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Abstract: The controlled manipulation and precise positioning of nanoparticles on surfaces is a critical 

requisite for studying interparticle interactions in various research fields including spintronics, 

plasmonics, and nanomagnetism. We present here a method where an atomic force microscope 

operating in vacuum is used to accurately rotate and displace CTAB-coated gold nanorods on silica 

surfaces. The method relies on operating an AFM in a bimodal way which includes both dynamic and 

contact modes. Moreover, the phase of the oscillating probe is used to monitor the nanoparticle 

trajectory, which amplitude variations are employed to evaluate the energy dissipation during 

manipulation. The nanoscale displacement modes involve nanorod in-plane rotation and sliding, but no 

rolling events. The transitions between these displacement modes depend on the angle between the scan 

axis direction and the nanorod long axis. The findings reveal the importance of mean tip-substrate 

distance and of oscillation amplitude of the tip. The role of substrate surface and of CTAB molecular bi-

layer at nanorod surface is also discussed.  
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1. Introduction 

Current materials research very often involves the manipulation of matter on the nanometer and 

atomic scales. Engineering complex systems or devices with precise properties, and facilitating the 

exploration of the physical phenomena occurring during manipulation are of extreme relevance. 

Nanomanipulation studies have proliferated to a large extent over the past two decades because of the 

advent of atomic force microscopy techniques.  It is now feasible to precisely position nanometric or 

molecular/atomic objects on various surfaces with outstanding spatial resolution. Feats of influential 

nanomanipulation achievements cover a broad spectrum: atomic-scale systems performing logic 

operations1, molecular machines and motors2,3, chemical synthesis4, ultra-low friction sliding at 

atomically flat interfaces5. Nanoscale modification of surface properties through mechanical, chemical 

and electrical means also pertains to the vast domain of “nanomanipulation”. 

In the last decade there has also been a substantial development in the field of nanoparticles. These 

are now easily available in a vast variety of flavors, with specific and often original properties, in fields 

as diverse as magnetism, catalysis, pharmaceutics, electronics, photonics or plasmonics. Whereas some 

of these properties do not require more than the particles being synthesized and stabilized (e.g. for 

catalysis,6 pharmaceutics,7 nonlinear optical processes,8 imagery,9), it is sometimes mandatory to go 

further and organize the nanoparticles in 2D or 3D lattices for the desired effect to be obtained (e.g. for 

magnetism,10,11 plasmonics,12,13,14 electronics,15,16,17) and for their successful exploitation in 

technological applications. Self-directed and templated organization of nanoparticles is a research field 

per se but still far from being mastered. As of today, the crux remains to predictively synthesize 

nanoparticles able to spontaneously self-organize18,19,20 and/or to precisely direct or template their self-

assembly by external forces.21,22, lithography and/or patterned surfaces23,24 in a given lattice with precise 

dimensions and symmetry. Having the possibility to alter organization on a smaller scale, to distinguish 

if the desired properties indeed are present, is therefore very useful25. In this respect, the use of an 
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atomic force microscope (AFM) as a nanomanipulation tool26,27 opens outstanding possibilities in the 

fabrication and investigation of complex nanostructure architectures28. Due to its high precision and 

imaging resolution, an AFM can be employed to move, assemble and organize nanometer-scale particles 

on various surfaces, in both contact or vibrating (dynamic) operation modes29,30,31,32,33. To date, research 

in the field of nanomanipulation has provided various experimental procedures, all with the purpose of 

ensuring both high success rate and accuracy in displacement34. Some techniques even include external 

stimuli such as temperature,35 electric fields,36,37 or the use of automatic manipulation sequences38. 

The choice of one or the other technique is mainly determined by the physical properties of the 

displaced nanoparticle, including its size and shape, supporting surface, and environmental conditions. 

