H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, Applied Catalysis B: Environmental, vol.56, issue.1-2, pp.9-35, 2005.

D. Shin, K. Lee, and N. Chang, Fuel economy analysis of fuel cell and supercapacitor hybrid systems, International Journal of Hydrogen Energy, vol.41, issue.3, pp.1381-1390, 2016.

Q. Dong, M. M. Mench, S. Cleghorn, and U. Beuscher, Distributed Performance of Polymer Electrolyte Fuel Cells under Low-Humidity Conditions, Journal of The Electrochemical Society, vol.152, issue.11, p.A2114, 2005.

. A2114-a2122,

J. J. Baschuk and X. Li, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, Journal of Power Sources, vol.86, issue.1-2, pp.181-196, 2000.

Y. Tabe, M. Nishino, H. Takamatsu, and T. Chikahisa, Effects of Cathode Catalyst Layer Structure and Properties Dominating Polymer Electrolyte Fuel Cell Performance, Journal of The Electrochemical Society, vol.158, issue.10, p.B1246, 2011.

T. H. Frey and M. Linardi, Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance, Electrochimica Acta, vol.50, issue.1, pp.99-105, 2004.

J. Wang and H. Wang, Discrete approach for flow field designs of parallel channel configurations in fuel cells, International Journal of Hydrogen Energy, vol.37, issue.14, pp.10881-10897, 2012.

A. Kongkanand and M. F. Mathias, The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells, The Journal of Physical Chemistry Letters, vol.7, issue.7, pp.1127-1137, 2016.

O. Okur, Ç. ?yigün-karada?, F. G. Boyac?-san, E. Okumu?, and G. Behmenyar, Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell, Energy, vol.57, pp.574-580, 2013.

S. M. Andersen, R. Dhiman, M. J. Larsen, and E. Skou, Importance of electrode hot-pressing conditions for the catalyst performance of proton exchange membrane fuel cells, Applied Catalysis B: Environmental, vol.172-173, pp.82-90, 2015.

J. Xie, F. Garzon, T. Zawodzinski, and W. H. Smith, Ionomer Segregation in Composite MEAs and Its Effect on Polymer Electrolyte Fuel Cell Performance, Journal of The Electrochemical Society, vol.151, issue.7, p.A1084, 2004.

X. Leimin, L. Shijun, Y. Lijun, and L. Zhenxing, Investigation of a Novel Catalyst Coated Membrane Method to Prepare Low-Platinum-Loading Membrane Electrode Assemblies for PEMFCs, Fuel Cells, vol.9, issue.2, pp.101-105, 2009.

W. Wang, S. Chen, J. Li, and W. Wang, Fabrication of catalyst coated membrane with screen printing method in a proton exchange membrane fuel cell, International Journal of Hydrogen Energy, vol.40, issue.13, pp.4649-4658, 2015.

K. S. Suslick, Sonochemistry, Science, vol.247, issue.4949, pp.1439-1445, 1990.

D. G. Shchukin, E. Skorb, V. Belova, and H. Möhwald, Ultrasonic Cavitation at Solid Surfaces, Advanced Materials, vol.23, issue.17, pp.1922-1934, 2011.

M. Ashokkumar, The characterization of acoustic cavitation bubbles ? An overview, Ultrasonics Sonochemistry, vol.18, issue.4, pp.864-872, 2011.

H. Xu, B. W. Zeiger, and K. S. Suslick, Sonochemical synthesis of nanomaterials, Chem. Soc. Rev., vol.42, issue.7, pp.2555-2567, 2013.

A. Sesis, M. Hodnett, G. Memoli, A. J. Wain, I. Jurewicz et al., Influence of Acoustic Cavitation on the Controlled Ultrasonic Dispersion of Carbon Nanotubes, The Journal of Physical Chemistry B, vol.117, issue.48, pp.15141-15150, 2013.

W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao et al., Sonication-Assisted Functionalization and Solubilization of Carbon Nanotubes, Nano Letters, vol.2, issue.3, pp.231-234, 2002.

H. Xu and K. S. Suslick, Sonochemical Preparation of Functionalized Graphenes, Journal of the American Chemical Society, vol.133, issue.24, pp.9148-9151, 2011.

A. De-visscher, P. Van-eenoo, D. Drijvers, and H. Van-langenhove, Kinetic Model for the Sonochemical Degradation of Monocyclic Aromatic Compounds in Aqueous Solution, The Journal of Physical Chemistry, vol.100, issue.28, pp.11636-11642, 1996.

H. Destaillats, H. Hung, and M. R. Hoffmann, Degradation of Alkylphenol Ethoxylate Surfactants in Water with Ultrasonic Irradiation, Environmental Science & Technology, vol.34, issue.2, pp.311-317, 2000.

D. Q. Yang, J. F. Rochette, and E. Sacher, Functionalization of Multiwalled Carbon Nanotubes by Mild Aqueous Sonication, The Journal of Physical Chemistry B, vol.109, issue.16, pp.7788-7794, 2005.

