Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis

Feng Zhao, Wenqian Chen, Julien Sechet, Marjolaine Martin, Simone Bovio, Claire Lionnet, Yuchen Long, Virginie Battu, Grégory Mouille, Françoise Monéger, et al.

To cite this version:

HAL Id: hal-02351790
https://hal.archives-ouvertes.fr/hal-02351790
Submitted on 14 Nov 2019
Xyloglucans and Microtubules Synergistically Maintain Meristem Geometry and Phyllotaxis

Feng Zhao, Wenqian Chen, Julien Sechet, Marjolaine Martin, Simone Bovio, Claire Lionnet, Yuchen Long, Virginie Battu, Grégory Mouille, Françoise Monéger, et al.

To cite this version:

HAL Id: hal-02351790
https://hal.archives-ouvertes.fr/hal-02351790
Submitted on 14 Nov 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
Please use this PDF proof to check the layout of your article. If you would like any changes to be made to the layout, you can leave instructions in the online proofing interface. Making your changes directly in the online proofing interface is the quickest, easiest way to correct and submit your proof. Please note that changes made to the article in the online proofing interface will be added to the article before publication, but are not reflected in this PDF proof.
The shoot apical meristem (SAM) gives rise to all aerial organs of the plant. It harbors a pool of stem cells located at the meristem summit that continuously self-renew and contribute to the formation of new organs (Pfeiffer et al., 2017). These organs are initiated in highly ordered patterns through a process called phyllotaxis. Organ positioning is the result of complex interactions between several hormonal pathways (Galvan-Ampudia et al., 2016). In particular auxin is essential in this process. This hormone accumulates at specific positions through active transport, where it initiates new organs through the activation of a regulatory molecular network (Reinhardt et al., 2003; de Reuille et al., 2006; La Rota et al., 2011). How this molecular regulation is then translated into specific growth patterns is not well understood, but it is well established that the cell wall plays a central role (Braybrook and Peaucelle, 2013; Armezzani et al., 2018; Cosgrove, 2018).

The cell wall is composed of relatively stiff cellulose microfibrils, embedded in a visco-elastic matrix of polysaccharides (Cosgrove, 2018). In meristematic tissues, cellulose is the most abundant cell wall component, making up 30% of the wall polysaccharides (Yang et al., 2016). The matrix is largely composed of xyloglucans, pectins, and arabinans, which each make up about 15% of the cell wall (Yang et al., 2016). Work over the last decades has revealed the complexity of wall dynamics, and although significant progress has been made, many questions remain concerning the global coordination of wall composition as well as the role of the individual components. The role of cellulose has been relatively well established (Baskin, 2005; de Reuille et al., 2006; La Rota et al., 2011). How this molecular regulation is then translated into specific growth patterns is not well understood, but it is well established that the cell wall plays a central role (Braybrook and Peaucelle, 2013; Armezzani et al., 2018; Cosgrove, 2018).
not completely understood, but there is strong evidence that pectins participate in regulating organogenesis at the SAM (Peaucelle et al., 2011; Braybrook and Peaucelle, 2013).

Here we focus on the other major matrix component, xyloglucans (XyGs). XyGs are composed of chains of Glc molecules attached through beta (1 to >4) links, with different sugars as side chains such as Xyl, Gal, or Fuc. They are thought to play a role in both tethering the cellulose microfibrils to other components and in keeping the fibrils separated (Cosgrove, 2018). Their synthesis is controlled by several enzymes. In particular, Xyloglucan α-Xylosyltransferase 1 (XXT1) and XXT2 encode enzymes with α-xylosyltransferase activity that are capable of forming nascent XyG oligosaccharides, and their activity is required for XyG synthesis (Faik et al., 2002). Another gene, α-XYLOSE-2,5-DASE 1 (XYL1), encodes an α-xilosidase that removes the Xyl side chains, which block the degradation of the backbone (Minic et al., 2004).

The precise function of XyG remains controversial. There are several indications that they play important roles. For instance, genes encoding xyloglucan endotransglucosylases/hydrolases, involved in remodeling the XyGs, are abundantly expressed at the shoot apical meristem (Armezzani et al., 2018). Moreover, Xiao et al. (2016) revealed that loss of xyloglucan in the xxt1xxt2 double mutant affects cell wall integrity, the stability of the microtubule cytoskeleton, and the production and patterning of cellulose in primary cell walls in hypocotyls. However, other observations seem to question the role of xyloglucan in morphogenetic events. These include genetic analyses involving mutants of key enzymes required for XyG homeostasis. The xxt1xxt2 mutant has in the end only a relatively minor growth phenotype compared with what could be expected in the absence of XyGs (Cavalier et al., 2008; Park and Cosgrove, 2012). Likewise, the xyl1 knock-out mutant showing important modifications in XyG composition (Sampedro et al., 2010; Sampedro et al., 2001; Sechet et al., 2016) is able to form fertile plants.

The SAM, characterized by complex shape changes and growth patterns, offers the possibility to assess wall dynamics and XyG function in a rich developmental context. Using immunolabeling, biochemical analysis, and genetic approaches, we show that xyloglucans are differentially distributed across the inflorescence meristem, whereas cellulose and pectins do not appear to exhibit specific distribution patterns. In addition, we have used the xxt1xxt2 double mutant and the xyl1 mutant, both perturbed in XyG synthesis as discussed above. The analysis reveals a role for XyG homeostasis in meristem geometry and phyllotaxis. It also points at an active role of the cytoskeleton in compensating for altered wall composition.