Of particular interest, using an AFM as a nanomanipulator does not reduce to only displacing 

nanoparticles in order to build nanostructures, it also permits to investigate friction and wear phenomena 

emerging at the nanoparticle-substrate interface39,40,41,42,43,44. In this respect, with rare exceptions2924 ,45, 

46, a large majority of studies focused on ligand-free nanoparticles, and thus beneficiated of useful 

knowledge of atomic and nanoscale friction at solid-solid interfaces. When organic molecules are 

present at the interface, either adsorbed on the surface2722,2823, or bound to the nanoparticle3025,3126,41 the 

situation can become more complicated as the molecules may act as glue or lubricant, and can be 

transferred to the tip. In this study, we present a manipulation procedure which allows a high-resolution 

displacement and rotation of individual nanorods (NRs) and discuss the beneficial role played by CTAB 

capping bilayer47. We show that the microscope feedback parameters and the tip-NR interaction type are 

essential parameters for the manipulation process. The oscillation amplitude adjustments in relation with 

AFM tip-nanorod interaction and the importance of the mean distance with respect to the surface are 

described. Other factors such as interfacial binding energy and tip energy dissipation are discussed in 

connection with the instantaneous amplitude and phase changes of the cantilevered tip. In addition, we 

demonstrate that changes of the phase sign can be used to establish the exact position where the 
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interaction switches from repulsive to attractive, initiating the NR displacement because of the tip raster 

scan. Our findings bring unprecedented insights into the manipulation of NRs on surfaces, in particular 

by putting forward a dynamic-contact bimodal operation allowing a concomitant imaging and high-

resolution manipulation. 

 

2. Experimental details 

The experiments were performed under high vacuum (10-6 Torr) and also at atmospheric pressure. 

The results did not reveal significant differences between both experimental conditions. Nevertheless, 

the main advantage of performing experiments at low pressures is a higher facility to displace the 

nanorods, which finally also translates in a longer preservation of a sharp tip apex. AFM probes were 

silicon cantilevers of stiffness of about 40 N/m presenting at the free end a pyramidal tip with an initial 

apex radius smaller than 10 nm. The first resonance mode presents a quality factor of about 660 in air 

and more the 5000 in high-vacuum. The substrates used for NRs deposition and manipulation were 

silicon wafers covered with a 200 nm thick oxide layer. NRs of about 120 nm in length, and 30 nm in 

diameter where employed and deposited on the wafer surface by spin-coating. After the deposition, the 

excess of organic ligands was removed by abundant rinsing with ethanol, deionized water, followed by 

N2 drying. This rinsing cycle has been repeated several times until large surface areas containing 

individual NRs were found by AFM imaging. 

 

3. Results and Discussion 

In this section, we discuss the various aspects related to the nanomanipulation of individual NRs 

which have no close neighbors, nor have significant morphological defects, i.e. the isolated NRs marked 

in the image in Fig. 1(a), where the arrows and crosses indicate the trajectories and final positions 

respectively of five individual NRs (see also Fig. 4). The manipulation protocol of each NR starts in 

dynamic mode with the cantilever mechanically driven by a dither piezoelectric element. It is thus 

possible at this stage to acquire the topography of a desired area using the standard dynamic mode of the 
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AFM, which involves keeping constant the oscillation amplitude of the cantilever [Fig. 1(b)].  In order 

to switch to manipulation mode, both oscillation amplitude and reactivity of the feedback loop were 

gradually reduced until a threshold for NR displacement was reached. This threshold is reminiscent of 

peak static friction in tribology experiments with the marked difference that here, NR manipulation 

might include in-plane rotation and rolling around the center of mass of the NR. 

  

A first finding is that the NR displacement occurs only after the tip remains in permanent contact 

with the NR, i.e. the oscillation amplitude reduces to zero [top right-hand side in Fig. 1(b)]. To illustrate 

the role of the feedback parameters, we show the effect of reducing the feedback reactivity (OFF state), 

in the lower images of Fig. 1(b). To do so, the integral (IG) and proportional (PG) gain coefficients were 

respectively changed in the feedback loop. The variation of PG has only a limited effect on imaging and  

 

 

Fig. 1 (a) Large-scale topographic image of gold NRs deposited on a silicon-oxide substrate. Arrows and crosses indicate the 

trajectories and final positions, respectively of five NRs that have been manipulated (for a post-manipulation image see Fig. 

