫ R

0
tg(t)dt = 1

2π

∫
B∗ g, and ϕ′0(R) < 0, we infer

that the sign of ω1,0 is the sign of

− 2

R
ϕ′0(R)− g(R) =

1

πR2

∫
B∗
g − g(R),

and the positivity of this last quantity is exactly assumption (2.5). The conclusion follows.

4.5.2. An example of instability

In this part, we will assume that g is the constant function equal to 1, i.e. g = 1. Even if the ball B∗ is known
to be a minimizer in the case ρ = 0, it is a degenerate one in the sense that ω1,0 = 0; this is because of the
invariance by translations of the problem. In what follows, we exploit this fact and will construct a suitable
nonlinearity f such that B∗ is not a local minimizer for ρ small enough, in other words such that ω1,ρ < 0.

We assume without loss of generality that R = 1 for the sake of simplicity.



24 A. HENROT ET AL.

Lemma 4.10. There holds

ω1,ρ =
ρ

2
(w1 + w′1)(1) + O(ρ2)

where w1 solves {
−(rw′1)′ = − 1

rw1 − r2

2 f
′(ϕ0)− r2

2 in (0, 1)

w1(1) = −
∫ 1

0
tf(ϕ0) dt.

(4.20)

Proof of Lemma 4.10. The techniques to derive estimates follow exactly the same lines as in Lemma 4.5. First,
we claim that

ϕρ = ϕ0 + ρϕ1 + O(ρ2) in C 1, (4.21)

where ϕ1 satisfies {
− 1
r (rϕ′1)′ = −f(ϕ0) in (0, 1)

ϕ1(1) = 0.
(4.22)

Indeed, considering the function δ = ϕρ − ϕ0 − ρϕ1, one shows easily that it satisfies{
− 1
r (rδ′)′ = ρ(f(ϕ0)− f(ϕρ)) in (0, 1)

δ(1) = 0.

Therefore, by mimicking the reasonings done in the proof of Lemma 4.5, involving elliptic regularity theory, and
the fact that ‖ϕρ − ϕ0‖W 1,∞ = O(ρ), we infer that ‖δ‖C 1 = O(ρ2), whence the result.

Using that ϕρ satisfies − 1
r (rϕ′ρ)

′ + ρf(ϕρ) = g and integrating this equation yields

− ϕ′ρ(1) =
1

2
− ρ

∫ 1

0

tf(ϕρ) dt =
1

2
− ρ

∫ 1

0

tf(ϕ0(t)) dt+ O(ρ2). (4.23)

The equation on φρ reads {
−(rφ′ρ)

′ = r
(
− ρφρf ′(ϕρ)− ρf(ϕρ)

)
in (0, 1)

φρ(0) = 0.

and according to Lemma 4.5, there holds ‖φρ‖∞ = O(ρ). We thus infer that

− φ′ρ(1) = −ρ
∫ 1

0

tf(ϕ0) dt+ O(ρ2). (4.24)

From (4.23) and (4.24),we infer that

Λρ =
1

2
(
(
ϕ′ρ(1)

)2 − φ′ρ(1)ϕ′ρ(1) =
1

2
ϕ′0(1)2 − ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

2
ϕ′0(1)2 + O(ρ2). (4.25)
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Regarding ψ1,ρ and using that it satisfies (4.11), we get

ψ1,ρ(1) = −ϕ′ρ(1) =
1

2
− ρ

∫ 1

0

tf(ϕ0) dt.

We then infer that ‖ψ1,ρ + rϕ′0,ρ(1)‖C 1 = O(ρ). Plugging this estimate in (4.11) allows us to show that

ψ1,ρ(r) = −ϕ′0(1)r + ρy1(r) + O(ρ2) in C 1(0, 1), (4.26)

where y1 solves {
− (ry′1)

′
= − 1

ry1 + r2ϕ′0(1)f ′(ϕ0) in (0, 1)

y1(1) = −
∫ 1

0
tf(ϕ0) dt.

(4.27)

Regarding ξ1,ρ and using that it satisfies (4.13), we easily get that ‖ξ1,ρ‖W 1,∞ = O(ρ), according to
Lemma 4.5. This allows us to write

ξ1,ρ = ρz1 + O(ρ2) in C 1(0, 1) (4.28)

where z1 satisfies {
−(rz′1)′ = − 1

r z1 + r2ϕ′0(1) in (0, 1)
z1(1) = 0.