RESULTS

Xyloglucan Distribution Patterns Correlate with Functional Domains at the Shoot Apical Meristem

We first examined the distribution of different types of xyloglucans in the wild-type SAM using immunolabeling with three different antibodies (LM15, LM25, and LM24) recognizing different xyloglucan residues with different affinities (Fig. 1A; Pedersen et al., 2012). For this purpose, we used both tissue sections and whole mount tissues (representative images are shown in Fig. 1, C and D, respectively; see Supplemental Figs. S1–S3 for more examples).

In Col-0 specific patterns were observed:

- The XXXG epitope recognized by LM15 was present throughout the SAM, most strongly in the inner tissues and less in the epidermis and primordia (Fig. 1, B and C; Supplemental Figs. S1 and S2). Labeling was particularly striking in differentiating cells at the meristem base, which probably corresponds to the rib meristem. Whole mount labeling allowed us to focus on the signal in the epidermis, which was relatively weak compared with the labeling of internal cells. Based on the three dimensional (3D) projection of whole mount signals at the SAM surface, we also found that the XXXG epitope was more abundant in older walls compared with those that had formed more recently throughout the meristem (Fig. 1D; Supplemental Figs. S1 and S3). This might be in part caused by the differences in thickness between old and young walls. However, the difference in labeling was less obvious with LM24 (see below), suggesting that the changes in labeling do not depend only on wall thickness.
- The LM25 antibody has a strong affinity for both XXXG and XXLG and a weak affinity for XLLG. Figure 1C shows a relatively homogeneous labeling across the meristem with this antibody. As indicated above, labeling with LM15 already indicated that XXXG was highly localized in the internal tissues.
- LM24, which mainly detects the XLLG epitope, strongly labels the organ boundaries and the L1 layer, in particular its outer walls and central zone (Fig. 1, B–D; Supplemental Figs. S1–S3). LM24 also labels the rib meristem.

In summary, our results on the wild-type SAM show specific distribution patterns of XyGs in the SAM, correlated with a number of basic meristem functions, including organ initiation (i.e. LM15 and LM24), meristem maintenance (i.e. LM24), and boundary formation (i.e. LM25 and LM24). Note that the higher signals of labeling in differentiated cells at meristem base could at least in part depend on the thickness of the walls.
We then used the three antibodies mentioned above on the mutants. Although immunolabeling allows only semiquantitative analysis, we systematically found that LM15 labeling of XXXG slightly increases throughout the meristems of xyl1-4 when compared with wild type (Figs. 1, C and D, and 2, A and B; Supplemental Figs. S1–S3). LM25 also shows increased labeling throughout the meristem in the mutant (Fig. 1, C and D, and 2, A and B; Supplemental Fig. S1–S3). This increase can in principle be explained by a change in wall thickness. However, this is not confirmed by the other antibodies. Indeed, LM24 labeling even indicates a slight reduction in XLLG mainly in the inner tissues of xyl1-4 meristems (Figs. 1C and 2A; Supplemental Figs. S1 and S2). Interestingly, xyl1-4 meristems show a lower signal with LM24 in the L1 of the central zone compared with wild type (Figs. 1, C and D, and 2, A and B; Supplemental
As expected, there are no detectable XyGs in the cell walls of xxt1xxt2 meristems (Fig. 2C; Supplemental Figs. S1 and S2; see Supplemental Fig. S2 for background controls). For a more quantitative approach, we carried out an analysis of XyG composition by matrix assisted laser-desorption ionization time of flight mass spectrometry (MALDI-TOF MS). We dissected 50 meristems of each genotype, which included flower buds younger than stage 3 (Fig. 2D). The results are shown in the Figure 2E. As expected, we did not find any XyG in xxt1xxt2 meristems. xyl1-4 meristems show higher levels of XXLG and a slight increase in XXXG compared with the wild type, thus in line with the immunolabeling results. In addition, MALDI-TOF revealed a slight decrease in XLFG residues as well as a reduction in XXFG residues compared with the wild type. These changes in XyG fingerprint profiles in the XyG mutants are similar to those found in seedlings (Günl and Pauly, 2011), stems (Sampedro et al., 2010), and embryos (Sechet et al., 2016), suggesting that these enzymes broadly participate in regulating plant development. All together, these results demonstrate that XYL1 and XXT1/2 also regulate XyG composition in the SAM.

The xxt1xxt2 Mutations Affect Cellulose Content as well as Pectin Methylation in the Meristem

Mutations affecting XyG composition can also lead to alterations of other wall components (Cavalier et al., 2008; Zabotina et al., 2012; Xiao et al., 2016). To test if this was also the case for the SAM, we carried out immunolabeling on wild-type and XyG mutant...
meristems using a range of antibodies. Pectin and its modifications have been implicated in meristem function (Peaucelle et al., 2008; Peaucelle et al., 2011). We found strong labeling of phragmoplasts in dividing cells using the LM19 antibody, but we could not detect clear changes in the distribution of methylated (Fig. 3, A and B; Supplemental Fig. S5A) and de-methylated pectin (Fig. 3, C and D; Supplemental Fig. S5, B and C) in XyG mutant meristems using JIM7 and LM19 antibodies. We then further tested the distribution of cellulose, arabinan, xylan, arabinoxylan, and arabinoxylan in XyG deficient mutant meristems. Within the limitations of antibody specificities, we could not find any indication that the distribution of these wall components is perturbed in the mutants (Fig. 3E; Supplemental Fig. S5D and S6). Note that LM6 (anti-L-Arabinan), LM11 (antixylan/arabinoxylan), LM13 (anti (1,5)-arabinan), and LM14 (antiarabinogalactan) only showed labeling of cytoplasmic components (Supplemental Fig. S6), which could be due to the masking effect by other wall components. We noted a weak but reproducible labeling by LM11 of the walls in the central zone of xxt1 xxt2. This could reflect either a change in the abundance of the corresponding epitope or point at a reduced masking by other components (Supplemental Fig. S6C).

