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Abstract

In the Prediction Error Identification framework, it is essential that the experiment yields informative data with respect to the chosen
model structure to get a consistent estimate. In this work, we focus on the data informativity property for the identification of
Multi-Inputs Multi-Outputs system in closed-loop and we derive conditions to verify if a given external excitation combined with
the feedback introduced by the controller yields informative data with respect to the model structure. This study covers the case
of the classical model structures used in prediction-error identification and the classical types of external excitation vectors, i.e.,

vectors whose elements are either multisine or filtered white noises.
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1 Introduction

For an identification within the Prediction Error frame-
work, it is crucial to choose an excitation that yields in-
formative data. Indeed, the prediction error estimate is
then guaranteed to be consistent (provided the chosen
model structure is globally identifiable at the true param-
eter vector) [10,14]. In this work, we study the data infor-
mativity with respect to (w.r.t.) Multi-Input Multi-Output
(MIMO) model structures for the identification of MIMO
systems in the closed-loop configuration (direct closed-
loop identification).

Data informativity is obtained when the input excita-
tion is sufficiently rich to guarantee that the prediction
error is distinctive for different models in the considered
model structure. For Single-Input Single-Output (SISO)
systems, this property has been largely studied. In this
case, the data are informative if the input signal is suffi-
ciently rich of an order that depends on the type and the
complexity of the considered model structure. More pre-
cisely, an input signal is sufficiently rich of an order 7 if
and only if its input power spectrum has a non-zero am-
plitude in 7 different frequencies in the interval | -, 7]
(see e.g. [10]). Due to renewed interest in optimal exper-
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iment design (see e.g. [3,9]), where the covariance matrix
of the identified model is involved, there has been a lot of
works to connect the positive definiteness of the covari-
ance matrix to the data informativity [1,8]. In addition,
necessary and sufficient conditions have been derived for
the data informativity in both the open-loop and closed-
loop case in [7,8]. In particular, these papers derive the
minimal order of signal richness that the excitation signal
must have to ensure data informativity and this is done
for all classical model structures (BJ, OE, ARX, ARMAX,
FIR). In the closed-loop case, this minimal order is related
to the complexity of the controller present in the loop
during the identification. In [7,8], it is also shown that,
if the controller is sufficiently complex, the data can be
informative even if the excitation signal is equal to zero
(costless identification).

While the data informativity seems to be a grown-up
research area in the SISO case, this cannot be said for
the MIMO case. In [12], and more recently in [2], at-
tention has been given to determine the minimal order
that the controller must have to ensure that informative
data are obtained when the external excitation is zero.
Two conditions have been derived, one being sufficient
and the other one necessary. In the majority of the cases,
though, a (nonzero) external excitation will be required
to yield informative data. Up to our knowledge, in the
MIMO case, there is (almost) no result about the mini-
mal richness this external excitation must have to yield
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informative data and about how this minimal signal rich-
ness relates to the complexity of the controller. Perhaps,
the only result in that matter is given in [2]. In [2], it is
indeed said that an external excitation signal r(¢) with a
strictly positive definite power spectrum matrix @, (w) at
all w always yields informative data for direct closed-loop
identification. This condition is of course only sufficient
and is moreover very restrictive. As an example, a multi-
sine excitation will never respect this condition.

In this paper, we will therefore derive a condition al-
lowing to verify whether, for a given MIMO controller, an
arbitrary external excitation r(f) yields informative data
for the direct closed-loop identification of a given MIMO
system in a full-order model structure. We will do that
for the classical model structures used in the Prediction
Error framework (FIR, ARX, ARMAX, OE, BJ) and for both
multisine external excitations and filtered white noise ex-
ternal excitations.

As we will see in this paper, data informativity will
be guaranteed in the MIMO closed-loop case if, for each
channel/output, a certain matrix is full row rank. This
matrix depends on the model structure complexity, on
the controller coefficients and on the external excitation
parametrization (i.e., amplitude, phase-shift and frequen-
cies for multisine and filter coefficients for filtered white
noise) . We will also observe that this matrix clearly sepa-
rates the contributions of the controller and of the exter-
nal excitation to the informativity of the collected input-
output data.

This paper builds upon our previous contributions
where we consider the data informativity problem for
the open-loop identification of MIMO systems [4-6].

