E. Afgan, D. Baker, M. Van-den-beek, D. Blankenberg, D. Bouvier et al., The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update, Nucleic Acids Res, vol.44, pp.3-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360125

J. Almario, G. Jeena, J. Wunder, G. Langen, A. Zuccaro et al., Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition, Proc Natl Acad Sci, vol.114, pp.9403-9412, 2017.

A. Apprill, S. Mcnally, R. Parsons, and L. Weber, Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton, Aquat Microb Ecol, vol.75, pp.129-137, 2015.

M. Bahram, S. Põlme, U. Kõljalg, and L. Tedersoo, A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi: Ectomycorrhizal fungi of a single aspen tree, FEMS Microbiol Ecol, vol.75, pp.313-320, 2011.

E. Becker, C. Herrfurth, S. Irmisch, T. G. Köllner, I. Feussner et al., Infection of corn ears by Fusarium spp. induces the emission of volatile Sesquiterpenes, J Agric Food Chem, vol.62, pp.5226-5236, 2014.

R. L. Berendsen, C. M. Pieterse, and P. A. Bakker, The rhizosphere microbiome and plant health, Trends Plant Sci, vol.17, pp.478-486, 2012.

V. Bitas, N. Mccartney, N. Li, J. Demers, J. Kim et al., Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling, Front Microbiol, vol.6, p.1248, 2015.

P. Bonfante and A. Genre, Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis, Nat Commun, vol.1, pp.1-11, 2010.

P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil, Soil Biol Biochem, vol.17, pp.837-842, 1985.

P. C. Brookes, D. S. Powlson, and D. S. Jenkinson, Measurement of microbial biomass phosphorus in soil, 1982.

, Soil Biol Biochem, vol.14, issue.82, pp.90001-90004

D. Bulgarelli, K. Schlaeppi, S. Spaepen, E. V. Van-themaat, and P. Schulze-lefert, Structure and functions of the bacterial microbiota of plants, Annu Rev Plant Biol, vol.64, pp.807-838, 2013.

J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-lyons, C. A. Lozupone et al., Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample, Proc Natl Acad Sci, vol.108, pp.4516-4522, 2011.

M. J. Christenhusz and J. W. Byng, The number of known plants species in the world and its annual increase, Phytotaxa, vol.261, p.201, 2016.

P. Daget and J. Poissonet, Une méthode d'analyse phytologique des prairies: critères d'application, Ann Agron, vol.22, pp.5-41, 1971.

A. Deveau, How does the tree root microbiome assemble? Influence of ectomycorrhizal species on Pinus sylvestris root bacterial communities, Environ Microbiol, vol.18, pp.1303-1305, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01329218

L. Duc, M. Noll, B. E. Meier, H. Bürgmann, and J. Zeyer, High diversity of diazotrophs in the forefield of a receding alpine glacier, Microb Ecol, vol.57, pp.179-190, 2009.

R. W. Eaton and J. D. Nitterauer, Biotransformation of benzothiophene by isopropylbenzene-degrading bacteria, J Bacteriol, vol.176, pp.3992-4002, 1994.

J. Edwards, C. Johnson, C. Santos-medellín, E. Lurie, N. K. Podishetty et al., Structure, variation, and assembly of the root-associated microbiomes of rice, Proc Natl Acad Sci, vol.112, pp.911-920, 2015.

M. H. El-komy, A. A. Saleh, A. Eranthodi, and Y. Y. Molan, Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt, Plant Pathol J, vol.31, pp.50-60, 2015.

J. J. Elser, W. F. Fagan, A. J. Kerkhoff, N. G. Swenson, and B. J. Enquist, Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change: Tansley review, New Phytol, vol.186, pp.593-608, 2010.

F. Escudié, L. Auer, M. Bernard, M. Mariadassou, L. Cauquil et al., FROGS: find, rapidly, OTUs with galaxy solution, Bioinformatics, vol.34, pp.1287-1294, 2017.

H. Faoro, A. C. Alves, E. M. Souza, L. U. Rigo, L. M. Cruz et al., Influence of soil characteristics on the diversity of bacteria in the southern Brazilian Atlantic Forest, Appl Environ Microbiol, vol.76, pp.4744-4749, 2010.

M. Farzaneh, H. Vierheilig, A. Lössl, and H. P. Kaul, Arbuscular mycorrhiza enhances nutrient uptake in chickpea, Plant Soil Environ, vol.57, pp.465-470, 2011.

M. Fernández-martínez, J. Llusià, I. Filella, Ü. Niinemets, A. Arneth et al., Nutrient-rich plants emit a less intense blend of volatile isoprenoids, New Phytol, vol.220, pp.773-784, 2018.

