, with 10% FCS and 20% L929 supernatant containing MCSF as described in ref. 44 . Macrophages were stimulated for the indicated times with LPS (Invivogen) at a final concentration of 100 ng/ml

, Lyon, France) according to the Helsinki declaration. Low-density cells were separated over, Ficoll-Hypaque. CD34+ isolation was performed by means of positive selection using magnetic cell separation (Miltenyi MACs) columns according to the manufacturer's instructions (Miltenyi Biotec, Human AAVS1: 5? ACCCCACAGTGGGGCCACTAggg 3? Human DDX3: 5? AGGGATGAGTCATGTGGCAGtgg 3? Human EMX1: 5? GAGTCCGAGCAGAAGAAGAAggg 3? Human MYD88 #1: 5? GAGACCTCAAGGGTAGAGGTggg 3? Human MYD88 #2: 5? GCAGCCATGGCGGGCGGTCCtgg 3? Human rDNA: 5? CCTTCTCTAGCGATCTGAGagg 3? Human TTN -169: 5? CCTTGGTGAAGTCTCCTTTGagg 3? Human TTN -252: 5? ATGTTAAAATCCGAAAATGCagg 3? Human TTN -326: 5? GGGCACAGTCCTCAGGTTTGggg 3? Human TTN -480: 5? ATGAGCTCTCTTCAACGTTAagg 3? Mouse Fto: 5? CATGAAGCGCGTCCAGACCGcgg 3? Mouse Hpd: 5? GAGTTTCTATAGGTGGTGCTGGGTGggg 3? Mouse Tyr: 5? GGGTGGATGACCGTGAGTCCtgg 3?, p.22

, Mouse Tyr: 5? AACTTCATGGGTTTCAACTGcgg 3?

, Mouse Tyr: 5? ATGGGTGATGGGAGTCCCTGcgg 3? this study LoxP: 5? CATTATACGAAGTTATATTAagg 3? GFP: 5? CGAGGAGCTGTTCACCGGGGtgg 3?

, The second nested-PCR used primers, step PCR was performed on 300 ng of gDNA template, the first PCR using primers Hpd-Forward 1: 5?-CTTAGGAGGTTAGCCAAAGATG GGAG-3? and Hpd-Reverse 1: 5?-TCTAGTCTCTATCCAGGGCTCCAGCC-3? to amplify the Hpd gene (94°C 5 min, 3 cycles 94°C, 64°C, 72°C, and 20 cycles 94°C, 58°C, 72°C, 5 min 72°C), vol.2

, Gene Expression Omnibus: GSE107035. The following plasmids will be available from Addgene: Gag::Cas9 fusion (BIC-Gag-CAS9, Plasmid ID: 119942), the Gag:: Cas9-VPR fusion

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Sci. N. Y. NY, vol.337, pp.816-821, 2012.

D. Gheysen, E. Jacobs, F. De-foresta, and C. Thiriart, Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirusinfected insect cells, Cell, vol.59, pp.103-112, 1989.

S. J. Kaczmarczyk, K. Sitaraman, H. A. Young, S. H. Hughes, and D. K. Chatterjee, Protein delivery using engineered virus-like particles, Proc. Natl Acad. Sci. USA, vol.108, pp.16998-17003, 2011.

C. Voelkel, Protein transduction from retroviral Gag precursors, Proc. Natl Acad. Sci. USA, vol.107, pp.7805-7810, 2010.

T. E. O'connor, F. J. Rauscher, and R. F. Zeigel, Density gradient centrifugation of a murine leukemia virus, Sci. N. Y. NY, vol.144, pp.1144-1147, 1964.

B. Chen, Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system, Cell, vol.155, pp.1479-1491, 2013.

J. G. Gibbons, A. T. Branco, S. Yu, and B. Lemos, Ribosomal DNA copy number is coupled with gene expression variation and mitochondrial abundance in humans, Nat. Commun, vol.5, p.4850, 2014.

A. Kinner, W. Wu, C. Staudt, and G. Iliakis, Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin, Nucleic Acids Res, vol.36, pp.5678-5694, 2008.

M. Van-sluis and B. Mcstay, A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage, Genes Dev, vol.29, pp.1151-1163, 2015.

S. Q. Tsai, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol, vol.33, pp.187-197, 2015.

J. Zhang, CD81 is required for hepatitis C virus glycoprotein-mediated viral infection, J. Virol, vol.78, pp.1448-1455, 2004.

M. Okabe, M. Ikawa, K. Kominami, and T. Nakanishi, Green mice'as a source of ubiquitous green cells, FEBS Lett, vol.407, pp.313-319, 1997.

E. K. Brinkman, T. Chen, M. Amendola, and B. Van-steensel, Easy quantitative assessment of genome editing by sequence trace decomposition, Nucleic Acids Res, vol.42, p.168, 2014.

F. Amirache, Mystery solved: VSV-G-LVs do not allow efficient gene transfer into unstimulated T cells, B cells, and HSCs because they lack the LDL receptor, Blood, vol.123, pp.1422-1424, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01953722

A. Girard-gagnepain, Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs, Blood, vol.124, pp.1221-1231, 2014.

T. Okimoto, T. Friedmann, and A. Miyanohara, VSV-G envelope glycoprotein forms complexes with plasmid DNA and MLV retrovirus-like particles in cellfree conditions and enhances DNA transfection, Mol. Ther. J. Am. Soc. Gene Ther, vol.4, pp.232-238, 2001.