2 Notations

For a complex-valued matrix A, AT denotes its trans-
pose and A* its conjugate transpose. A positive semi-
definite (resp. definite) matrix A is denoted A >0 (resp.
A>0). We will denote A;i the (i, k)-entry of the matrix A,
A;. the i-th row of A and A.; the k-th column of A. The
identity matrix of size n x n is denoted I, and 0« is the
n x p matrix full of zeros. For the sake of simplicity, we
will often drop the index n x p and just write 0. The no-
tation diag(ay,- -+, a,) refers to the n x n diagonal matrix
whose elements in its diagonal are the scalars a,--, a.
For a vector x € R", the notation ||x|| refers to the Eu-

clidean norm, i.e. [[x|]| = \/x+---+x5. For two integers

n < p, the set [n, p] is the set of consecutive integers be-
tween n and p.

For quasi-stationary signals x(¢) [10], we define the op-
erator E[x(#)] = lim %ZﬁlE[x(t)] where E is the ex-
N—+oo
pectation operator.

For discrete-time model, z is the forward-shift op-
erator. The degree of a polynomial P(X) is denoted

deg(P(X)). When X = z™!, we say that p is the delay of
P(z™!) when the first non-zero coefficient is linked to
z P, ie P(z7hH) = ppz P+ pp+1z’(p“) + o+ ppz~" with
pp #0.

3 Prediction Error Framework in closed-loop

Consider a MIMO system . with an input vector u €
R™ and an output vector y € R, described by

Sy = Go(2)ulr) + Ho(z)e(r) 1)

where Gy(z) is a stable matrix of transfer functions of
dimension ny x ny, Hy(z) a stable, inversely stable and
monic! matrix of transfer functions of dimension Ny X Ny
and e € R™ is a vector made up of zero-mean white noise
signals such that E[e(t)e (1)] = Z¢ > 0. We will make the
following assumption for the sake of simplicity.

Assumption 1 Assume that Hy(z) is a diagonal trans-
fer function matrix, i.e., Hy(z) = diag(Ho,1(2),-+, Ho,n, (2))
where each scalar transfer function Hy;(z) (i =1,---,ny)
is stable, inversely stable and monic.

As shown in Fig. 1, the system . is under feedback
control with a stabilizing controller described by a matrix
of (rational) transfer functions K(z) of dimension n, x n,.
The reference signal is set to 0. For identification pur-
pose, a quasi-stationary external excitation r € R™* can be
added to the control effort such that the input u is given
by

u(®) =-K@y@®+r(1) 2)

e(t) = Ho(2)

r(t)

0 K@) »(%)ﬂ Go(2)

Fig. 1. Closed-loop configuration.

— y(t)

We will assume that the excitation vector r is uncor-
related with the vector of white noises e and that there
is no algebraic loop in the closed loop made up of K(z)
and Gy(z), i.e., there is at least a delay in all entries of the
matrix K(z)Gy(z). In this work, we focus on developing
conditions to get a consistent estimate of (Gy(z), Hyp(2))
when considering the direct closed-loop identification ap-
proach, i.e., by using the data x(¢) = (yT(t),uT(t))T for
the identification.

We will consider two types of quasi-stationary external
excitation r. The first type is a multisine where each entry

1 This means that Hp and HO_ 1 are stable and Hy(z=00) = Iny.



rrof r (k=1,---,ny) is a multisine made up of sinusoids
at s different frequencies w; (I=1,---,59), i.e.,

S
re( =) Agcoswit+¥y)  k=1,---,n, (3)
=1

where Aj; and Wg; are respectively the amplitude
and phase shift of the sinusoid at the frequency
w;. Note that Ay; and ¥g; can be zero for some k
(k=1,---,ny) but, for each [ = 1,---,s, there exists (at
least) a value of k for which Ag; # 0. In the second
type, r is generated as r = Mv via a stable transfer
matrix M(2) = (Miq(2) @ ge[1,n,]<[1,f] and a vector

v=(v1, -, vf)T containing f independent white noises
signals v, (g =1,---, f) of covariance Z, > 0. In other
words, each entry ri of r is given by:

f
(=) Mig@vg(t)  k=1,---,ny )
=1

Note that some My4(2) can be identically zero and that
f is not necessarily equal to n, but, for each g=1,---, f,
there exists (at least) a value of k for which My4(z) #0 .