M. Fr?c, S. E. Hannula, M. Be?ka, and M. J?dryczka, Fungal biodiversity and their role in soil health, Front Microbiol, vol.9, p.707, 2018.

P. Garbeva, C. Hordijk, S. Gerards, and W. Boer, Volatiles produced by the mycophagous soil bacterium Collimonas, FEMS Microbiol Ecol, vol.87, pp.639-649, 2014.

R. Gómez-expósito, I. De-bruijn, J. Postma, and J. M. Raaijmakers, Current insights into the role of rhizosphere bacteria in disease suppressive soils, Front Microbiol, vol.8, p.2529, 2017.

S. Güsewell, High nitrogen: phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges, New Phytol, vol.166, pp.537-550, 2005.

H. Habe, K. Kasuga, H. Nojiri, H. Yamane, and T. Omori, Analysis of cumene (isopropylbenzene) degradation genes from Pseudomonas fluorescens IP01, Appl Environ Microbiol, vol.62, pp.4471-4477, 1996.

S. Hacquard, R. Garrido-oter, A. González, S. Spaepen, G. Ackermann et al., Microbiota and host nutrition across plant and animal kingdoms, Cell Host Microbe, vol.17, pp.603-616, 2015.

S. Hacquard, S. Spaepen, R. Garrido-oter, and P. Schulze-lefert, Interplay between innate immunity and the plant microbiota, Annu Rev Phytopathol, vol.55, pp.565-589, 2017.

,. Hammer, D. A. Harper, and P. D. Ryan, Past: paleontological statistics software package for education and data analysis, Palaeontol Electron, vol.4, issue.9, 2001.

T. Huarancca-reyes, A. Scartazza, A. Pompeiano, A. Ciurli, Y. Lu et al., Nitrate Reductase modulation in response to changes in C/N balance and nitrogen source in Arabidopsis, Plant Cell Physiol, vol.59, pp.1248-1254, 2018.

T. Hurek, L. L. Handley, B. Reinhold-hurek, and Y. Piché, Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state, Mol Plant Microbe Interact, vol.15, pp.233-242, 2002.

A. L. Iniguez, Y. Dong, and E. W. Triplett, Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342, Mol Plant Microbe Interact, vol.17, pp.1078-1085, 2004.

G. Iussig, M. Lonati, M. Probo, S. Hodge, and G. Lombardi, Plant species selection by goats foraging on montane seminatural grasslands and Grazable forestlands in the Italian Alps, Ital J Anim Sci, vol.14, p.3907, 2015.

M. Kai, M. Haustein, F. Molina, A. Petri, B. Scholz et al., Bacterial volatiles and their action potential, Appl Microbiol Biotechnol, vol.81, pp.1001-1012, 2009.

S. H. Kia, K. Glynou, T. Nau, M. Thines, M. Piepenbring et al., Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants, ISME J, vol.11, pp.777-790, 2017.

A. M. Kielak, C. C. Barreto, G. A. Kowalchuk, J. A. Van-veen, and E. E. Kuramae, The ecology of Acidobacteria: moving beyond genes and genomes, Front Microbiol, vol.7, 2016.

M. C. Lemfack, B. Gohlke, S. M. Toguem, S. Preissner, B. Piechulla et al., ) mVOC 2.0: a database of microbial volatiles, Nucleic Acids Res, vol.46, pp.1261-1265, 2018.

A. Luedemann, K. Strassburg, A. Erban, and J. Kopka, TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments, Bioinformatics, vol.24, pp.732-737, 2008.

J. Mansfield, S. Genin, S. Magori, V. Citovsky, M. Sriariyanum et al., Top 10 plant pathogenic bacteria in molecular plant pathology: top 10 plant pathogenic bacteria, Mol Plant Pathol, vol.13, pp.614-629, 2012.

P. Mariotte, A. Canarini, and F. A. Dijkstra, Stoichiometric N:P flexibility and mycorrhizal symbiosis favour plant resistance against drought, J Ecol, vol.105, pp.958-967, 2017.

P. Mariotte, C. Vandenberghe, P. Kardol, F. Hagedorn, and A. Buttler, Subordinate plant species enhance community resistance against drought in semi-natural grasslands, J Ecol, vol.101, pp.763-773, 2013.

F. Martin and S. Kamoun, Effectors in Plant-Microbe Interactions: Martin/Effectors in Plant-Microbe Interactions, 2011.

S. Marupakula, S. Mahmood, and R. D. Finlay, Analysis of single root tip microbiomes suggests that distinctive bacterial communities are selected by Pinus sylvestris roots colonized by different ectomycorrhizal fungi: ectomycorrhiza-associated bacterial communities, Environ Microbiol, vol.18, pp.1470-1483, 2016.

