S. Jean and A. A. Kiger, Coordination between RAB GTPase and phosphoinositide regulation and functions, Nat Rev Mol Cell Biol, vol.13, pp.463-470, 2012.

M. P. Platre and Y. Jaillais, Guidelines for the Use of Protein Domains in Acidic Phospholipid Imaging, Methods Mol Biol, vol.1376, pp.175-194, 2016.

L. Armengot, M. M. Marques-bueno, and Y. Jaillais, Regulation of polar auxin transport by protein and lipid kinases, J Exp Bot, vol.67, pp.4015-4037, 2016.

Y. Posor, M. Eichhorn-grunig, and V. Haucke, Phosphoinositides in endocytosis, Biochim Biophys Acta, vol.1851, pp.794-804, 2015.

M. A. Lemmon, Membrane recognition by phospholipid-binding domains, Nat Rev Mol Cell Biol, vol.9, pp.99-111, 2008.

N. Q. Phan, S. J. Kim, and D. C. Bassham, Overexpression of Arabidopsis sorting nexin AtSNX2b inhibits endocytic trafficking to the vacuole, Mol Plant, vol.1, pp.961-976, 2008.

M. Pourcher, M. Santambrogio, N. Thazar, A. M. Thierry, I. Fobis-loisy et al., Analyses of sorting nexins reveal distinct retromer-subcomplex functions in development and protein sorting in Arabidopsis thaliana, Plant Cell, vol.22, pp.3980-3991, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02353926

M. Barberon, G. Dubeaux, C. Kolb, E. Isono, E. Zelazny et al., Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant-soil interface plays crucial role in metal homeostasis, Proc Natl Acad Sci U S A, vol.111, pp.8293-8298, 2014.

C. Gao, M. Luo, Q. Zhao, R. Yang, Y. Cui et al., A unique plant ESCRT component, FREE1, regulates multivesicular body protein sorting and plant growth, Curr Biol, vol.24, pp.2556-2563, 2014.

. **10, A. Agorio, J. Giraudat, M. W. Bianchi, J. Marion et al., Phosphatidylinositol 3-phosphate-binding protein AtPH1 controls the localization of the metal transporter NRAMP1 in Arabidopsis, Proc Natl Acad Sci, 2017.

, This study shows for the first time that a PH domain-containing protein is a PI(3)P effector in vivo and regulates the retrieval of the metal transporter NRAMP1 from late endosomes to the PM

M. L. Preuss, A. J. Schmitz, J. M. Thole, H. K. Bonner, M. S. Otegui et al., A role for the RabA4b effector protein PI-4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana, J Cell Biol, vol.172, pp.991-998, 2006.

. **12, V. Antignani, A. L. Klocko, G. Bak, S. D. Chandrasekaran et al., Recruitment of PLANT U-BOX13 and the PI4Kbeta1/beta2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis, Plant Cell, vol.27, pp.243-261, 2015.

, This study reveals that PUB13, a known regulator of the pattern-recognition receptor FLS2 ubiquitination and trafficking, is targeted to the TGN/EE through the concomitent detection of Rab4Ab and PI(4)P. The later interaction is mediated by an ARM domain, which constitutes a novel type of PI(4)P lipid binding domain. In addition, since RabA4b also recruits PI4K s, this study nicely illustrates the interdependent relationship between

Y. Boutte and P. Moreau, Modulation of endomembranes morphodynamics in the secretory/retrograde pathways depends on lipid diversity, Curr Opin Plant Biol, vol.22, pp.22-29, 2014.

, This study shows that auxin controls vacuolar morphology to regulate cell size in the root. This auxin-mediated effect is regulated by the SNARE protein VTI11 in a PI4K-dependent manner, suggesting a role for PI(4)P in vacuolar sorting

D. Scheuring, C. Lofke, F. Kruger, M. Kittelmann, A. Eisa et al., Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression, Proc Natl Acad Sci U S A, vol.113, pp.452-457, 2016.

, This auxin effect on actin cytoskeleton is partly abolished upon genetic and pharmacological interference with PI4K activity, suggesting that PI(4)P might regulate actin organization in proximity to the vacuole

P. Novakova, S. Hirsch, E. Feraru, R. Tejos, R. Van-wijk et al., SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis, Proc Natl Acad Sci U S A, vol.111, pp.2818-2823, 2014.

R. Zhong, D. H. Burk, C. J. Nairn, A. Wood-jones, W. H. Morrison et al., Mutation of SAC1, an Arabidopsis SAC domain phosphoinositide phosphatase, causes alterations in cell morphogenesis, cell wall synthesis, and actin organization, Plant Cell, vol.17, pp.1449-1466, 2005.

X. Zhuang, H. Wang, S. K. Lam, C. Gao, X. Wang et al., A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis, Plant Cell, vol.25, pp.4596-4615, 2013.

C. Spitzer, F. Li, R. Buono, H. Roschzttardtz, T. Chung et al., The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis, Plant Cell, vol.27, pp.391-402, 2015.

A. Katsiarimpa, K. Kalinowska, F. Anzenberger, C. Weis, M. Ostertag et al., The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis, Plant Cell, vol.25, pp.2236-2252, 2013.