Because immunolabeling provides only semiquantitative information on absolute levels, we performed acid hydrolysis of the cell wall and High Pressure Anion-exchange Chromatography coupled with Pulsed Amperometric Detection (HPAEC-PAD) analysis using wild type and XyG mutant inflorescences to obtain whole monosaccharides profiles. The results presented in Figure 3, F–I, show that there are no

![Image of Figure 3](image-url)
dramatic changes in the composition of the walls of the \textit{xyl1-4} mutant, in coherence with the immunolabeling data. By contrast, in \textit{xxt1xxt2} a 22\% decrease in cellulose content was found (Fig. 3F). Although, there is some variability in the measurements, it is important to note that a similar trend was found by Cavalier et al. (2008) and Xiao et al. (2016). In addition, a 12\% increase in methylated pectin was found (Fig. 3, H–J). Finally, a prominent drop in Fuc (49\%, mean value) and Xyl (65\%, mean value) was observed in \textit{xxt1xxt2} inflorescences, which is consistent with the absence of xyloglucans in this mutant (Fig. 3I). In conclusion, our results suggest that the severe reduction of XyG levels in \textit{xxt1xxt2} alters cellulose levels and pectin methylation at the SAM, whereas the effects of \textit{xyl1} are more limited.

Altered XyG Composition Affects Meristem Shape and Phyllotaxis

We next analyzed the \textit{xyl1} and \textit{xxt1xxt2} phenotypes. The \textit{xyl1-4} mutant has smaller rosette leaves (Supplemental Fig. S7, A and B), a phenotype previously also described for \textit{xxt1xxt2} (Park and Cosgrove, 2012; Xiao et al., 2016). Inflorescence stems of both mutants are not growing straight (Supplemental Fig. S7C; Xiao et al., 2016). In addition, we observed problems with phyllotaxis in both mutants as shown in Figure 4A. The \textit{xyl1-4} mutant exhibits a more variable angle distribution when compared with the wild type, with an extra peak at 240° (Fig. 4, B and C). Perturbation in phyllotaxis was also observed in \textit{xxt1xxt2} mutants but with different characteristics as the divergence angles in \textit{xxt1xxt2} are often smaller than 137.5° (Fig. 4, B and C) and show a peak at 120°. This change in phyllotaxis could possibly be explained by a post-meristematic twisting of the cell files along the stem.

Figure 4. Phyllotactic phenotype of XyG mutants. A, Representative image showing perturbation of phyllotaxis (indicated by arrowhead) in \textit{xyl1-4} and \textit{xxt1xxt2} mutants. Scale bar = 1 cm. B, Representative distribution angles of siliques on the inflorescence stem of Col, \textit{xyl1-4}, and \textit{xxt1xxt2} plants. C, Distribution of divergence angles of siliques on the Col, \textit{xyl1-4}, and \textit{xxt1xxt2} inflorescence stems. Orange lines denote the position of a divergence angle of 137°. Orange arrowheads mark the abnormal angle peaks; \(n = 649 \) angles from 20 Col plants; \(n = 683 \) angles from 21 \textit{xyl1-4} plants; \(n = 635 \) angles from 21 \textit{xxt1xxt2} plants. D, Diagram showing the method to measure the divergence angles (\(\alpha \)) between successive primordia on confocal images of live meristems. Scale bar = 20 \textmu m. E, Primordia distribution angles on Col, \textit{xyl1-4}, and \textit{xxt1xxt2} meristems; \(n = 67 \) angles from 11 Col meristems; \(n = 55 \) angles from 6 \textit{xyl1-4} meristems; \(n = 46 \) angles from 8 \textit{xxt1xxt2} meristems. Asterisks denote statistically significant differences with wild type; *P < 0.05, Kolmogorov-Smirnov test.
However, we could not detect any evidence for this (Supplemental Fig. S8). It was therefore likely that the changes in phyllotaxis mainly occur at the meristem. To confirm this, we used 3D reconstructions from confocal images and measured successive angles between flower primordia and young flowers on the SAM as described in Figure 4D. The distribution of divergence angles on the SAM is significantly broader in both xyl1-4 ($n = 6$ plants and 55 angles; $P < 0.05$, Kolmogorov-Smirnov test) and xxt1xxt2 ($n = 8$ plants and 46 angles; $P < 0.05$, Kolmogorov-Smirnov test) compared with Col-0 ($n = 10$ plants and 67 angles; Fig. 4E), showing that the organ initiation pattern is perturbed in both mutants.