H. Massalha, E. Korenblum, D. Tholl, A. , and A. , Small molecules below-ground: the role of specialized metabolites in the rhizosphere, Plant J, vol.90, pp.788-807, 2017.

S. P. Mccormick, A. M. Stanley, N. A. Stover, A. , and N. J. , Trichothecenes: from simple to complex Mycotoxins, Toxins, vol.3, pp.802-814, 2011.

P. J. Mcmurdie and S. Holmes, phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data, PLoS ONE, vol.8, p.61217, 2013.

L. W. Mendes, E. E. Kuramae, A. A. Navarrete, J. A. Van-veen, and S. M. Tsai, Taxonomical and functional microbial community selection in soybean rhizosphere, ISME J, vol.8, pp.1577-1587, 2014.

R. Mendes, P. Garbeva, and J. M. Raaijmakers, The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms, FEMS Microbiol Rev, vol.37, pp.634-663, 2013.

R. W. Mukhongo, J. B. Tumuhairwe, P. Ebanyat, A. H. Abdelggadi, M. Thuita et al., Production and use of Arbuscular Mycorrhizal fungi inoculum in sub-Saharan Africa: challenges and ways of improving, Int J Soil Sci, vol.11, pp.108-122, 2016.

H. A. Naznin, M. Kimura, M. Miyazawa, and M. Hyakumachi, Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco, Microbes Environ, vol.28, pp.42-49, 2013.

R. M. Nissinen, M. K. Männistö, and J. D. Van-elsas, Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific, FEMS Microbiol Ecol, vol.82, pp.510-522, 2012.

M. Ofek-lalzar, N. Sela, M. Goldman-voronov, S. J. Green, Y. Hadar et al., Niche and host-associated functional signatures of the root surface microbiome, Nat Commun, vol.5, p.4950, 2014.

J. Oksanen, F. G. Blanchet, . R. Kindt, . P. Legendre, . P. Minchin et al., Vegan: Community Ecology Package, 2015.

E. Ormeño and C. Fernandez, Effect of soil nutrient on production and diversity of volatile terpenoids from plants, Curr Bioact Compd, vol.8, pp.71-79, 2012.

A. E. Parada, D. M. Needham, and J. A. Fuhrman, Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies, Environ Microbiol, vol.18, pp.1403-1414, 2016.

D. W. Parry, P. Jenkinson, and L. Mcleod, Fusarium ear blight (scab) in small grain cereals? A review, Plant Pathol, vol.44, pp.207-238, 1995.

J. Peñuelas, D. Asensio, D. Tholl, K. Wenke, M. Rosenkranz et al., Biogenic volatile emissions from the soil: biogenic volatile emissions from the soil, Plant Cell Environ, vol.37, pp.1866-1891, 2014.

L. Pérez-izquierdo, M. Zabal-aguirre, D. Flores-rentería, S. C. González-martínez, M. Buée et al., Functional outcomes of fungal community shifts driven by tree genotype and spatial-temporal factors in Mediterranean pine forests: outcomes of fungal shifts in Mediterranean forests, Environ Microbiol, vol.19, pp.1639-1652, 2017.

F. Persello-cartieaux, L. Nussaume, and C. Robaglia, Tales from the underground: molecular plant-rhizobacteria interactions, Plant Cell Environ, vol.26, pp.189-199, 2003.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, R Foundation for Statistical Computing, vol.41, pp.590-596, 2012.

S. Rasmann, T. G. Köllner, J. Degenhardt, I. Hiltpold, S. Toepfer et al., Recruitment of entomopathogenic nematodes by insect-damaged maize roots, Nature, vol.434, pp.732-737, 2005.

R. J. Rodriguez, J. F. White, A. E. Arnold, and R. S. Redman, Fungal endophytes: diversity and functional roles: Tansley review, New Phytol, vol.182, pp.314-330, 2009.

C. Ryu, M. A. Farag, C. Hu, M. S. Reddy, H. Wei et al., Bacterial volatiles promote growth in Arabidopsis, Proc Natl Acad Sci, vol.100, pp.4927-4932, 2003.

S. Saechow, A. Thammasittirong, P. Kittakoop, S. Prachya, S. N. Thammasittirong et al., Antagonistic activity against dirty panicle rice fungal pathogens and plant growth promoting activity of Bacillus amyloliquefaciens BAS23, J Microbiol Biotechnol, vol.28, pp.1527-1535, 2018.