(4.29)

Let us now expand ω1,ρ with respect to the parameter ρ. Recall that

ω1,ρ =
1

2

(
−2ψ′1,ρ(1)φ′1,ρ(1)− ϕ′′ρ(1)φ′1,ρ(1)− ϕ′ρ(R)ζ ′1,ρ(R)

−ξ′1,ρ(1)ϕ′ρ(1) + Λρ +
1

2
(ϕ′ρ)

2 + ϕ′ρ(1)− ϕ′ρ(1)ψ′1,ρ(1)

)
.

Regarding the term ϕ′0,ρ(R)ζ ′1,ρ(R), we know from Lemma 4.5 that ‖ζ ′1,ρ(R)‖∞ = O(ρ2).
Using this estimate and plugging the expansions (4.21)–(4.25)–(4.26)–(4.28) in the expression above yields

successively

−2ψ′1,ρ(1)φ′ρ(1) = 2ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2) = −ρ
∫ 1

0

tf(ϕ0) dt+ O(ρ2).

−ϕ′′ρ(1)φ′ρ(1) = −ϕ′′0(1)φ′ρ(1) + O(ρ2) =
ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2).

−ξ′1,ρ(1)ϕ′ρ(1) = −ϕ′0(1)ξ′1,ρ(1) + O(ρ2) =
ρ

2
z′1(1)

Λρ +
1

2
(ϕ′ρ)

2 = ϕ′0(1)2 − ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2) =
1

4
− ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

ϕ′ρ(1) = −1

2
+ ρ

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

−ϕ′ρ(1)ψ′1,ρ(1) = ϕ′0(1)2 − ρϕ′0(1)y′1(1) + ρϕ′0(1)

∫ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

4
+
ρ

2
y′1(1)− ρ

2

∫ 1

0

tf(ϕ0) dt,
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by using that ‖φρ‖W 1,∞ = O(ρ) and ‖ξ1,ρ‖W 1,∞ = O(ρ). This gives

ω1,ρ = − ρ
∫ 1

0

tf(ϕ0) dt+
ρ

2

∫ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1)

+
1

4
− ρ

2

∫ 1

0

tf(ϕ0) dt− 1

2
+ ρ

∫ 1

0

tf(ϕ0) dt+
1

4
+
ρ

2
y′1(1)− ρ

2

∫ 1

0

tf(ϕ0) dt+ O(ρ2).

As expected, the zero order terms cancel each other out and we get

ω1,ρ = −ρ
2

∫ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1) +

ρ

2
y′1(1) + O(ρ2),

which concludes the proof by setting w1 = y1 + z1.

Construction of the non-linearity. Recall that we are looking for a non-linearity f such that ω1,ρ < 0, in
other words such that (w1 + w′1)(1) < 0 according to Lemma 4.10. To this aim, let us consider the function w1

solving (4.20). Let us consider a non-negative function f such that

f ′(·) < −1 on [0, ‖ϕ0‖∞]. (4.30)

It follows that

w1(1) = −
∫ 1

0

tf(ϕ0) dt < 0.

Besides,

−(rw′1)′ = −1

r
w1 −

r2

2
(f ′(ϕ0) + 1) > −1

r
w1

by using (4.30). Thus w1 cannot reach a local negative minimum in (0, 1). Moreover, by using that w1 is regular
(w1 is the sum of two functions at least C 1 according to the proof of Lemma 4.10) and integrating the equation
above yields

−rw′1(r) +
1

2

∫ r

0

s2 (f((ϕ0(s)) + 1) ds = −
∫ r

0

w1(s)

s
ds

for r > 0. The left-hand side is well-defined and it follows that so is the right-hand side, which implies that
necessarily w1(0) = 0 (else, we would immediately reach a contradiction).

Since w1 cannot reach a local minimum on (0, 1) and since 0 = w1(0) > w1(1), we get that w1 is decreasing
on (1− δ, 1) for some δ > 0, ensuring that w′1(1) < 0. The conclusion follows.