4).  (b) Upper panel: schematic representing the manipulation procedure involving an oscillating nanoscale tip (not to scale) 

OFF. Lower panel: images acquired concomitantly while scanning an individual NR from top to bottom with respect to the 

image. The phase and deflection images demonstrate that the threshold for displacement has not been reached in this case, 

which is normal for the large amplitude used (see text). Amplitude image refers to as amplitude difference (A – A0) signal. 

  

manipulation capacities (not shown). On the contrary, the IG coefficient, as expected, strongly impacts 

the tip-NR interaction strength. As can be seen, the topographic, phase, amplitude, and deflection 
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images all present an abrupt transition when the feedback IG is reduced to zero. Moreover, while the 

topographic image might suggest that the NR moved, the phase, amplitude and deflection demonstrate, 

in fact, that no displacement occurred. We found that this is always the case if, before the cantilever tip 

reaches the NR, the oscillation amplitude set-point (A0) has been set to values larger than the NR height.  

 

The oscillation amplitude set-point A0, i.e. the parameter that controls the time-averaged tip-sample 

distance represents the other adjustable parameter to initiate particle displacement. As a matter of fact, 

for a given constant driving frequency and amplitude, as well as normal IG value (i.e. non-zero), the tip 

approaches the surface when lower amplitude A0 is set. Thus, the time-averaged tip-sample distance can 

be made smaller than the NR height. As a result, when the tip scans over a NR and the IG value is set 

low, the instantaneous oscillation amplitude (A) reduces because of tip-NR interaction. The difference 

(A - A0), representing a measurement of tip-sample interaction [see amplitude image in Fig. 1(b)] can be 

recorded. Similarly, the phase and averaged deflection can also be acquired for further evaluation of the 

interaction intensity or energy dissipation. It is important to note that an issue generally resulting from 

turning off (or setting too low) the feedback loop gain is the loss of topographic information. 

Nevertheless, phase as well as amplitude imaging can be used for visualizing the displacement of the 

nanorod during manipulation. Figure 1(b) shows the four types of signals recorded for one nanorod: 

topography, phase shift, and amplitude difference, and deflection respectively. The measurements were 

realized under two different regimes, firstly (top of image) with feedback control ON and secondly 

(bottom) with an IG set to zero (feedback OFF). It can be seen that in the second case, the tip no longer 

follows the profile of the NR, resulting in a loss of the topographic signal. At this point, phase and signal 

amplitude can provide real-time visual information, which is useful for the manipulation. The real time 

visualization is important for a successful nanomanipulation, as first established in Ref. 28. It is worth 

noting again that in the case presented in Fig. 1(b) there was no displacement of the NR, because of a 

large amplitude set-point (A0 = 380 mV).  
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3.1 Amplitude variation 

The oscillation amplitude variation when IG is progressively decreased is shown Fig. 2, for an 

amplitude set-point A0 = 320 mV (also see Fig S1).  As mentioned before, with the feedback ON, the 

tip-sample distance is adjusted by the Z-piezo in order to maintain a constant A0. This forces the tip to 

follow the vertical profile of the encountered object, forming the topographic image. In this case, the 

signal in the amplitude image is absent and the NR is observed just as a fine contour at its periphery, as 

seen in the upper part of Fig. 2(a).  A decrease of IG delays more and more the uplifting of the tip when 

scanning over the NR, thus inducing a larger interaction and hence amplitude decreases. For extreme IG 

values (near zero) the tip scans a straight parallel-to-surface-plane line, passing from constant amplitude  

 

Fig. 2 (a) Amplitude image (180  80 nm2) with contrast adjusted in order to highlight changes induced by IG reduction. 

