M. Balsera, E. Uberegui, P. Schürmann, and B. B. Buchanan, Evolutionary development of redox regulation in chloroplasts, Antioxid. Redox. Signal, vol.21, pp.1327-1355, 2014.

G. P. Bienert, A. L. Møller, K. A. Kristiansen, A. Schulz, I. M. Møller et al., Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes, J. Biol. Chem, vol.282, pp.1183-1192, 2007.

M. M. Chaves, J. Flexas, and C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Ann. Bot London, vol.103, pp.551-560, 2009.

M. E. Conway, L. B. Poole, and S. M. Hutson, Roles for cysteine residues in the regulatory CXXC motif of human mitochondrial branched chain aminotransferase enzyme, Biochemistry, vol.43, pp.7356-7364, 2004.

J. Couturier, C. S. Koh, M. Zaffagnini, A. M. Winger, J. M. Gualberto et al., Structure-function relationship of the chloroplastic glutaredoxin S12 with an atypical WCSYS active site, J. Biol. Chem, vol.284, pp.9299-9310, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00400240

J. Couturier, E. Ströher, A. N. Albetel, T. Roret, M. Muthuramalingam et al., Arabidopsis chloroplastic glutaredoxin C5 as a model to explore molecular determinants for iron-sulfur cluster binding into glutaredoxins, J. Biol. Chem, vol.286, pp.27515-27527, 2011.

M. Crumpton-taylor, M. Pike, K. J. Lu, C. M. Hylton, R. Feil et al., Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion, New Phytol, vol.200, pp.1064-1075, 2013.

M. H. Cruz-de-carvalho, Drought stress and reactive oxygen species: production, scavenging and signaling, Plant Signal. Behav, vol.3, pp.156-165, 2008.
URL : https://hal.archives-ouvertes.fr/bioemco-00370490

D. Smet, B. Willems, P. Fernandez-fernandez, A. D. Alseekh, S. Fernie et al., In vivo detection of protein cysteine sulfenylation in plastids, Plant J, vol.97, pp.765-778, 2018.

T. Delatte, M. Umhang, M. Trevisan, S. Eicke, D. Thorneycroft et al., Evidence for distinct mechanisms of starch granule breakdown in plants, J. Biol. Chem, vol.281, pp.12050-12059, 2006.

D. P. Dixon, M. Skipsey, N. M. Grundy, and R. Edwards, Stress-induced protein S-glutathionylation in Arabidopsis, Plant Physiol, vol.138, pp.2233-2244, 2005.

M. Farooq, A. Wahid, and D. J. Lee, Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties, Acta Physiol. Plant, vol.31, pp.937-945, 2009.

C. H. Foyer and G. Noctor, Ascorbate and glutathione: the heart of the redox hub, Plant Physiol, vol.155, pp.2-18, 2011.

C. H. Foyer and G. Noctor, Stress-triggered redox signalling: what's in pROSpect?, Plant Cell Environ, vol.39, pp.951-964, 2016.

C. H. Foyer and S. Shigeoka, Understanding oxidative stress and antioxidant functions to enhance photosynthesis, Plant Physiol, vol.155, pp.93-100, 2011.

D. C. Fulton, M. Stettler, T. Mettler, C. K. Vaughan, J. Li et al., b-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active b-amylases in Arabidopsis chloroplasts, Plant Cell, vol.20, pp.1040-1058, 2008.

E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M. R. Wilkins et al., Protein identification and analysis tools on the ExPASy server, The Proteomics Protocols Handbook, 2005.

M. Hasanuzzaman, K. Nahar, T. I. Anee, and M. Fujita, Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance, Physiol. Mol. Biol. Plants, vol.23, pp.249-268, 2017.

D. Horrer, S. Flütsch, D. Pazmino, J. S. Matthews, M. Thalmann et al., Blue light induces a distinct starch degradation pathway in guard cells for stomatal opening, Curr. Biol, vol.26, pp.362-370, 2016.

H. Ito, M. Iwabuchi, and K. Ogawa, The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione, Plant Cell Physiol, vol.44, pp.655-660, 2003.

N. Juge, J. S. Andersen, D. Tull, P. Roepstorff, and B. Svensson, , 1996.

, Overexpression, purification, and characterization of recombinant barley alpha-amylases 1 and 2 secreted by the methylotrophic yeast Pichia pastoris, Protein Expr. Purif, vol.8, pp.204-214

G. B. Kallis and A. Holmgren, Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli, J. Biol. Chem, vol.255, pp.10261-10265, 1980.