Remark 4.11 (Toward an extension of Thm. 2.7 to dimension d = 3). It is likely that the stability result of
Theorem 2.7 can be generalized to the three-dimensional case by following the same lines. Since the adaptation
of this result seems lengthy, and since the objective of this paper is to introduce a methodology to study the
stability issue for these models, we limit ourselves to laying out the main steps of such a possible generalization
to the case d = 3.

Let us assume that D is the ball B(0, RD) in R3 and that B∗ is a three-dimensional ball B(0, R) of volume m
contained in D (i.e. R < RD). Without loss of generality, we assume that R = 1, so that ∂B∗ is the Euclidean
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sphere S2. Regarding the assumptions on f and g, we still assume that f belongs to C 2(R)∩W 1,∞(R) and that
g is a radially symmetric and non-negative function in L2(D).

One must first prove that uρ (the solution on B∗) is a radially symmetric function and that B∗ is a critical
shape by the same arguments as in the proof of Theorem 2.7. The Lagrange multiplier Λρ associated to the
volume constraint can hence be computed. Let LΛρ be the associated shape Lagrangian.

For an integer k, we define Hk as the space of spherical harmonics of degree k i.e. as the eigenspace associated
with the eigenvalue −k(k + 1) of the Laplace-Beltrami operator ∆S2 . Hk has finite dimension dk, and we
furthermore have

L2(S2) =

∞⊕
k=1

Hk.

Let us consider a Hilbert basis {yk,`}`=1,...,dk of Hk.
For an admissible vector field V, one must then expand 〈V · ν〉 in the basis of spherical harmonics as

〈V · ν〉 =

∞∑
k=1

dk∑
`=1

αk,`(V · ν)yk,`. (4.31)

Then, one has to diagonalize the second-order shape derivative of LΛρ and prove that there exists a sequence
of coefficients {ωk,`,ρ}k∈N ,06`6dk such that for every V · ν expanding as (4.31), the second order derivative of
the shape Lagrangian in direction V reads

L′′Λρ =

∞∑
k=1

dk∑
`=1

αk,`(V · ν)2ωk,`.

We believe this diagonalization can be proved using separation of variables and the orthogonality properties of
the family {yk,`}k∈N∗,`=1,...,dk .

Using the separation of variables, each coefficient ωk,` can be written in terms of derivatives of a family of
solutions of one dimensional differential equations. The main difference with the proof of Theorem 2.7 comes
from the fact that the main part of the ODE is not − 1

r
d
dr (r ddr ) anymore, but − 1

r2
d
dr (r2 d

dr ). The important fact
is that maximum principle arguments may still be used to analyze the diagonalized expression of L′′Λρ and to
obtain a comparison result analogous to Proposition 4.4.

Appendix A. Proof of Lemma 2.2

Since g is assumed to be non-negative and since f belongs to L∞(R), it follows that

g − ρ‖f‖∞ 6 −∆uM,ρ,a +M(1− a)uM,ρ,a 6 g + ρ‖f‖∞.

Let Φ1 denote the unique solution of{
−∆Φ1 +M(1− a)Φ1 = g in D

Φ1 ∈W 1,2
0 (D),

and Φ2 the unique solution of {
−∆Φ2 +M(1− a)Φ2 = −ρ‖f‖∞,Φ2 in D

∈W 1,2
0 (D).
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Observe that

−∆
(
uM,ρ,a − (Φ1 + Φ2)

)
+M(1− a)(uM,ρ,a − (Φ1 + Φ2)) > 0

in D, and one has therefore

uM,ρ,a > Φ1 + Φ2

as a consequence of the generalized maximum principle (3.8). In the same way, we obtain

uM,ρ,a 6 Φ1 − Φ2 in D.

To conclude, let us prove that there exists N > 0 such that for any ρ ∈ [0, ρ),

‖Φ1‖∞ 6 N and ‖Φ2‖∞ 6 Nρ.

Let us first deal with the estimate on Φ1. To this aim, one needs to introduce Ψ1 as the unique solution of{
−∆Ψ1 = g in D

Ψ1 ∈W 1,2
0 (D).