Orange area shows the location where oscillation amplitude has vanished (A = 0). Parameters: A0 = 320 mV, initial IG = 0.9 

at top part, fast scan direction from left to right. Arrows indicate the locations where IG value (white numbers) is changed. 

Red arrow shows the location where the NR starts displacing. Note that at the red arrow IG value was not changed. (b) 

Profiles along the vertical lines from (a). Dim curves are profiles taken few successive pixels before the vertical lines in (a), 

revealing the evolution of the signal. Note that the image captures the ascendant part of an NR when the tip “climbs” on the 

NR. The orange zone from (b) marks the -320 mV threshold where the resonant amplitude vanishes. 
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mode to constant height mode. If the tip-substrate distance, which is proportional to A0, is initially set 

lower than the NR height, the transition from constant amplitude to constant height may determine a 

contact with the NR surface and a displacement, as discussed in detail below. 

 

3.2 Phase variation 

The evolution of cantilever oscillation phase when changing the IG coefficient is shown in Fig. 3. 

The phase signal is given by the phase difference between the mechanical oscillation of the cantilever 

and the driving signal fed by the dither piezo. Fig. 3 (a) displays the phase image acquired 

simultaneously with the amplitude image from Fig. 2, allowing a direct comparison between them. The 

reference dither piezo phase was set in such a way that a positive signal in the phase image (bright 

contrast) corresponds to a repulsive interaction, whereas a negative phase signal (dark contrast) indicates 

an attractive one. For moderate reductions of IG, the phase in the upper part of the image in Fig. 3(a)  

 

Fig. 3 (a) Phase image (180  80 nm2) acquired simultaneously with amplitude image from Fig. 2. Black arrows indicate the 

positions where IG value was changed (also see Fig. 2 and Fig. S1). Note that the dark contrast area is very similar with the A 

= 0 (orange) area in Fig. 2. (b) Five profiles near the vertical lines from (a). Black curves correspond to profiles on the 
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substrate. Red arrow shows the location where the NR starts displacing. Again, note that for red arrow the IG was not 

changed.  

shows a bright contrast [Fig. 3 (b)]. As expected, this is a consequence of tip-NR distance reduction 

inducing a repulsive interaction. Importantly, a further decrease of IG induces a change in the interaction 

sign, revealing a switching of the interaction to attractive regime exactly in the same area where A = 0 in 

Fig. 2(a) (orange zone). This finding is important and indicates that the tip now adheres to the NR while 

the X-scan continues. 

To further understand the role of tip-NR interaction which, strictly speaking, is mediated by the 

CTAB capping layer, let us discuss the importance of simultaneously looking at the amplitude and phase 

signals. At the cantilever resonant frequency, the amplitude is at its maximum value and any type of 

interaction decreases that value, regardless of the interaction sign. As seen before, the question of the 

sign is solved by looking at the phase signal. Nevertheless, the amplitude profiles [Fig. 2(b)], are also 

important for evaluating the exact oscillation damping for each IG value. Negative (A – A0) values mean 

smaller instantaneous oscillation amplitude A reflecting an increase of cantilever energy dissipation. 

3.3 Contact zone and interaction type 

The fact that A – A0 saturates at -320 mV [Fig. 2(b)] - complete oscillation damping (A = 0) - 

indicates a strong localized interaction which is reproducible for all scan lines at the respective IG. 

While this suggests a tip-NR contact, it is not a definitive proof if one considers the narrow frequency 

bandwidth in which the amplitude is analyzed by the synchronous detection. However, a closer look at 

the amplitude variations (dim profiles in [Fig. 2(b)]) shows a monotonous and progressive decrease of 

the amplitude as the tip passes over the NR, which proves a full linear behavior up to the contact, i.e. 

negligible bandwidth effects. Nonetheless, unambiguous demonstration of a tip-NR contact is provided 

by a sign reversal of the phase signal [Fig. 3(b)], which can only be explained by considering a change 
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in interaction regime induced by the concurrence of tip-NR contact and X-scan. This adjoin effect also 

translates in an averaged cantilever deflection at the contact area as observed for instance in Fig. 1(b).   