The perturbed phyllotaxis goes along with changes in meristem shape and size. We used the radius (R) of the meristem to calculate meristem curvature ($1/R$, see also “Materials and Methods” for details). As shown in Figure 5, xyl1-4 has a flat meristem (Fig. 5, A and D) when compared with the wild type. We then used MorphographX (Barbier de Reuille et al., 2015) for a more detailed quantitative analysis. This showed that average cell size is comparable with wild-type in xyl1-4 (Fig. 5, A and B) and therefore is not correlated with these changes in overall geometry (Fig. 5, A and D). The meristem of xxt1xxt2 is flatter and smaller than the wild-type (Fig. 5, A, C, and D). Cell size is not altered in the mutant (Fig. 5B), showing that reduced meristem size is correlated with reduced cell numbers. In

![Figure 5](image_url)

Figure 5. Meristem size and geometry of wild-type and XyG mutants. A, Overview of meristem size and geometry. Top, distribution map of cell area on Col and XyG mutant SAMs. Bottom, meristem curvature. All plants harbored the plasma membrane marker (35S:Lti6b-GFP). Images were postprocessed using the MorphoGraphX software. B, Cell area on meristem surface; $n = 1409$ cells from 4 meristems of 35S:Lti6b-GFP; $n = 1469$ cells from 4 meristems of xyl1-4 35S:Lti6b-GFP; $n = 1028$ cells from 4 meristems of xxt1xxt2 35S:Lti6b-GFP. Box plots display the interquartile range, split by the median; whiskers indicate the total range; outliers are plotted as individual points. C, Surface area of Col and XyG mutant meristems calculated from (B). D, Surface curvature of Col and XyGs mutant meristems; $n = 11$ for Col meristems; $n = 10$ for xyl1-4 meristems; $n = 8$ for xxt1xxt2 meristems. Mean values are represented with SD in (C) and (D).
corresponding to 100 microtubule reporter construct type and mutants. For this purpose, we introgressed the complexes, we next compared CMT dynamics in wild Because microfi

rangements of cellulose microfi

contents can affect cell wall anisotropy and the ar-

Atomic Force Microscopy Indentation Does Not Reveal Any Difference in Wall Young’s Modulus between Mutants and Wild Type

Changes in geometry and morphogenesis generally result from changes in growth patterns, which in turn largely depend on wall stiffness and the degree of anisotropy. We therefore investigated the mechanical properties of the walls in both mutants using atomic force microscopy (AFM)–based nano-indentation on xyl1-4 and xxt1xxt2 mutant meristems. We used a silica spherical tip mounted on a silicon cantilever with a nominal force constant of 42 N/m, and a radius of 400 nm (Bovio et al., 2019; see also “Material and Methods”). The applied force was of 1 μN, a force corresponding to 100–200 nm indentation, in order to indent the cell wall only (Milani et al., 2011; Tvergaard and Needleman, 2018). Unexpectedly, as shown in Figure 6, we did not find differences between wild type, xyl1-4 and xxt1xxt2 at least by applying forces in antici

Microtubule Alignment and Dynamics Are Perturbed in XyG Mutant Meristems

Previous studies have suggested that modified XyG contents can affect cell wall anisotropy and the arrangements of cellulose microfibrils (Xiao et al., 2016). Because microfibril orientations depend on the cortical microtubules (CMTs) guiding the cellulose synthase complexes, we next compared CMT dynamics in wild type and mutants. For this purpose, we introgressed the microtubule reporter construct p35S:GFP-MBD into xyl1-4 and xxt1xxt2 mutants. Because the GFP-signal was silenced in the xxt1xxt2 meristem, we used pPDF1:mCitrine-MBD to visualize the microtubules in that mutant. The results are shown in Figure 7. Confocal imaging revealed that microtubules were less aligned between cells at the meristem in both mutants compared with the wild type (Fig. 7, A–C; Supplemental Fig. S9 for in vivo images), reflecting a reduced coordination of CMTs at the tissue level. These differences were more pronounced in xyl1-4 (P < 0.001, Kolmogorov-Smirnov test) and relatively small but significant in xxt1xxt2 (P < 0.05, Kolmogorov-Smirnov test). In xyl1-4, CMTs are less well-aligned than in the wild type and in particular show a decrease in angles between 75° and 90° relative to the meristem radius. In xxt1xxt2, the difference mainly exists at the portion of around 90°. Interestingly, this seemed to result from different effects at the cellular level. Although the differences are subtle, CMTs are significantly more isotropic in individual cells of xyl1-4 meristems when compared with the wild type (Fig. 7D, P < 0.001, Kolmogorov-Smirnov test), whereas they are more anisotropic in the xxt1xxt2 mutant meristem (Fig. 7E, P < 0.001, Kolmogorov-Smirnov test; Supplemental Fig. S9).

Microtubule Dynamics May Partially Compensate the XyG Defects in Mutant SAMs

There is convincing evidence that CMTs organize in function of mechanical constraints (Hamant et al., 2008; Landrein and Hamant, 2013). The changes in CMT organization observed in the XyG mutants could be due to an altered capacity of the cytoskeleton to reorganize upon mechanical constraints. We tested this capacity in the XyG mutants by performing cell ablations on dissected meristems of plants grown on soil. This causes specific, circumferential rearrangements of the CMT arrays in the cells around the wound. Under our experimental conditions, circumferential microtubule arrays surrounding the wounding start to form 2 h after ablation in wild-type meristems (Fig. 8, A and D). We quantified the microtubule rotation angles after ablation in both XyG mutants and did not find any significant delay in CMT rearrangements when compared with wild type (Fig. 8). These results show that in xyl1-4 and xxt1xxt2, cells have the capacity to perceive exogenous forces and are perfectly able to respond. We therefore hypothesized that the observed changes in CMT anisotropy in the XyG mutants might be due to an active response of the cytoskeleton to altered wall composition. If this is true, perturbing this response could lead to more severe phenotypes in xxt1xxt2 or xyl1-4 backgrounds.