Since g is non-negative, the maximum principle ensures that Φ1 > 0 and Ψ1 > 0 in D.
Furthermore, since D has a C 2 boundary, classical W 2,p elliptic estimates [3], Theorem 6.3 yield

||Ψ1||W 2,p(D) 6 C||g||p

so that

‖Ψ1‖∞ 6 C ′‖g‖p =: N1

for some constant C ′ = C ′(D), by the Sobolev embedding W 2,p(D) ↪→ L∞(D). We now notice that

−∆(Φ1 −Ψ1) +M(1− a)(Φ1 −Ψ1) = −M(1− a)Ψ1 6 0,

so that the generalized maximum principle (3.8) yields Φ1 6 Ψ1 in D. Since Φ1 is non-negative, the conclusion
follows.

Let us now deal with Φ2. It can be estimated thanks to Talenti’s estimate for the torsion function [21]: let

wD be the torsion function of D, we then have ‖wD‖∞ 6 1
2d

(
|D|
ωd

)2/d

(where ωd is the volume of the unit ball).

Thus

‖Φ2‖∞ 6
ρ

2d

(
|D|
ωd

)2/d

:= ρN2. (A.1)

Setting N = max(N1, N2) yields the desired conclusion.

Appendix B. Proof of Proposition 3.2

We recall that we want to establish that if (Ωk)k∈N ∈ ON
m γ-converges to Ω, then

Jρ(Ω) = lim
k→∞

Jρ(Ωk).
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Fix such a sequence (Ωk)k∈N that γ-converges to Ω. For the sake of clarity, we drop the subscript ρ, f and g
and define, for every k ∈ N, uk ∈W 1,2

0 (D) the unique solution to
−∆uk + ρf(uk) = g in Ωk,

uk ∈W 1,2
0 (Ωk),

uk is extended by zero as a function in W 1,2
0 (D).

First note that, for any k ∈ N, multiplying the equation by uk and integrating by parts immediately yields

λ1(D)

∫
D

u2
k = λ1(D)

∫
Ωk

u2
k 6 λ1(Ωk)

∫
Ωk

u2
k 6

∫
Ωk

|∇uk|2

6 ‖g‖L2(Ωk)||u||L2(Ωk) + ρ‖f‖L∞(R)|Ωk|
1
2 ‖uk‖L2(Ωk).

The sequence (uk)k∈N is thus uniformly bounded in W 1,2
0 (D). By the Rellich-Kondrachov Theorem, (uk)k∈N

converges (up to a subsequence, strongly in L2(D) and weakly in W 1,2
0 (D)) to a function u ∈W 1,2

0 (D).
The dominated convergence theorem then yields that the sequence (f(uk))k∈N converges strongly in L2(D),

to f(u). Thus, the sequence (g − f(uk))k∈N converges strongly in L2(D) to g − f(u). Since by assumption
(Ωk)k∈N γ-converges to Ω and since the right hand term converges strongly to g − ρf(u) in L2(D), it follows
that (uk)k∈N converges strongly in W 1,2

0 (D) to u and that u solves{
−∆u+ ρf(u) = g in Ω,

u ∈W 1,2
0 (Ω),

which is unique.
This strong convergence immediately implies that

J(Ω) = lim
k→∞

J(Ωk),

thus concluding the proof of Proposition 3.2.

Appendix C. Proof of Lemma 3.3

Proof of Lemma 3.3. Let us first prove that (uM,ρ,a)M>0 is uniformly bounded in W 1,2
0 (D) with respect to M

and ρ. To this aim, let us multiply (2.2) by uM,ρ,a and integrate by parts. One gets∫
D

|∇uM,ρ,a|2 6
∫
D

|∇uM,ρ,a|2 +M(1− a)u2
M,ρ,a

6 ‖g‖L2(D)‖uM,ρ,a‖L2(D) + ρ (f(0) + ‖f‖W 1,∞) ‖uM,ρ,a‖L2(D).