It is also of key importance to observe that the NR displacement is not immediate upon changing the 

IG value (lower back arrow) but that it only occurs after many scan lines towards NR termination. Note 

that such a displacement, as seen in Figs. 2 and 3, involves a reorientation of the NR, i.e. in-plane 

change of the NR long axis direction. This process is used each time a particular NR reorientation is 

needed. Nevertheless, if a full image area is subsequently acquired with such a low IG (0.003 in this 

case), the NR is fully displaced at the scanned area border, and its final orientation will be parallel with 

the slow scan axis (vertical orientation with respect to the image). This is a critical aspect when NRs 

have to be displaced for long distances on a precise, not necessary straight, pathway (see Fig.S2). Note 

that this manipulating protocol is different from the one used in Ref. [28] for smaller spherical 

nanoparticles, in the sense that we need to permanently settle the contact with a NR during the 

displacement, which can be explained by the larger size of our NRs, i.e. larger adhesion force. This 

difference is also at the origin of the fact that we need the additional phase and amplitude signals in 

order to index the NR displacement, while in [28] the remaining topography ghost signal has been 

sufficient because of the much smaller particle size.  

The contact localization with respect to the NR height is also crucial for manipulation. We find that 

the contact [orange zone in Fig. 2(a)], corresponding to an attractive interaction [Fig. 3(a)], has to be 

around ¾ of the NR height. As stated before, this can be achieved by setting the initial A0 value. It is 

therefore instructive to evaluate the height of NRs under standard A0 imaging conditions. Here, the total 

height extracted from topographic images is around D = 40 ± 2 nm. This is in accordance with an 

estimate calculated by adding the mean NR diameter (30 nm) measured by electron microscopy to the 

thickness of the two CTAB bilayers covering the NR (2 × 5 nm). The contact zone in Figs. 2 and 3 starts 
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at a height of 30 ± 4 nm above the substrate surface, value indeed larger than D/2 and smaller than D. In 

Fig. S1 we show the effect of IG for two A0 values: 380 and 320 mV, while scanning the same NR. For 

A0 = 380 mV the amplitude is about 31 nm (photodiode deflection sensitivity S = 82 nm/V), which is 

already too high for manipulation (Fig. S1). Conversely, A0 = 320 mV - corresponding amplitude of 26 

nm – is low enough to induce a tip-NR contact and an efficient NR displacement. Note however that 

these distances are a rough estimation of the mean tip-sample distance, which can be slightly different in 

reality, mainly because of the functional shape of tip-surface interaction potential. However, the 

maximum error is estimated to about ± 5 nm. This nevertheless allows us to conclude that for an 

efficient manipulation the contact zone should be in the upper half of the NR, and not too close to the 

top side. As seen for instance in Fig. S1, when the contact is localized too close to the top part of the NR 

(380mV case), the NR is not displaced; likely because of a weaker lateral force induced by the lateral X-

scan.  

Knowing the photodiode deflection sensitivity (obtained from independent measurements) and the 

cantilever force constant, allows the conversion of the (A - A0) signal into energy dissipation. 

Considering the short characteristic time scale at which phonons can dissipate energy at the NR-

substrate interface, it is expected that before contact, the entire energy transferred from tip to NR at each 

oscillation, is dissipated before the NR is impacted again. This means that the NR does not move unless 

the transferred energy per oscillation exceeds the energy barrier for static friction. Moreover, as 

schematically depicted in Fig. 1(b), and also seen experimentally in Figs. 2 and 3, the amplitude 

progressively damps above the NR reducing even more the chance to induce a displacement. Similar 

conclusions were reached by Aruliah et al.48, when calculating the threshold power needed to move 

uncoated adsorbed nanoparticles, and also by Paolicelli et al.3126 in the case of functionalized gold 

nanoparticles. If an initial oscillation amplitude of A0 = 320 mV ( 26 nm) would be completely damped 

in a single oscillation period, the maximum normal peak force would be of F   286 nN (with k = 11 
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N/m), and the dissipated energy ΔE  7.4 × 10-15 J. Normalizing this value by a rough estimation of NR-

substrate interface area ( 3 × 103 nm2 within a JKR model) results in Δmax = 2 × 10-18 J/nm2, which, 

interestingly, is two order of magnitudes higher than the surface energy of CTAB molecules (2 × 10-20 