To test this hypothesis, we used the botero mutant (bot1/ ktn1), perturbed in KATANIN, a microtubule severing protein required for microtubule alignment,
uncor

proof and introduced the mutation in xyl1-4 and xxt1xxt2. The wild-type of Col-0 and Ws have comparable shape and curvature (Uyttewaal et al., 2012; Gruel et al., 2016; Fig. 5D). As shown in Figure 9, the xyl1-4 bot1-7 double mutant SAMs have striking concave meristems with a bumpy surface SAM, a phenotype which is much enhanced compared with single mutants (Fig. 9A). In certain individuals, the meristem center was almost hidden between the irregular outgrowths at the surface of the meristem periphery. Several continuous bumps along the orthogonal cutting planes indicated that the coordination of organ growth and separation was affected (Fig. 9B). Consistent with this observation, we observed a dramatic change in phyllotaxis in xyl1-4bot1-7 double mutant (Fig. 9C–E) compared with WS and bot1-7 single mutant grown under the same growth condition (Landrein et al., 2015). In view of the irregular surface of the meristems, it was sometimes difficult to establish the precise sequence of organ initiation at the meristem in the double mutant. Therefore, we cannot exclude the possibility that the severely perturbed phyllotaxis results from both meristematic and post-meristematic events. The cross between xxt1xxt2 and ktn1 resulted in even more extreme phenotypes. When we analyzed the offspring of mother plants that were homozygous for xxt1 and ktn1 while heterozygous for xxt2, we were only able to retrieve four triple mutants in an offspring of 147 plants. These mutants were very small and did not develop beyond the seedling stage (Fig. 10). In conclusion, our results point at negative epistatic interactions, showing that the control of CMT dynamics by KTN becomes vital when XyGs are perturbed or absent.

DISCUSSION

The precise function of XyGs in development has remained controversial. In a previous study, we showed that genes encoding XyGs modifying enzymes like the xyloglucan endotransglucosylases/hydrolases are highly expressed and show specific expression...
Figure 8. CMT reactions to mechanical perturbation in wild-type, xyl1-4, and xxt1xxt2 SAMs. A, Time series of CMT patterning in 35S::GFP-MBD (wild type [WT]) and xyl1-4 35S::GFP-MBD SAMs after laser ablation at the meristem center. The orientation and

Xyloglucans and Microtubules in Meristem Shape
patterns at the meristem, suggesting an important role for XyGs during morphogenesis (Armezzani et al., 2018). Here we explored the role of these components further, and show that specific XyG residues accumulate in different functional domains of the SAM. The organ boundaries and the meristem summit, for example, are characterized by higher LM24 labeling, which probably reflects an increase in XLLG and XXLG subunits. What this precisely implies has yet to be determined, but it should be noted that these domains are characterized by slowly growing cells (Kwiatkowska and Dumais, 2003; Kwiatkowska and Routier-Kierzkowska, 2009). The stiffness of the walls at the boundary has not been studied, but the cells at the meristem summit are slightly more rigid and might be in a particular mechanical, hyperelastic state beyond their linear range of elastic deformation (Kierzkowski et al., 2012; Milani et al., 2014).

The changes in meristem shape are accompanied by modifications in phyllotaxis in both mutants, which can be, at least in part, traced back to early events during organ positioning. There are several possible explanations for this. First, organ outgrowth could be partially impaired, or more irregular, causing young primordia to grow at more variable rates. Such abnormal growth patterns could destabilize the phyllotactic patterns, for example when an organ grows out more quickly than its predecessor. This type of anomaly, leading to permutations of the positions of successive organs along the stem, has been described for the

ed cell wall composition in the XyG mutants. How such a compensation would work is not easy to predict. Part of the answer might come from a role of KTN controlled CMT dynamics in regulating the amount of cellulose, as cellulose levels drop by 20% in stems of the bot1/ktn1 mutant (Burk et al., 2001). Our own unpublished results

Figure 8. (Continued.)

the length of the red bar represent average CMT orientation and degree of CMT anisotropy respectively at cellular level. B and C, Quantification of CMT orientation angles relative to radius of wild type (B) and xyl1-4 (C) SAMs, 1 and 2 h after laser ablation; n = 167 cells from 4 wild-type meristems and n = 204 cells from 4 xyl1-4 meristems. D, Time series of CMT patterning on pPDF1:mCitrine-MBD (wild type) and xxt1xxt2 pPDF1:mCitrine-MBD SAMs after laser ablation at the meristem center. E and F, Quantification of CMT orientation angles relative to the SAM radius of wild type (E) and xxt1xxt2 (F) SAMs, 1 and 2 h after laser ablation; n = 164 cells from 4 wild-type meristems and n = 181 cells from 4 xxt1xxt2 meristems. 'R' in (A and D) represents radius of meristem. P-values are calculated based on Kolmogorov-Smirnov test. Scale bars = 20 μm.
even show a 40% drop in the shoot apex (F. Zhao, J. Sechet, and J. Traas, unpublished data). Maintaining the cellulose levels might become critical when XyGs are modified.