S. Liang, G. Li, and R. Tian, Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation, Journal of Materials Science, vol.51, issue.7, pp.3513-3524, 2015.

R. Bashyam and P. Zelenay, A class of non-precious metal composite catalysts for fuel cells, Nature, vol.443, issue.7107, pp.63-66, 2006.

L. Wu, Y. Nabae, S. Moriya, K. Matsubayashi, N. M. Islam et al., Retracted article: Pt-free cathode catalysts prepared via multi-step pyrolysis of Fe phthalocyanine and phenolic resin for fuel cells, Chemical Communications, vol.46, issue.34, p.6377, 2010.

G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, High-Performance Electrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt, Science, vol.332, issue.6028, pp.443-447, 2011.

F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J. P. Dodelet et al., Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuelcells, Energy Environ. Sci., vol.4, issue.1, pp.114-130, 2011.

P. Johnston and . Zelenay, Energy Environ. Sci, vol.4, pp.114-130, 2011.

E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian et al., Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nature Communications, vol.2, issue.1, pp.71-74, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739597

F. Jaouen, V. Goellner, M. Lefèvre, J. Herranz, E. Proietti et al., Oxygen reduction activities compared in rotating-disk electrode and proton exchange membrane fuel cells for highly active FeNC catalysts, Electrochimica Acta, vol.87, pp.619-628, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00739122

G. Wu and P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, Accounts of Chemical Research, vol.46, issue.8, pp.1878-1889, 2013.

N. Ramaswamy, U. Tylus, Q. Jia, and S. Mukerjee, Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry, Journal of the American Chemical Society, vol.135, issue.41, pp.15443-15449, 2013.

J. Tian, A. Morozan, M. T. Sougrati, M. Lefèvre, R. Chenitz et al., Optimized Synthesis of Fe/N/C Cathode Catalysts for PEM Fuel Cells: A Matter of Iron-Ligand Coordination Strength, Angewandte Chemie International Edition, vol.52, issue.27, pp.6867-6870, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824229

U. I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser, and J. Dodelet, Correlations between Mass Activity and Physicochemical Properties of Fe/N/C Catalysts for the ORR in PEM Fuel Cell via 57Fe Mössbauer Spectroscopy and Other Techniques, Journal of the American Chemical Society, vol.136, issue.3, pp.978-985, 2014.

J. Masa, W. Xia, M. Muhler, and W. Schuhmann, On the Role of Metals in Nitrogen-Doped Carbon Electrocatalysts for Oxygen Reduction, Angewandte Chemie International Edition, vol.54, issue.35, pp.10102-10120, 2015.

J. Li, S. Ghoshal, W. Liang, M. Sougrati, F. Jaouen et al., Structural and mechanistic basis for the high activity of Fe?N?C catalysts toward oxygen reduction, Energy & Environmental Science, vol.9, issue.7, pp.2418-2432, 2016.

C. Mccool, X. Ma, Z. Yuan, S. Ma, Q. Mukerjee et al., Energy Environ. Sci, vol.9, pp.2418-2432, 2016.

U. I. Kramm, I. Herrmann-geppert, J. Behrends, K. Lips, S. Fiechter et al., On an Easy Way To Prepare Metal?Nitrogen Doped Carbon with Exclusive Presence of MeN4-type Sites Active for the ORR, Journal of the American Chemical Society, vol.138, issue.2, pp.635-640, 2016.

J. A. Varnell, E. C. Tse, C. E. Schulz, T. T. Fister, R. T. Haasch et al., Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts, Nature Communications, vol.7, issue.1, 2016.

A. A. Frenkel and . Gewirth, Inside front cover, Chem. Commun., vol.50, issue.84, pp.12582-12582, 2014.

Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Innenrücktitelbild: Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction (Angew. Chem. 24/2017), Angewandte Chemie, vol.129, issue.24, pp.7107-7107, 2017.

Y. Wang and . Li, Angew. Chem. Int. Ed, vol.56, pp.6937-6941, 2017.

H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby et al., Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst, Science, vol.357, issue.6350, pp.479-484, 2017.

C. H. Choi, C. Baldizzone, J. Grote, A. K. Schuppert, F. Jaouen et al., Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy, Angewandte Chemie International Edition, vol.54, issue.43, pp.12753-12757, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01203471

C. H. Choi, C. Baldizzone, G. Polymeros, E. Pizzutilo, O. Kasian et al., Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium, ACS Catalysis, vol.6, issue.5, pp.3136-3146, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01511257

M. T. Ranjbar-sahraie, K. J. Sougrati, F. Mayrhofer, and . Jaouen, ACS Catal, vol.6, pp.3136-3146, 2016.

C. H. Choi, W. S. Choi, O. Kasian, A. K. Mechler, M. T. Sougrati et al., Unraveling the Nature of Sites Active toward Hydrogen Peroxide Reduction in Fe-N-C Catalysts, Angewandte Chemie International Edition, vol.56, issue.30, pp.8809-8812, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01533627

C. H. Choi, H. Lim, M. W. Chung, G. Chon, N. Ranjbar-sahraie et al., The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium, Energy & Environmental Science, vol.11, issue.11, pp.3176-3182, 2018.