J/nm2) 49. It is also important to notice that the surface energy for CTAB is one order of magnitude lower 

than for SiO2 surface which is about 1 × 10-19 J/nm2  50,51. This highlights the role played by the CTAB in 

facilitating the manipulation. However, Δmax accounts for energy dissipation in the normal direction, 

being therefore only partially important for lateral displacement, as also found by Ritter et al.52. Even 

more important, as seen in Fig. 2(b), the oscillation amplitude just before the displacement threshold is  

 

Fig. 4 Successive phase profiles along the horizontal scan axis demonstrating the high spatial resolution of NR manipulation. 

The minima correspond to the edge of the NR, which progressively moves to the right after each scan line. The profiles are 

extracted from the lower part of the phase image displayed in Fig. 3.   
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only of a few mV, reducing significantly the energy transfer. This drop of transferred energy, combined 

with a rather weak normal to lateral force coupling, explains why the NR remains immobile until the tip 

enters into contact. Then, indeed, static forces can be far larger but unfortunately hardly quantifiable in 

the present manipulation configuration where scan angles and contact localization vary incessantly.  

3.4 Spatial resolution of displacement 

The spatial resolution capability of the manipulation method can be estimated from phase or amplitude 

images recorded whilst performing the manipulation of individual NRs. As an example, Fig. 4 shows 

phase profiles along the fast scan axis after the displacement threshold has been reached. The profiles 

are extracted from the image shown in Fig. 3 (area below the red arrow). The profiles correspond to the 

last 24 nm horizontal scan, being hence evenly spaced by a vertical pixel size. The minimum value of 

the phase signal (around -40 °) for each profile corresponds to the edge of the NR, and corresponds to 

the dark contrast in Fig. 3. The separation between the minima is about 1 nm, which is an estimation of 

the lateral spatial resolution in the manipulation. The reproducibility of this spatial resolution value is 

high as can be deduced from the consecutive eleven profiles plotted in Fig. 4. Although these 

displacement events involve rotations of the NR,  movements of the center of mass of the NR are also 

expected. Indeed, the spatial resolution demonstrated in Fig. 4 is representative  of the manipulation 

process, as a subsequent scan of the same area will align the NR at the edge of the imaged area, i.e. 

parallel to the slow scan axis (Y-axis), as discussed in detail hereafter and also in Supplementary 

Information. Again, this indicates that the resolution in NR positioning is indeed high of the order of 1 

nm, which is in fact close to the resolution achieved in imaging. 
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The fact that individual NRs can be rotated in the surface plane enables the possibility of positioning 

the NRs in various angular configurations one with respect to the other. As an example, Fig. 5 shows 

several configurations for the same NRs, obtained by subsequent manipulations of the NR from left-

hand side. In order to reveal the angular resolution of our manipulation method, the long axis of this NR 

is labeled with a green line, whereas for the sake of comparison a reference vertical line passing though 

the center of the NR is shown by a red line. The numbers represent the angle between the two lines in 

each image. Angular differences as low as 1° can be observed, demonstrating the angular precision of 

the manipulation procedure. Note that to obtain the final L-shape structure, the second NR was also 

rotated and displaced as indicated by the white arrows.   