The reduced cellulose levels in bot1/ktn1 raise in turn a number of questions. First, it is not clear why changes in microtubule severing would inhibit the deposition of cellulose so dramatically. Second, cellulose is supposed to contribute significantly to wall stiffness. However, we didn’t measure any important change in the elastic modulus using AFM in bot1/ktn1 (Uyttewaal et al., 2012; F. Zhao, S. Bovio, F. Monéger, and J. Traas, unpublished data). Although this needs to be further confirmed using other approaches (e.g. larger indentations on plasmolyzed cells), this could suggest that other components compensate for the potential reduction in stiffness due to the loss in cellulose. XyGs are somehow essential in this context, as their presence is absolutely required when KTN is impaired.

In conclusion, XyGs have a significant role in patterning at the shoot apical meristem. This could be due to a direct role of XyG composition in coordinating...
growth rates and directions, although indirect effects on cell polarity and auxin transport might also be involved. We also find that XyG composition can at least in part compensate for impaired cellulose deposition and vice versa. How this precisely works remains to be elucidated, but the results again illustrate the extraordinary capacity of plant cells to maintain and adapt the properties of their walls to guarantee robust development.

MATERIALS AND METHODS

Plant Materials and Culture Conditions

Arabidopsis (Arabidopsis thaliana) Col-0 and Ws-2 ecotype plants were used as wild type. All mutants and marker lines used in this study have been described previously: xxt1xxt2 (Col-0; Cavalier et al., 2008), yl1-4 (Col-0; Sechet et al., 2016), bot1-7 (Ws-2; Sassi et al., 2014), ktn1(SAIL_343_D12; Lin et al., 2013), 35S:GFP-MBD (Hamant et al., 2008), 35S:GFP-Lti6b (Sassi et al., 2014), and PDF1:1mCitrine-MBD (Stanislav et al., 2018). To obtain xyl1-4 bot1-7 double homozygous plant, the plants were selected after a first cross and homozygous bot1-7/heterozygous xyl1 plants were selected in the third generation. The other materials were generated by crossing and subsequently confirmed by genotyping. Plants were grown on soil under long-day condition (16/8 h LED light period, 150 μEm−2s−1; 60% humidity and 20–22°C day temperature). For confocal and time-lapse imaging, shoot apices were dissected and cultured in vitro on apex culture medium (ACM) as described previously (Sassi et al., 2014).

Immunolocalization of Cell Wall Components

Inflorescence meristems were infiltrated in the formaldehyde-acetic acid fixative (3.7% [w/v] formaldehyde, 50% [v/v] ethanol, and 10% [v/v] acetic acid) under vacuum for 5 min and left in this solution overnight at 4°C. Paraffin embedding sectioning was carried out according to Zhao et al. (2017). Sections of wild type and mutant specimens were put on the same slide, then deparaffinized in Histo-Clear and rehydrated in a series of ethanol solutions, followed by treatment with membrane permeabilization solution (10% [v/v] dimethyl sulfoxide; 3% [v/v] Nonidet P-40) for 1 h. After being washed in 1× phosphate buffered saline (PBS) buffer (pH 7.0), the slides were incubated with primary antibodies: anticrystalline cellulose (Plant Probes, CBM3a [1:100]), antihomogalacturonan (Plant Probes, JIM7 [1:80] and LM19 [1:100]), antimannogalactomannan (Plant Probes, LM24 [1:200] and LM25 [1:100]), anti-arabinan (Plant Probes, LM6 [1:100] and LM13 [1:50]), antixylan/arabinobiose (Plant Probes, LM11 [1:100]), and antixylan (Plant Probes, LM14 [1:100]) in 1% (w/v) bovine serum albumin/PBS buffer (pH 7.0) overnight at 4°C and then the corresponding secondary antibodies: antirat IgG (Alexa Fluor 488 conjugated, Molecular Probes A21210 [1:100] and Dylight 550 Invitrogen SA5-10027 [1:100]), IgM (Dylight 488 conjugated, Abcam ab96963 [1:125]) and anti-His tag (Alexa Fluor 555 conjugated, Thermo Fisher MA1-21315-A555 [1:200]) for 3 h at 37°C. After being washed in PBS buffer (pH 7.0), the slides were observed in a Zeiss LSM 700 laser-scanning confocal microscope. To better detect XyG and cellulose signals, slides were treated with 0.1% (w/v) pectinase (Sigma, P9636) in citric acid–sodium phosphate buffer (0.2 M Na2HPO4, 0.1 M citric acid [pH 4.8]) for 45 min before antibody incubation.

For whole mount immunolocalization, the method was set up based on Rozier et al. (2014). Briefly, dissected shoot apices were fixed in formaldehyde-acetic acid under vacuum for 1 h. After dehydration and rehydration in a series of ethanol solutions, the shoot apices were digested in a solution containing 0.1% (w/v) pectinase and 0.1% (w/v) pectinase (with citric acid–sodium phosphate buffer [pH 4.8]) for 1 h at room temperature. The digestion time was optimized to keep optimal meristem integrity, as at longer treatments the tissues became extremely fragile. After membrane permeabilization as described above and being washed in 50 mM PIPES, 5 mM EDTA, 5 mM MgSO4, pH 7.0, the shoot apices were incubated with primary antixyloglucan antibodies in 3% (w/v) bovine serum albumin/0.1% (v/v) Triton/microtubule stabilizing buffer overnight at 4°C followed by the corresponding secondary antibodies for 3 h at 37°C. After being washed with buffer, the apices were mounted vertically in Murashige and Skoog medium. Image were taken with a Zeiss LSM700 laser-scanning confocal microscope equipped with water immersion objectives (W N-Achromat 40×/0.75 M27). All the details of cell wall anti bodies and references referred to can be found on this Web site: http://www. plants.leeds.ac.uk/pk/pd/JFKabotS.pdf.