The system . is identified within a full-order model
structure .4 = {(G(z,0), H(z,0)) | 0 € 2y} where 6 € R" is
a parameter vector and the set Yy restricts the param-
eter vector 0 to those values for which G(z,0) is sta-
ble and H(z,0) is stable and inversely stable. The model
structure is said to be full-order if 360y € 9y such that
(G(z,00), H(z,600)) = (Go(z), Hy(z)). We will suppose that
 is globally identifiable at the true parameter vector 6,
ie. (G(z,0), H(z,0)) = (Gy(z), Hy(2)) = 0 = 6 [1,2].

Assume that we have collected a set of N input-output
data:

ZN={x=0"w, T ®)" 1t=1,,N}

For each (G(z,0), H(z,0)) € .4, we can define the one-step
ahead predictor (t,0) for the output y(t) using ZV:

P(6,0) = Wy (2,0)y() + Wy(2,0)u(t) = W(z,0)x(1) (5)
Wy(z,0) = H ' (2,0)G(2,0) (6)
Wy (2,0) =1,,— H ' (2,6) (7)

where W(z,0) = (W, (z,0), W,(z,0)).

As will be illustrated in the sequel, the data x(¢) =
(T @), u” ()T must be informative with respect to .4 to
get the consistency of the estimate.

Definition 2 (Data Informativity [2]) Consider the
[framework defined above with the data x(t) = (yT(t), ulnt
collected on the true system # operated in closed-loop
with a controller K(z) and a quasi-stationary external
excitation r (see (2)). Consider also a model structure

M yielding the predictor j(t,0) = W(z,0)x(t). Define the
set Aw = {AW(2) = W(2,0') - W(z,0") | 0’ and 0" in Dy}.
The data x(t) are said to be informative w.r.t. the model
structure A if, for all AW (z) € Aw, we have

E[IAW () x(1)I’] =0 = AW (2) =0 ®)

where the notation AW (z) =0 means that AW (e/?) = 0 at
all or almost all w €] — 7, 7).

Data informativity combined with global identifiability
at 6y are important properties since they imply that the
prediction error criterion [10,14] defined below yields a
consistent estimate éN for 6y:

R . N
Oy =arg gg}@l; Vn (6,2%) 9
1 N
Vn (0,2Y) = =Y el (1,02, e(t,0) (10)
NI:I

where €(t,0) = y(¢) — y(t,0) and where X, is assumed
known for simplicity? . The estimate 0y is consistent if it
converges to 6y with probability equal to 1 when N — +oo0.

In [4-6], we derived conditions to ensure the data in-
formativity in open-loop (K(z) = 0) for input vectors u=r
of the types (3)-(4) and for the classical types of model
structures .# in open-loop i.e. FIR, ARX, OE and B] model
structures. In the sequel, we will study the closed-loop
case. In the next section, we present the model structures
considered in this study.

4 Considered model structures

For the sake of simplicity, we will here also restrict
attention to the classical types of model structures i.e.
FIR, ARX, ARMAX, OE and BJ. For this purpose, let us
decompose 6 as follows

0
0= ¢8))

where 0 is made up by the parameters uniquely found in
G(z,0) and 7n contains the rest of the parameters.

The ARMAX model structure can be described as fol-
lows

H(z,0) = A(z,m)~'C(z,n)

where A(z,n) and C(z,n) are diagonal and monic poly-
nomial matrices of dimension n, x n, and B(z,0) is a
polynomial matrix of dimension ny x n,. Note that the
ARX and the FIR model structures are special cases of

71 4
{G(z,e) Alz,)"'B(z,0) "

2 It can however be estimated together with Oy (see e.g. (10,
Chapter 15])



the ARMAX one with C(z,n) = Iny in the ARX case and
C(z,m) = A(z,m) =15, in the FIR case.

For BJ model structures, G(z,0) and H(z,0) do not
share common parameters:

(13)

G(z,0) = G(z,0)
H(z,0) = H(z,n)

with H(z,n) = diag(H1(z,1),"+, Hn, (z,7)).

Let us introduce some further notations for these
MIMO model structures.

ARMAX/ARX/FIR: For the MIMO ARMAX/ARX/FIR
model structure in (12), B(z,0) is a matrix made
up of nyn, independently parametrized polynomials
Bik(2,0i1) = z P Bij(2,0;) (i =1,-,ny, k=1,,n)
where the delays p;; can be all different and Bir(z,0;1)
is a polynomial. All H;(z,n) = C;(z,n)/Ai(z,n) are
parametrized independently with a parameter vector 7;,
i'e! Hi(Zvn) = Hi(Z,Ui) = Ci(Z,Tli)/Ai(Z,Ui) where Ci(zrni)
and A;(z,n;) are monic polynomials.