L. Sougrati, H. S. Stievano, E. S. Oh, F. Park, P. Luo et al.,

F. Kim and . Jaouen, Energy Environ. Sci, vol.11, pp.3176-3182, 2018.

H. Guo, X. Wang, Q. Qian, F. Wang, and X. Xia, A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano, vol.3, issue.9, pp.2653-2659, 2009.

K. Makino, M. M. Mossoba, and P. Riesz, Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and .cntdot.H) by spin trapping, Journal of the American Chemical Society, vol.104, issue.12, pp.3537-3539, 1982.

S. Sochard, A. M. Wilhelm, and H. Delmas, Modelling of free radicals production in a collapsing gas-vapour bubble, Ultrasonics Sonochemistry, vol.4, issue.2, pp.77-84, 1997.

Y. Wang, D. Zhao, H. Ji, G. Liu, C. Chen et al., Sonochemical Hydrogen Production Efficiently Catalyzed by Au/TiO2, The Journal of Physical Chemistry C, vol.114, issue.41, pp.17728-17733, 2010.

K. Kerboua and O. Hamdaoui, Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble, Ultrasonics Sonochemistry, vol.41, pp.449-457, 2018.

A. Zitolo, V. Goellner, V. Armel, M. Sougrati, T. Mineva et al., Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nature Materials, vol.14, issue.9, pp.937-942, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01188739

J. Shyue, M. R. De-guire, T. Nakanishi, Y. Masuda, K. Koumoto et al., Acid?Base Properties and Zeta Potentials of Self-Assembled Monolayers Obtained via in Situ Transformations?, Langmuir, vol.20, issue.20, pp.8693-8698, 2004.

K. Khoo, E. J. Teh, Y. Leong, and B. C. Ong, Hydrogen Bonding and Interparticle Forces in Platelet ?-Al2O3Dispersions: Yield Stress and Zeta Potential, Langmuir, vol.25, issue.6, pp.3418-3424, 2009.

B. Konkena and S. Vasudevan, Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through pKa Measurements, The Journal of Physical Chemistry Letters, vol.3, issue.7, pp.867-872, 2012.

C. Revathi, K. Rajavel, M. Saranya, and R. T. Kumar, MWCNT Based Non-Enzymatic H2O2Sensor: Influence of Amine Functionalization on the Electrochemical H2O2Sensing, Journal of The Electrochemical Society, vol.163, issue.13, pp.B627-B632, 2016.

E. Skwarek, Y. Bolbukh, V. Tertykh, and W. Janusz, Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration, Nanoscale Research Letters, vol.11, issue.1, p.166, 2016.

L. Vaisman, G. Marom, and H. D. Wagner, Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers, Advanced Functional Materials, vol.16, issue.3, pp.357-363, 2006.

S. Rosenzweig, G. A. Sorial, E. Sahle-demessie, and J. Mack, Effect of acid and alcohol network forces within functionalized multiwall carbon nanotubes bundles on adsorption of copper (II) species, Chemosphere, vol.90, issue.2, pp.395-402, 2013.

J. Herranz, F. Jaouen, M. Lefèvre, U. I. Kramm, E. Proietti et al.,

I. Fiechter, P. Abs-wurmbach, T. M. Bertrand, S. Arruda, and . Mukerjee, J. Phys. Chem. C, vol.115, pp.16087-16097, 2011.

U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefèvre et al., Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells, Physical Chemistry Chemical Physics, vol.14, issue.33, p.11673, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739549

J. A. Menéndez, J. Phillips, B. Xia, and L. R. Radovic, On the Modification and Characterization of Chemical Surface Properties of Activated Carbon: In the Search of Carbons with Stable Basic Properties, Langmuir, vol.12, issue.18, pp.4404-4410, 1996.

T. A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Applied Surface Science, vol.257, issue.17, pp.7746-7751, 2011.

P. Chingombe, B. Saha, and R. J. Wakeman, Surface modification and characterisation of a coal-based activated carbon, Carbon, vol.43, issue.15, pp.3132-3143, 2005.

E. Heister, C. Lamprecht, V. Neves, C. Tîlmaciu, L. Datas et al., Higher Dispersion Efficacy of Functionalized Carbon Nanotubes in Chemical and Biological Environments, ACS Nano, vol.4, issue.5, pp.2615-2626, 2010.

H. M. Hinterdorfer, S. R. Coley, J. Silva, and . Mcfadden, ACS Nano, vol.4, pp.2615-2626, 2010.

F. Jaouen, F. Charreteur, and J. P. Dodelet, Fe-Based Catalysts for Oxygen Reduction in PEMFCs, Journal of The Electrochemical Society, vol.153, issue.4, p.A689, 2006.

V. Goellner, V. Armel, A. Zitolo, E. Fonda, and F. Jaouen, Degradation by Hydrogen Peroxide of Metal-Nitrogen-Carbon Catalysts for Oxygen Reduction, Journal of The Electrochemical Society, vol.162, issue.6, pp.H403-H414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01174287