RNA in Situ Hybridization

RNA in situ hybridization on sections was performed according to (Armezzani et al., 2018) using digoxin-labeled XYL1 (2924 bp, primers: 5′-ACC ATGAGCTAAAGAGGGTTTCG and 5′-TAATACGACTCACTATAAGGG GAA ATGAGAGAAGCAAACATTACC), XXT1 (938bp, primers: 5′-ATTCTG GGCTAAGGCTCCGTG and 5′-TAATACGACTCACTATAAGGG CTCCAT...)
ACAGACTCCAC, and 2X72 (538bp, primers: 5'-ATGATGAGAGGTGT TTAGGACGAGGAGGAGCCTGTCCTGAG CAG) probes from amplified PCR products (prepared according to Roizier et al., 2014). Images were taken with Zeiss Axio imager 2 microscope equipped with EC Plan-Neofluar 20X/0.5 objective.

Cell Wall Composition Analyses

To analyze the XyG contents on SAM following the oligosaccharide fingerprinting set up by Lerouxel et al., (2002), 50 shoot apices were dissected and kept in ethanol. After ethanol removal, XyG oligosaccharides were generated by treating samples with endoglucanase in 50 mM sodium acetate buffer, pH 5, overnight at 37°C. MALDI-TOF mass spectrometry of the XyG oligosaccharides was recorded with a MALDI/TOF Bruker Reflex III using super-DHB (9:1 mixture of 2,5-dihydroxy-benzoic acid and 2-hydroxy-5-methoxy-benzoic acid; Sigma-Aldrich, sigmaaldrich.com) as matrix.

For whole cell wall component measurement, around 0.3 g fresh floresences were collected for analysis and fixed in 96% ethanol. After grinding in ethanol, they were incubated for 30 min at 70°C. The ethanol was removed twice with 96% ethanol and twice with acetone. The remaining pellet is called the ethanol, they were incubated for 30 min at 70°C. The pellet was then washed with 0.05M NaOH. The supernatant containing methyl ester released marker (Sigma-Aldrich, sigmaaldrich.com) as matrix.

For pectin content, saponification of the AIR (3 mg) was performed in triplicates with 0.05 M NaOH. The supernatant containing methyl ester released from the cell wall was then separated from the pellet with polysaccharides. Pectins were extracted from the pellet with 1% ammonium oxalate at 80°C for 2 h as described (Krupková et al., 2007; Mouille et al., 2007; Neumetzler et al., 2012). GalUA was then quantified by colorimetry using meta-hydroxy-diphenyl-sulfuric acid method as described (Blumenkrantz and Asboe-Hansen, 1973). Methyl ester was quantified from NaOH supernatant with a colorimetric assay using enzymatic oxidation of methanol (Klavons and Bennett, 1986).

The oligosaccharide composition of the noncellulosic fraction was determined by hydrolysis of 100 µg AIR with 2 M TFA for 1 h at 120°C. After cooling and centrifugation, the supernatant was dried under a vacuum, resuspended in 200 µL of water and retained for analysis. To obtain the Gc content of the crystalline cellulose fraction, the TFA-insoluble pellet was further hydrolyzed with 72% (v/v) sulfuric acid for 1 h at room temperature. The sulfuric acid was then diluted to 1 M with water, and the samples incubated at 100°C for 3 h. All samples were filtered using a 20-µm filter cap and quantified by HPAEC-PAD on a Dionex ICS-5000 instrument (ThermoFisher Scientific) as described (Sechet et al., 2018).

Phenotypic Analysis (Phyllotaxy, Meristem Size, and Geometry Measurement)

The phyllotactic patterns were measured as described previously (Besnard et al., 2014). Cell size in the SAMs was obtained by using MorphoGraphX software according to the guideline (https://www.mppiz.mpimp.de/ MorphoGraphX/help). Only the cells within the organ boundaries were taken into account. The organ boundaries were defined as the regions with negative Gaussian curvature. Meristem size (surface area) was calculated by summing up all the cell areas per meristem. To calculate meristem curvature, confocal stacks were viewed as two independent orthogonal planes by using orthogonal views function in Fiji software (https://fiji.sc). The radius of meristem was evaluated by drawing a circle tangential to the inner surface of meristem summit. The radius of the circle was taken as the meristem radius (R). The meristem curvature was then calculated as 1/R. To decrease the bias of the measurement, we averaged the curvature value obtained from two orthogonal planes mentioned above on a single meristem. All the data were processed by SigmaPlot and Microsoft Excel software.

Live Imaging and Microscopy

For live imaging, dissected meristems were visualized using a membrane marker (GFP-Lti6b) under control of an appropriate promoter, or stained with propidium iodide. Samples were examined in a Zeiss LSM 780 laser-scanning confocal microscope equipped with water immersion objectives (W Plan-Apochromat 40X/1.0 differential interference contrast or W N-Achroplan 40X/0.75 M27). For scanning electron microscopy, freshly dissected meristems were observed with a HIROX SH-3000 tabletop microscope equipped –20°C and an accelerating voltage of 5 kV.