The coefficients of the polynomial Bjy are the parame-
ters in 0;; while the ones in the polynomials A;(z,n;) and
Ci(z,n;) are the ones in 1;. Consequently, we have that:

. ~ _ deg(éik)~
Bir(z,0i0) =0i1+ Y, Oikomenz ™" (14)

m=1

deg(C;)
Cilzn) =1+ Y Nimz ™" (15)

m=1

deg(A;)
Aizn) =1+ Y. Nim+degcnZ " (16)

m=1

where 5””,1 denotes the m-th entry of 0;r and Nim the
m-th entry of n;. The number of parameters to identify
in Bj, C; and A; is thus equal to deg(B;i) + 1, deg(C;)
and deg(A;) respectively.

BJ/OE: For the MIMO BJ/OE model structure
in (13), G(z,0) is a matrix made up of nyn, inde-
pendently parametrized transfer functions G;i(z,0;x) =
z7Pik By (2,011) | Fix (2,0,) where By (z,0;) and Fix(z,0:1)
are polynomials. The diagonal matrix H(z,0) is com-
posed by n, independently parametrized transfer func-
tions H;(z,n;) with H;(z,1n;) = Ci(z,n;)/D;(z,1;) where
Ci(z,n;) and D;(z,n;) are monic polynomials.

The coefficients of the polynomials B; and Fj are the
parameters in 6;; while the coefficients of the polynomi-
als C;(z,n;) and D;(z,n;) are the ones in ;. Consequently,

we have that:

. - - deg(l;’ik)~
Bit(2,0i)=0ik1+ Y Oikmenz " (17)
m=1
. deg[l’g“l‘k)’~
Fir(z,0i1) =1+ Zl gik,(m+deg(é,-k)+1)z_m (18)
e

deg(C))

Cilzn) =1+ Y, nimz " (19)
m=1
deg(D;)

Di(zn) =1+ Y Ni(mrdegCcn? " (20)

m=1

where éik’m denotes the m-th entry of §;; and ni,m the
m-th entry of ;. The number of parameters to identify in
éik, Fik, D; and C; is thus equal to deg(éik) +1, deg(Fix),
deg(D;) and deg(C;) respectively.

For all classical model structures, the parameter vec-
tor 0 € R" is the concatenation of 6;; (i = 1,0y, k=
1,---,m,) ie. 0 = (élleész’...,éT B - L A,

1ny’ " nyl? nyZ"
6 . )T. The parameter vector n € R™ is also the con-
yhu
catenation of n; (i=1,---,n)) ie.n=mnl, - ,ngy)T.

These classical model structures are globally identifi-
able at the true parameter vector 6y if 8y does not lead
to a pole/zero cancellation.

Index notations: In the sequel, we will use the index
i € [1,n,] to specify the entries y; of y while k € [1,n,]
will be used to specify the entries uy of u.

5 Data informativity for MIMO systems in closed-loop
5.1 Simplification of the study

We will first see in the next theorem how the controller
K(z) and the external excitation r contribute to the data
informativity in the closed-loop MIMO case.

Theorem 3 Consider Definition 2 and one of the model
structures ./ defined in Section 4. Recall that r and e are
independent. For each AW (z) € Aw, we define similarly
AWy (z) and AW, (z). Then, the data x(t) are informative
w.r.t. the model structure # if and only if, for all AW (z) =
(AW, (2), AW, (2)) € Aw,

AWy(2) AWy (2)K(2) = 0
J:(Z) u(2)K(2) B (AWy;AWu) =(0,0)
E[IAW,2r(0I12] = 0

21

PROOE See Appendix A. ]

Remark 4 As mentioned in the introduction, a sufficient
condition for the informativity is to choose r such that



its power spectrum matrix is strictly positive definite
at all frequencies, i.e. ®,(w) > 0 Yw. Indeed, by using
Parseval theorem E[IIAWu(z)r(t_)IIZ] = 0 is equivalent to
(% [T, AW, (e/) @, () AW;; (e/°)dw) = 0 where tr is the
trace operator. Consequently, if ®,(w) > 0 for all w, then
E[IAW,(2r(®I71 =0 implies AW, =0. When AW, =0,
the first equation of the left hand side of (21) is equivalent
to AW, = 0. Consequently, we have informativity when
O, (w) >0 Yw (or at almost all w).