By using the Poincaré inequality, we infer a uniform estimate of uM,ρ,a in W 1,2
0 (D). According to the Rellich-

Kondrachov Theorem, there exists u∗ ∈ W 1,2
0 (D) such that, up to a subfamily, (uM,ρ,a)M>0 converges to u∗

weakly in W 1,2(D) and strongly in L2(D). As a consequence, up to a subsequence, (f(uM,ρ,a))M>0 converges
to f(u∗) in L2(D) by using that f is Lipschitz and

∫
D
guM,an converges to

∫
D
gu∗ By rewriting (2.2) under

variational form with u = uM,ρ,a, and passing to the limit as M → +∞ after having adequately extracted
subsequences, we infer that u∗ is the unique solution of (2.2). Using uM,ρ,a as a test function in (1.2) and

plugging the expression yielded in the definition of ĴM,ρ(a), we first obtain

ĴM,ρ(a) = −ρ
2

∫
D

uM,ρ,af(uM,ρ,a)−
∫
D

g, uM,ρ,a
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so that, from the previous convergence result, we have

ĴM,ρ(a)→ −ρ
2

∫
D

u∗f(u∗)−
∫
D

g, u∗ as M → +∞.

Finally, if a = 1Ω and if Ω is a stable quasi-open set, by multiplying (2.2) by uM,ρ,a and integrating by parts,
one gets ∫

D

|∇uM,ρ,a|2 +M

∫
D\Ω

u2
M,ρ,a =

∫
D

(g − ρf(uM,ρ,a))uM,ρ,a,

and since the right-hand side is uniformly bounded with respect to M , we infer that
√
MuM,ρ,a is bounded

in L2(D\Ω) so that u∗ = 0 almost everywhere in D\Ω. Since Ω is stable, this is, by definition, equivalent to
u∗ ∈W 1,2

0 (Ω).
The conclusion follows by observing that this convergence result is indeed valid without need to extract

subfamily, since the closure points of {uM,ρ,a}M>0 reduces to a unique element.

Appendix D. Proof of Lemma 3.4

We recall that Ω is a stable quasi-open set if the sets

W 1,2
0 (Ω) :=

{
w ∈W 1,2(D) , w = 0 q.e in D\Ω

}
and

Ŵ 1,2
0 (Ω) :=

{
w ∈W 1,2(D) , w = 0 a.e in D\Ω

}
coincide.

The assumption of Lemma 3.4 is that for 0 < ρ 6 ρ, the functional Jρ is monotonous on the set of stable
quasi-open sets Om,s(D):

∀(Ω1,Ω2) ∈ (Om,s(D))2, Ω1 ⊂ Ω2 ⇒ Jρ(Ω1) > Jρ(Ω2).

Let us now prove that the functional Jρ is monotonous on O(D), namely

∀(Ω1,Ω2) ∈ (O(D))2, Ω1 ⊂ Ω2 ⇒ Jρ(Ω1) > Jρ(Ω2).

We first prove that Jρ is monotonous on the set of open sets

Om,o(D) := {Ω ∈ Om(D) ,Ω is open} .

Proof of the monotonicity on Om,o(D). We use results from [20], Lemmas 2.3 and 2.6.
We consider two admissible open sets Ω1 ⊂ Ω2, where Ω1,Ω2 ∈ Om,o(D). Let us consider, for i = 1, 2, an

increasing sequence (Ωi,k)k∈N of smooth open sets included in Ωi which Hausdorff converges to Ωi.
We can assume that, for every k ∈ N, Ω2,k = Ω2,k ∪Ω1,k, and that this sequence still Hausdorff-converges to

Ω2. As in [20], Proof of Point (2), Lemma 3.6, the sequence (Ωi,k)k∈N (strong) γ-converges to Ωi, i = 1, 2. Since
the functional is continuous for the strong γ−convergence, we can pass to the limit in the inequalities

Jρ(Ω1,k) > Jρ(Ω2,k)
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and obtain the required conclusion.

We can now prove Lemma 3.4.

Proof of Lemma 3.4. From a classical result recalled in [20], Lemma 2.6, for any Ω1 ⊂ Ω2 such that Ω1,Ω2 ∈
Om(D) and i = 1, 2, there exists a sequence (Ωi,k)k∈N of open sets included in Ωi that γ-converges to Ωi.

Up to replacing Ω2,k with Ω1,k ∪ Ω2,k, giving a new sequence that still γ-converges to Ω2 and is still open,
we can assume that

∀k ∈ N ,Ω1,k ⊂ Ω2,k.

Since Jρ is monotonous on Om,o, we have, for every k,

Jρ(Ω1,k) > Jρ(Ω2,k)

and the strong continuity for the γ-convergence of sets allows us to pass to the limit in these inequalities, yielding
the desired result.
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