Image Processing and Analyses

Fiji software was used for two dimensional confocal image analysis. For 3D image processing, the Zeiss ZEN2 software was used to make a 3D maximum or transparent projection of the signals on meristem. MorphoGraphX software was used to reconstruct the outer meristem surface. To quantify cortical microtubule signals, the images were processed and analyzed according to Verger et al. (2018). More specifically, we first projected epidermal CMT signals and cell contours using MorphoGraphx and then used Fiji plugin Morpholib (Legland et al., 2016) to segment the cells and define a region of interest (ROI). Finally, we used Fibril tool (Boudaoud et al., 2014) to quantify CMT orientation and anisotropy. The distribution of CMT orientation and anisotropy was plotted using Eiger software. The signals' orientation was measured on a 6-Hz paused laser at 356 nm. For more details about cantilever calibration, see Bovio et al. (2019).

Data analysis was done using JPK Data Processing software 6.0. Young’s modulus was obtained by fitting the entire force versus tip-sample distance curve with a Hertz model for a sphere. For our analysis, we used a tip radius R of 400 nm and a Poisson’s ratio v of 0.5 (as it is conventionally set for biological materials), where the Young’s modulus, the point of contact, and an offset in force were kept as free parameters of the fit. In our analysis, only approach curves have been taken into account. Retract curves were obtained, but not used for further analysis. There are several reasons for this. First, in our case, adhesion forces are negligible compared with the setpoint force. Furthermore, although in the contact part of the approach curve the cantilever velocity is constant, this is not necessarily true for the contact part of retract curves. In fact, at the motion inversion point, that is at the beginning of the retract curve, the cantilever must be accelerated from 0 velocity up to the selected ramp speed. In the case of a viscoelastic material, as a plant tissue, this nonconstant speed may lead to variations in the apparent Young’s modulus. For these reasons, we considered Young’s modulus values extracted from approach curves as more reliable.

Laser Ablation

We carried out the laser ablation experiments on shoot apical meristems by using a Zeiss LSM 700 laser-scanning confocal microscope, equipped with an Andor MicroPoint (a galvanometer-based laser ablation unit). The sample was exposed to a 6-Hz pulsed laser at 356 nm. Predissected meristem s were cultured vertically in ACM for at least 4 h before the experiment. After being stained with propidium iodide (Sigma, 100 µM) for 5 minutes, the meristems were put under the microscope. Further steps were manipulated by using the IQ software from Andor. First, meristem was visualized to keep focus on the epidermis of meristem summit. Then we used the circular tool in iQ to draw a ROI with a diameter of 2 pixels (5 µm) at the center of the meristem. With a laser power at 840 with 5 repetitions for each point on the ROI, we made a circular wound. To assure the homogeneity of the ablations, the same procedure was carried on all wild-type and XyG mutant meristems.
Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component. Plant Cell 20: 1519–1537

[AU: 1] : If you provided an ORCID ID at submission, please confirm that it appears correctly on the opening page of this article. If you or your coauthors would like to include an ORCID ID in this publication, please provide it with your corrections. If you do not have an ORCID ID and would like one, you can register for your unique digital identifier at https://orcid.org/register.

[AU: 3] : Is distribution of materials information correct as shown? Please confirm or amend.

[AU: 4] : Please verify corresponding author. Per guidelines, only 1 author can be listed as the corresponding author.

[AU: 5] : ERC is European Research Council in the funding information? Please confirm or amend.

[AU: 6] : Please verify grant information. Arezki Boudaour is listed although he is not an author listed in this paper.

[AU: 7] : Per journal style, all instances of “alpha” that appears we have changed to the lowercase Greek letter “α”. Please confirm or amend.

[AU: 8] : Please verify in-text citation should be Fig. 3, H–J, and not Fig. 3, J–H as shown in the original text.

[AU: 9] : Please define (spell out) WS at only mention in text.

[AU: 10] : Please define (spell out) LED at only mention in text.

[AU: 11] : FAA is formaldehyde-acetic acid? Please confirm or amend at two mentions in text.

[AU: 12] : Revised sentence correct (changes shown in bold)? “After being washed in 1X phosphate buffered saline (PBS) buffer (pH 7.0), the slides were...” Please confirm or amend. Changes made to make it clear what is being washed.

[AU: 13] : Revised sentence correct (changes shown in bold)? “After being washed in PBS buffer (pH 7.0), the slides were...” Please confirm or amend. Changes made to make it clear what is being washed.

[AU: 14] : Revised sentence correct (changes shown in bold)? “After being washed in 50 mM PIPES, 5 mM EGTA, ... the shoots apices were...” Please confirm or amend. Changes made to make it clear what is being washed.

[AU: 15] : Revised sentence correct (changes shown in bold)? “After being washed with buffer, the apices...” Please confirm or amend. Changes made to make it clear what is being washed.

[AU: 16] : Please verify that each website given in this article can still be accessed; if not, please provide necessary corrections.

[AU: 17] : Please specify % as “w/w”, “w/v”, or “v/v” for solutions throughout as necessary.

[AU: 18] : Please verify the updated volume and page numbers for Bovio et al. 2019.

[AU: 23] : Please verify panel descriptions are correct.

[AU: 24] : Figure 3, panel G, is not shown in the figure or mentioned in the figure legend. Please indicate where to label panel G and mention in in Fig. 3, or relabel remaining panel labels to appear in alphabetical order.