However, this sufficient condition for data informativity
is in fact very restrictive. It will indeed never be verified
for multisine excitation such as (3) or for filtered white
noise excitation of the type (4) when f < ny, while such
excitation signals can of course yield informative data (see,
e.g., Section 9).

In the next theorem, we will show that we can simplify
the result of Theorem 3.

Theorem 5 Consider Definition 2, Theorem 3 and one of
the model structures 4 defined in Section 4. Define the sets
Awi = {AW;.(2) | AW;.(2) is the ith row of AW (z) € Aw}
(i =1,---,ny). For each AW;.(z) € Aw,;, we define simi-
larly AW, ;.(z) and AW,,;.(z) which are the i-th row of
AWy (z) and AWy (z) respectively. Then, the data x(t) are
informative w.rt. the model structure 4 if and only if,
forall i =1,---,ny, the following property holds for all
AW;:(2) = (AW),;:(2), AW,,,i:(2)) € Aw ;-

AW, ;.(2) =AW, ;.(2) K =0
J’»t_.(Z) u,i:(2)K(2) — (AWy,i;,AWu,i:) = (0,0)
E[IIAW,,;.(2r0)I?] = 0
(22)
PROOE See Appendix B. ]

Theorem 5 allows to simplify the data informativity ver-
ification: it can be done channel-by-channel (or output-
by-output). Hence, in the sequel we will consider an arbi-
trary i and restrict attention to (22) for that particular i.

In its actual form, (22) is function of the rational trans-
fer functions matrix (AW),;.(z), AW, ;.(2)) € Aw,;. We need
to transform (22) into a polynomial matrix form for the
development of the conditions on data informativity. Let
us for this purpose first observe that the first equation of
the left hand side of (22) can be rewritten as follows

I,
(Awy,i;(z),—AWu,,-:(z))( ) 0 (23)
K(2)
By considering a right-factorization of K(z) and a left-
factorization of (AW, ;.(z),-AW,;.(z)), we will prove
that we can transform (23) into a polynomial matrix
form. Moreover, we will see that this left-factorization
of (AW),;.(z),—AW,,;.(z)) will allow us to transform the

second equation of the left hand side of (22) into a
polynomial matrix form.

To simplify the presentation in the sequel, we will often
use shorthand notations for each transfer of the form
M(z), M(z,0") and M(z,0") by dropping the argument
and we will denote them by M, M’ and M" respectively.

5.2 Factorization of (22) into a polynomial matrix form

We are going to consider a right-factorization for
K(z) and a left-factorization for the rational block ma-
trix (AW),;.(z),—~AW,,;.(z)) which should be valid for
all AW;.(z) = (AW),;.(2),AW,,;.(2)) € Aw,;. The one that
we will choose is obtained by putting all entries of
(AWy,;.(z),—AW,,;.(z)) on the same denominator. It is
given in the next lemma.

Lemma 6 Consider the model structures defined in
Section 4. For these model structures, the rational block-
matrix (AWy,;.(z),—~AW,,;.(z)) can be left-factorized into
(AWy,i-(2), ~AW,,1.(2)) = Q1 (2) (Y 1,1 (2), Y i (2)) where the
row polynomial vector Y,,;(z) of dimension ny has all
its entries equal to 0 except possibly the i-th one denoted
Y y,ii(z). The row polynomial vector Y, ;(z) is of dimen-
sion ny. The scalar polynomials Q;(z) and Y y;;(z) and
the row polynomial vector Y, ;(z) are given by

« for FIR: Qi=1,Y;; =0, Y, ; = B/ - B..

e for ARX: Qi =1, Yy;; = A;-/_A;" Yy = B;, _Bz":'

s for ARMAX: Q; = CiC}, Yy = ClA] —=ClAl, Y, ; =
CiBi.~C{Bj..

e for OE: Q; = [I}“, F/.Fl,

;e Yy,ii =0 and Yu,i =
(Yu,ik)kex[[lv”u]] with

ny
_ 1 ! ! I ! 1
Yy ik = (BikFik_BikFik)l 1_1[ kFilFil
=1,1#

e forBJ:Q; = CiC/TI}"  FI F/\,

D;. C;IHZZI Fz/sz”k and Y, ;= (Yu,ik)ke[[l,nu]} with

N oY/ alA u L] Il
Y)’v” - Di Ci Hk:l FikFik

ny ny

_ "N~ pl! ! ! //_ I ~I'p! 7 ! 1

Yy,ik=DjCiBi Fiy ] FiFj-DiCiByu Fii I FiFj
1=1,12k I=1,1%k

PROOE See Appendix C. |

Based on the set Aw; (i =1,---,ny) (see Theorem 5),
let us define the set Y; made up of all polynomial ma-
trices (Yy,;;(2), Y ,;(z)) obtained by considering the left-
factorization of AW;.(z) € Aw,; (see Lemma 6).