A. R. Karala, A. K. Lappi, and L. W. Ruddock, Modulation of an active-site cysteine pKa allows PDI to act as a catalyst of both disulfide bond formation and isomerization, J. Mol. Biol, vol.396, pp.883-892, 2010.

O. Kötting, K. Pusch, A. Tiessen, P. Geigenberger, M. Steup et al., Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves: the phosphoglucan, water dikinase, Plant Physiol, vol.137, pp.242-252, 2005.

O. Kötting, D. Santelia, C. Edner, S. Eicke, T. Marthaler et al., STARCHEXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana, Plant Cell, vol.21, pp.334-346, 2009.

T. Lawson, A. J. Simkin, G. Kelly, and D. Granot, Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour, New Phytol, vol.203, pp.1064-1081, 2014.

Y. Meyer, W. Siala, T. Bashandy, C. Riondet, F. Vignols et al., Glutaredoxins and thioredoxins in plants, Biochim. Biophys. Acta, vol.1783, pp.589-600, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00685687

L. Michelet, M. Zaffagnini, C. Marchand, V. Collin, P. Decottignies et al., Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.16478-16483, 2005.

L. Michelet, M. Zaffagnini, S. Morisse, F. Sparla, M. E. Pérez-pérez et al., Redox regulation of the calvin-benson cycle: something old, something new. Front, Plant Sci, vol.4, p.470, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01578991

R. Mittler, S. Vanderauwera, M. Gollery, and F. Van-breusegem, Reactive oxygen gene network of plants, Trends Plant Sci, vol.9, pp.490-498, 2004.

R. Mittler and B. A. Zilinskas, Purification and characterization of pea cytosolic ascorbate peroxidase, Plant Physiol, vol.97, pp.962-968, 1991.

J. D. Monroe, A. R. Storm, E. M. Badley, M. D. Lehman, S. M. Platt et al., ?-AMYLASE1 and ? -AMYLASE3 are plastidic starch hydrolases in arabidopsis that appear to be adapted for different thermal, pH, and stress conditions, Plant Physiol, vol.166, pp.1748-1763, 2014.

G. Noctor and C. H. Foyer, Intracellular redox compartmentation and ros-related communication in regulation and signaling, Plant Physiol, vol.171, pp.1581-1592, 2016.

G. Noctor, A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans et al., Glutathione in plants: an integrated overview, Plant Cell Environ, vol.35, pp.454-484, 2012.

G. Noctor, J. P. Reichheld, and C. H. Foyer, ROS-related redox regulation and signaling in plants, Semin. Cell. Dev. Biol, vol.80, pp.3-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02115980

V. Noguera-mazon, J. Lemoine, O. Walker, N. Rouhier, A. Salvador et al., Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer, J. Biol. Chem, vol.281, pp.31736-31743, 2006.

W. H. Outlaw, Integration of cellular and physiological functions of guard cells, Cr. Rev. Plant Sci, vol.22, pp.503-529, 2003.

L. B. Poole, The basics of thiols and cysteines in redox biology and chemistry. Free Rad, Bio. Med, vol.80, pp.148-157, 2015.

X. Robert and P. Gouet, Deciphering key features in protein structures with the new ENDscript server, Nucl. Acids Res, vol.42, pp.320-324, 2014.

G. Roos, N. Foloppe, and J. Messens, Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding, Antioxid. Redox. Signal, vol.18, pp.94-127, 2013.

G. Roos and J. Messens, Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic, Biol. Med, vol.51, pp.314-326, 2011.

N. Rouhier, S. D. Lemaire, and J. P. Jacquot, The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation, Annu. Rev. Plant Biol, vol.59, pp.143-166, 2008.

D. Santelia, L. , and T. , Rethinking guard cell metabolism, Plant Physiol, vol.172, pp.1371-1392, 2016.

D. Santelia and J. E. Lunn, Transitory starch metabolism in guard cells: unique features for a unique function, Plant Physiol, vol.174, pp.539-549, 2017.

D. Santelia, P. Trost, and F. Sparla, New insights into redox control of starch degradation, Curr. Opin. Plant Biol, vol.25, pp.1-9, 2015.

M. Schwarzländer, T. P. Dick, A. J. Meyer, M. , and B. , Dissecting redox biology using fluorescent protein sensors, Antioxid. Redox. Signal, vol.24, pp.680-712, 2016.