D. Munch, O. K. Teh, F. G. Malinovsky, Q. Liu, R. R. Vetukuri et al., Retromer contributes to immunityassociated cell death in Arabidopsis, Plant Cell, vol.27, pp.463-479, 2015.

G. Grebnev, M. Ntefidou, and B. Kost, Secretion and Endocytosis in Pollen Tubes: Models of Tip Growth in the Spot Light, Front Plant Sci, vol.8, p.154, 2017.

T. Ischebeck, I. Stenzel, and I. Heilmann, Type B phosphatidylinositol-4-phosphate 5-kinases mediate Arabidopsis and Nicotiana tabacum pollen tube growth by regulating apical pectin secretion, Plant Cell, vol.20, pp.3312-3330, 2008.

E. Sousa, B. Kost, and R. Malho, Arabidopsis phosphatidylinositol-4-monophosphate 5-kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling, Plant Cell, vol.20, pp.3050-3064, 2008.

Y. Zhao, A. Yan, J. A. Feijo, M. Furutani, T. Takenawa et al., Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco, Plant Cell, vol.22, pp.4031-4044, 2010.

T. Ischebeck, I. Stenzel, F. Hempel, J. X. Mosblech, A. Heilmann et al., Phosphatidylinositol-4,5-bisphosphate influences Nt-Rac5-mediated cell expansion in pollen tubes of Nicotiana tabacum, Plant J, vol.65, pp.453-468, 2011.

J. Huang, R. Ghosh, A. Tripathi, M. Lonnfors, P. Somerharju et al., Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins, Mol Biol Cell, vol.27, pp.2317-2330, 2016.

C. M. Yoo, L. Quan, A. E. Cannon, J. Wen, and E. B. Blancaflor, AGD1, a class 1 ARF-GAP, acts in common signaling pathways with phosphoinositide metabolism and the actin cytoskeleton in controlling Arabidopsis root hair polarity, Plant J, vol.69, pp.1064-1076, 2012.

B. H. Kang, E. Nielsen, M. L. Preuss, D. Mastronarde, and L. A. Staehelin, Electron tomography of RabA4b-and PI-4Kbeta1-labeled trans Golgi network compartments in Arabidopsis, Traffic, vol.12, pp.313-329, 2011.

J. E. Vermeer, J. M. Thole, J. Goedhart, E. Nielsen, T. Munnik et al., Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells, Plant J, vol.57, pp.356-372, 2009.

A. H. Vollmer, N. N. Youssef, and D. B. Dewald, Unique cell wall abnormalities in the putative phosphoinositide phosphatase mutant AtSAC9, Planta, vol.234, pp.993-1005, 2011.

S. Naramoto, S. Sawa, K. Koizumi, T. Uemura, T. Ueda et al., Phosphoinositide-dependent regulation of VAN3 ARF-GAP localization and activity essential for vascular tissue continuity in plants, Development, vol.136, pp.1529-1538, 2009.

I. C. Barbosa, H. Shikata, M. Zourelidou, M. Heilmann, I. Heilmann et al., Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses, Development, vol.143, pp.4687-4700, 2016.

K. Ebine, T. Inoue, J. Ito, E. Ito, T. Uemura et al., Plant vacuolar trafficking occurs through distinctly regulated pathways, Curr Biol, vol.24, pp.1375-1382, 2014.

D. Von-wangenheim, A. Rosero, G. Komis, O. Samajova, M. Ovecka et al., Endosomal Interactions during Root Hair Growth, Front Plant Sci, vol.6, p.1262, 2015.

J. E. Vermeer, R. V. Wijk, J. Goedhart, N. Geldner, J. Chory et al., Vivo Imaging of Diacylglycerol at the Cytoplasmic Leaflet of Plant Membranes, 2017.

, phosphoinositide kinases locally produce a given PI species. Phospholipases or phosphatases with complementary localization to the writer modules allow the establishment of sharp phosphoinositide boundaries by removing incoming PIs that escaped the polar domains either by lateral diffusion or vesicular trafficking. PI(3)P distribution is shown in orange

, PI(3,5)P2 in blue, PA in pink and DAG in purple

, Chevron-shaped arrows represent trafficking pathways between compartments

, triangle-shaped arrows indicate activation. Exo, exocytosis; endo, endocytosis; PM, Plasma Membrane

T. Tgn, ;. Network, E. Ee, and . Endosomes,

L. Le, ;. Endosomes, M. Mvb, and . Bodies,

C. Ccv and . Vesicle,

S. Sv and . Vesicle, Name of enzymes/proteins involved in phosphoinositides metabolism and/or trafficking are in italic next to the compartment in which they reside

R. Rhd4, S. Hair-defctive4;-sac, . Of-actin;-cow, . Can, and . Worms,

R. Rop and . Of-plant,

, PI4K, p.4

, PIP5K, phosphatidylinositol-(4)-phosphate 5-kinase

. Pi-plc, . Dag, ;. Diacylglycerol, and . Pa, All lipid localizations shown are for the cytosolic membrane leaflet only