R. Santhanam, V. T. Luu, A. Weinhold, J. Goldberg, Y. Oh et al., Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping, Proc Natl Acad Sci, vol.112, pp.5013-5020, 2015.

P. Schausberger, S. Peneder, S. Jürschik, and D. Hoffmann, Mycorrhiza changes plant volatiles to attract spider mite enemies: adaptive indirect below-and above-ground interaction, Funct Ecol, vol.26, pp.441-449, 2012.

D. Schenkel, M. C. Lemfack, B. Piechulla, and R. Splivallo, A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles, Front Plant Sci, vol.6, p.707, 2015.

D. Schenkel, J. G. Maciá-vicente, A. Bissell, and R. Splivallo, Fungi indirectly affect plant root architecture by modulating soil volatile organic compounds, Front Microbiol, vol.9, p.1847, 2018.

K. Schlaeppi, N. Dombrowski, R. G. Oter, E. Ver-loren-van-themaat, and P. Schulze-lefert, Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives, Proc Natl Acad Sci, vol.111, pp.585-592, 2014.

K. Schulz-bohm, S. Gerards, M. Hundscheid, J. Melenhorst, W. De-boer et al., Calling from distance: attraction of soil bacteria by plant root volatiles, ISME J, vol.12, pp.1252-1262, 2018.

M. Sevilla, R. H. Burris, N. Gunapala, K. , and C. , Comparison of benefit to sugarcane plant growth and 15 N 2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif¯mutant strains, Mol Plant Microbe Interact, vol.14, pp.358-366, 2001.

R. Sharifi and C. Ryu, Sniffing bacterial volatile compounds for healthier plants, Curr Opin Plant Biol, vol.44, pp.88-97, 2018.

M. Sherif, E. Becker, C. Herrfurth, I. Feussner, P. Karlovsky et al., Volatiles emitted from maize ears simultaneously infected with two Fusarium species mirror the most competitive fungal pathogen, Front Plant Sci, vol.7, 2016.

S. E. Smith and D. J. Read, Mycorrhizal Symbiosis, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01268065

T. R. Turner, E. K. James, and P. S. Poole, The plant microbiome, Genome Biol, vol.14, p.209, 2013.

N. M. Van-dam and H. J. Bouwmeester, Metabolomics in the rhizosphere: tapping into belowground chemical communication, Trends Plant Sci, vol.21, pp.256-265, 2016.

E. D. Vance, P. C. Brookes, and D. S. Jenkinson, An extraction method for measuring soil microbial biomass C, Soil Biol Biochem, vol.19, pp.90052-90058, 1987.

T. Vancov and B. Keen, Amplification of soil fungal community DNA using the ITS86F and ITS4 primers, FEMS Microbiol Lett, vol.296, pp.91-96, 2009.

P. Vandenkoornhuyse, A. Quaiser, M. Duhamel, A. Le-van, and A. Dufresne, The importance of the microbiome of the plant holobiont, New Phytol, vol.206, pp.1196-1206, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115639

A. Wang, M. Haapalainen, S. Latvala, M. Edelenbos, and A. Johansen, Discriminant analysis of volatile organic compounds of Fusarium oxysporum f. Sp. cepae and Fusarium proliferatum isolates from onions as indicators of fungal growth, Fungal Biol, vol.122, pp.1013-1022, 2018.

Q. Wang, G. M. Garrity, J. M. Tiedje, C. , and J. R. , Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy, Appl Environ Microbiol, vol.73, pp.5261-5267, 2007.

R. Wang, H. Zhang, L. Sun, G. Qi, S. Chen et al., Microbial community composition is related to soil biological and chemical properties and bacterial wilt outbreak, Sci Rep, vol.7, 2017.

K. Wenke, M. Kai, and B. Piechulla, Belowground volatiles facilitate interactions between plant roots and soil organisms, Planta, vol.231, pp.499-506, 2010.

T. J. White, T. D. Bruns, S. B. Lee, J. W. Taylor, D. H. Gelfand et al., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, PCR Protocols: A Guide to Methods and Applications. Innis, pp.315-322, 1990.

P. Xue, Y. Carrillo, V. Pino, B. Minasny, and A. B. Mcbratney, Soil properties drive microbial community structure in a large scale transect in south eastern, Australia. Sci Rep, vol.8, p.11725, 2018.

R. Zgadzaj, R. Garrido-oter, D. B. Jensen, A. Koprivova, P. Schulze-lefert et al., Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities, Proc Natl Acad Sci, vol.113, pp.7996-8005, 2016.

Z. Zheng, Carbon and nitrogen nutrient balance signaling in plants, Plant Signal Behav, vol.4, pp.584-591, 2009.