D. Seung, M. Thalmann, F. Sparla, M. A. Hachem, S. K. Lee et al., Arabidopsis thaliana AMY3 is a unique redox-regulated chloroplastic ?-amylase, J. Biol. Chem, vol.288, pp.33620-33633, 2013.

P. Sharma, A. B. Jha, R. S. Dubey, and M. Pessarakli, Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, J. Bot, p.26, 2012.

S. Shigeoka, T. Ishikawa, M. Tamoi, Y. Miyagawa, T. Takeda et al., Regulation and function of ascorbate peroxidase isoenzymes, J. Exp. Bot, vol.53, pp.1305-1319, 2002.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus et al., Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega, Mol. Syst. Biol, vol.7, pp.539-545, 2011.

K. Skryhan, L. Gurrieri, F. Sparla, P. Trost, and A. Blennow, Redox regulation of starch metabolism, Front. Plant Sci, vol.9, p.1344, 2018.

M. Søgaard, J. S. Andersen, P. Roepstorff, and B. Svensson, Electrospray mass spectrometry characterization of post-translational modifications of barley ?-amylase 1 produced in yeast, Biotechnology, vol.11, pp.1162-1165, 1993.

M. Stitt and S. C. Zeeman, Starch turnover: pathways, regulation and role in growth, Curr. Opin. Plant Biol, vol.15, pp.282-292, 2012.

S. Streb, B. Egli, S. Eicke, and S. C. Zeeman, The debate on the pathway of starch synthesis: a closer look at low-starch mutants lacking plastidial phosphoglucomutase supports the chloroplast-localized pathway, Plant Physiol, vol.151, pp.1769-1772, 2009.

N. Suzuki, S. Koussevitzky, R. Mittler, and G. Miller, ROS and redox signalling in the response of plants to abiotic stress, Plant Cell Environ, vol.35, pp.259-270, 2012.

L. Tarrago, E. Laugier, M. Zaffagnini, C. Marchand, P. Le et al., Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins, J. Biol. Chem, vol.284, pp.18963-18971, 2009.

M. Thalmann, D. Pazmino, D. Seung, D. Horrer, A. Nigro et al., Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants, Plant Cell, vol.28, pp.1860-1878, 2016.

P. Trost, S. Fermani, M. Calvaresi, and M. Zaffagnini, Biochemical basis of sulphenomics: how protein sulphenic acids may be stabilized by the protein microenvironment, Plant Cell Environ, vol.40, pp.483-490, 2017.

C. Valerio, A. Costa, L. Marri, E. Issakidis-bourguet, P. Pupillo et al., Thioredoxin-regulated b-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress, J. Exp. Bot, vol.62, pp.545-555, 2011.

A. Vavasseur and A. S. Raghavendra, Guard cell metabolism and CO2 sensing, New Phytol, vol.165, pp.665-682, 2005.

T. S. Yu, H. Kofler, R. E. Häusler, D. Hille, U. I. Flügge et al., The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter, Plant Cell, vol.13, pp.1907-1918, 2001.

T. S. Yu, S. C. Zeeman, D. Thorneycroft, D. C. Fulton, H. Dunstan et al., a-Amylase is not required for breakdown of transitory starch in arabidopsis leaves, J. Biol. Chem, vol.280, pp.9773-9779, 2005.

M. Zaffagnini, M. Bedhomme, S. D. Lemaire, and P. Trost, The emerging roles of protein glutathionylation in chloroplasts, Plant Sci, vol.18, pp.86-96, 2012.

M. Zaffagnini, M. Bedhomme, C. H. Marchand, J. R. Couturier, X. H. Gao et al., Glutaredoxin s12: unique properties for redox signaling, Antioxid. Redox. Signal, vol.16, pp.17-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268394

M. Zaffagnini, S. Fermani, C. H. Marchand, A. Costa, F. Sparla et al., Redox homeostasis in photosynthetic organisms: novel and established thiol-based molecular mechanisms, Antioxid. Redox. Signal, vol.31, pp.155-210, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350148

M. Zanella, G. L. Borghi, C. Pirone, M. Thalmann, D. Pazmino et al., b-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress, J. Exp. Bot, vol.67, pp.1819-1826, 2016.

S. C. Zeeman, J. Kossmann, and A. M. Smith, Starch: its metabolism, evolution, and biotechnological modification in plants, Annu. Rev. Plant Biol, vol.61, pp.209-234, 2010.

S. C. Zeeman, D. Thorneycroft, N. Schupp, A. Chapple, M. Weck et al., Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress, Plant Physiol, vol.135, pp.849-858, 2004.