M. Sadelain, E. P. Papapetrou, and F. D. Bushman, Safe harbours for the integration of new DNA in the human genome, Nat. Rev. Cancer, vol.12, p.51, 2012.

J. A. Zuris, D. B. Thompson, Y. Shu, and J. P. Guilinger, Efficient delivery of genome-editing proteins in vitro and in vivo, Nature, vol.33, pp.73-80, 2015.

Y. Fu, High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells, Nat. Biotechnol, vol.31, pp.822-826, 2013.

A. Chavez, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, vol.12, pp.326-328, 2015.

T. Horii, Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering, Sci. Rep, vol.4, p.4513, 2014.

S. Chen, B. Lee, A. Y. Lee, .. Modzelewski, A. J. He et al., Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes, J. Biol. Chem, vol.291, pp.14457-14467, 2016.

Y. Yoon, Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses, Nat. Commun, vol.9, p.412, 2018.

S. Srinivas, T. Watanabe, and C. S. Lin, Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus, BMC Ldots, vol.1, p.4, 2001.

D. J. Zhang, Selective expression of the Cre Recombinase in late-stage thymocytes using the distal promoter of the Lck gene, J. Immunol, vol.174, pp.6725-6731, 2005.

F. P. Pankowicz, Reprogramming metabolic pathways in vivo with CRISPR-Cas9 genome editing to treat hereditary tyrosinaemia, Nat. Commun, vol.7, p.12642, 2016.

H. Azuma, Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/ Il2rg-/-mice, Nat. Biotechnol, vol.25, pp.903-910, 2007.

S. Qazi, Programmed self-assembly of an active P22-Cas9 nanocarrier system, Mol. Pharm, vol.13, pp.1191-1196, 2016.

J. G. Choi, Lentivirus pre-packed with Cas9 protein for safer gene editing, Gene Ther, vol.23, pp.627-634, 2016.

G. Wang, Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies, Nat. Protoc, vol.12, pp.88-103, 2017.

S. R. Modarai, Efficient delivery and nuclear uptake is not sufficient to detect gene editing in CD34+ cells directed by a ribonucleoprotein complex, Mol. Ther.-Nucleic Acids, vol.11, pp.116-129, 2018.

H. Yin, Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo, Nat. Biotechnol, vol.34, pp.328-333, 2016.

C. Lau and Y. Suh, vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res, vol.6, p.2153, 2017.

H. Yin, Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing, Nat. Biotechnol, vol.35, pp.1179-1187, 2017.

S. J. Rulli, Selective and nonselective packaging of cellular RNAs in retrovirus particles, J. Virol, vol.81, pp.6623-6631, 2007.

C. Frecha, Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins, Blood, vol.112, pp.4843-4852, 2008.

J. Szécsi, Targeted retroviral vectors displaying a cleavage site-engineered hemagglutinin (HA) through HA-protease interactions, Mol. Ther. J. Am. Soc. Gene Ther, vol.14, pp.735-744, 2006.

K. Morizono, Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection, Nat. Med, vol.11, pp.346-352, 2005.

K. Morizono, Redirecting lentiviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins, J. Virol, vol.84, pp.6923-6934, 2010.

B. Zetsche, Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system, Cell, vol.163, pp.759-771, 2015.

N. M. Gaudelli, Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage, Nature, vol.551, pp.464-471, 2017.

D. Agudelo, Marker-free coselection for CRISPR-driven genome editing in human cells, Nat. Methods, vol.14, pp.615-620, 2017.

E. Massouridès, Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells, Skelet. Muscle, vol.5, p.40, 2015.

S. Carpenter, A long noncoding RNA mediates both activation and repression of immune response genes, Sci. N. Y. NY, vol.341, pp.789-792, 2013.

L. J. Zhu, B. R. Holmes, N. Aronin, and M. H. Brodsky, CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems, PLoS ONE, vol.9, p.108424, 2014.

P. Mangeot, Protein transfer into human cells by VSV-G-induced nanovesicles, Mol. Ther. J. Am. Soc. Gene Ther, vol.19, pp.1656-1666, 2011.

E. E. Heyer, H. Ozadam, E. P. Ricci, C. Cenik, and M. J. Moore, An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments, Nucleic Acids Res, vol.43, p.2, 2015.

E. P. Ricci, Staufen1 senses overall transcript secondary structure to regulate translation, Nat. Struct. Mol. Biol, vol.21, pp.26-35, 2014.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memoryefficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

D. Kim, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol, vol.14, p.36, 2013.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

. Ums3444/cnrs, . Us8/inserm, ;. J. Ens-de-lyon, N. Henry, and J. L. Aguilera, ENS de Lyon), as well as A. Ollivier for their technical help in handling mice. We thank Claire Lionnet from Platim for technical assistance in taking confocal fluorescence images. We thank Elisabeth Errazuriz-Cerda and the CeCIL-facility (Lyon, France) for the preparation and the observation of samples by TEM and Yohann Couté and the edyp-service, Acknowledgements Sequencing was performed by the IGBMC Microarray and Sequencing platform, a member of the 'France Génomique' consortium