 

 

Fig. 5 Height images acquired after different manipulation sequences of the NRs. Green lines show the long axis of the NR 

from left-hand side. Red lines are vertical lines traced through the center of the NR. The angles indicate the orientation of the 

NR axis with respect to the vertical axis, in each image. White arrows show the manipulations of the second NR.   
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3.5 Absence of rolling motion 

Figure 6 shows phase images of two nanorods before and after manipulations. The white arrows 

indicate the manipulation trajectories while the red ones show some minute defects at the nanorod 

surface (mostly seen in phase images). The fact that these defects are not changing their positions it is a 

clear indication that the nanorods only slide during the manipulation, and that rolling is not involved. 

This conclusion holds for both linear translations as well as for rotations. Fig. S3 is another example, 

where the same conclusion can be drawn, although a far larger manipulation distance is concerned. 

Rolling vs. sliding motion of a NP being pushed by an AFM tip has been modeled by Evstigneev et al.53 

Hence, our observations are consistent with their conclusion, namely that rolling motion requires a 

corrugated surface, whereas our surface is smooth and moreover lubricated by CTAB molecules. Also 

note that our tip radius (RT~20nm) is comparable to or potentially larger than the NR radius (RP~15nm). 

Rolling of the nanorods is therefore not favorable energetically. 

 

Fig. 6 Phase images acquired with standard parameters for imaging, demonstrating no rolling effects. The defects marked by 

red arrows are always imaged at the top of the nanorod. The white arrows in (a) and (c) show the manipulation of the 

respective NR, in order to obtain the configuration from (b) and (d).  
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Fig. 7 (a) Topographic images of Au nanorods after an initial manipulation [see Fig. 1(a)]. The positions of NRs within the 

square correspond to the x markers in [Fig. 1(a)]. (b – f) Images acquired after nanometer scale rotations and displacements 

of individual NRs, demonstrating a high resolution in nanomanipulation. 

An example of manipulation on several NRs is shown in Fig. 7 (also see Fig S4). In addition to the 

amplitude and IG parameters discussed previously, a full control of distance and pathways of an NR was 

obtained by adjusting the size of scanning area and orientation of fast scan direction with respect to the 

long NR axis. As already mentioned, a perpendicular fast scan direction (X-horizontal image axis) with 

respect to the NR long axis prevents the NR rotation. This is crucial for precise displacements and small-

angle orientation, as exemplified in Fig. 7 (b – f). For long distance manipulations the tip is positioned in 

such a way that the NR appears at the border of the scanning area. This is done by setting an X-offset to 

scanning area and an appropriate scan angle (also see Fig. S2). The displacement of the NR in a 

particular direction is then obtained by increasing the X-offset with an increment lower than the 

diameter of the NR. This increment is important for high-resolution manipulation being in our case 

defined by the X and Y-piezo displacement resolution which is in the sub-nanometer range. In this way, 



17 
 

we found, as discussed above, that displacements of the order of 1 nm, and rotations as fine as 1° can be 

performed on individual NRs. This, along with the fact that NRs can also be manipulated in a controlled 

way on long distances represent a important advantage for further construction of planar complex nano-

particulate architectures.  

4. Conclusion 

In conclusion, we presented an AFM manipulation technique allowing the manipulation of NRs on 

surfaces with a high degree of resolution. The technique is based on precise adjustments of AFM-probe 

oscillation amplitude and on subsequent alterations of electronic feedback loop controlling the tip-NR 

distance up to contact. The manipulation protocol was established by carefully controlling the oscillation 

amplitude, feedback loop gains, scan angle, and scan direction. Altering these parameters allows 

monitoring the amplitude and phase variations which helps predicting and controlling the displacement 

pathways with high precision. These findings provide a fresh insight into single nanoparticle 

manipulation on surfaces and likely confer a new thrust in the study of interparticle interactions. In a 

broader picture, the precise manipulation of nanoscale “objects” is becoming ubiquitous since it allows 

to fabricate structures unfeasible by other means and to characterize their physical properties at the same 

scale. Improving the ease and precision of such a technique therefore seems of interest in many research 

fields. 
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