For the controller K(z), we will consider the right-
factorization consisting in putting all entries of K(z) on
the least common multiple J(z) of the denominator of
the entries of K(z) (J(2) is a polynomial). Therefore, K(z)



can be rewritten as
K(z) =NV (2 (24)

where N(z) is a FIR matrix of dimension n, x ny and
V(z) =diag(J(2), -, J(2)).
—_—

ny times

Based on the factorization of K(z) in (24) and of
AW;.(z) € Aw; in Lemma 6, we can transform (22) into a
polynomial matrix form.

Theorem 7 Consider Definition 2, Theorem 5 and one of
the model structures 4 defined in Section 4. Consider the
right-factorization of K(z) in (24). For all i = 1,---,ny,

denote
V':( )
Ei(Z)z( : Z) (25)
N(z)

where V;.(z) is the i-th row of V(2).

For each AW;.(z) = (AWy,i:(2), AWy ;.(2)) € Awj, con-
sider the left-factorization of (AW),;.(2),—AW,;.(2)) =
Ql.‘l (2)(Yy,i(2), Y 4,i(2)) given in Lemma 6 and denoteY y,;;
the i-th element of the row polynomial vector Y ;. Then,
the data x(t) are informative w.r.t. the model structure 4
if and only if, forall i =1,---, n,,

0
= (Yy,ii, Y4,1) =(0,0)

{ (X 3,11(2), Y 1 (2)Z4 (2)

E[I1Yui(2r0)I?]
(26)
forall (Yy;;,Y ;) €Y;.

PROOE See Appendix D. (]

5.3 Main result for data informativity

In this section, we derive the main result of this pa-
per. This result will allow us to check data informativ-
ity by verifying for each channel i = 1,---,n, whether a
given matrix is full row rank. As we will see in the sequel,
this matrix will depend on the complexity of the model
structure, on the controller coefficients and on the exter-
nal excitation parametrization (amplitudes, phase-shifts,
frequencies for multisine excitation and filter coefficients
for filtered white noise excitation).

For this purpose, a first step is to give a formal expres-
sion of the polynomial Y, ;; and the row vector of polyno-
mials Y, ; = (Y1, Yu,in,) in Y. Using Lemma 6 and
the notations introduced in Section 4, we can determine
the scalars ny,;, ik (i =1,---,ny, k=1,---,ny) such that
all Yy 1; and the entries of Y,,; in Y; can be expressed as
follows: ~

Y y,ii(2) =6, Zy,:(2) 27

Yu,ik(2) =6, i1 Zu,ik(2) (28)

where Zy,i(2) = (z71,---,27")T, Z,1k(2) = (27Pik, .-+,
z Muik)T and 5y,,~, Su'ik are vectors of coefficients. The
values of 7y, Ny (0 =1,---,ny, k=1,---,ny) as a
function of the model structure type and of the model
structure complexity are given in Appendix E.

Using (27) and (28) and defining 6,,; = (6T .-,
6T l.nu)T, the vectors of polynomials (Yy,i;,Y ;) in the set
Y; can be rewritten as follows:

(Y},:i(2), Y01 (2)) = 57 bdiag(Zy,i(2), Zui(2))  (29)

where §; = (S;i'gg,i)T and Z,; = bdiag(Zy,i1,"**, Zu,in,)
(with bdiag(X,---,X,) a block diagonal matrix whose
blocks are given by X; (i =1,---,n)). We will denote by
(i (resp. {y,;) the dimension of §; (resp. 0,,;). These di-
mensions can be easily deduced based on ny,;, 7, ix (i =
1,---,ny, k=1,---,ny). Let us also introduce the set D; =
{6; | (29) € Yj}. Note that, except in the FIR case where
D; = RS, D; is a subset of RS,

In Sections 6 and 7, we will show that, using (27)-
(29), we can determine matrices «f;, %; and %; such that
the left hand side of (26) for a given (Y,,;;, Y4,;) € Y; can
be expressed as a function of the parameter vector §; €
D; defining (Yy,;;,Y,,:) (see (29)). In particular, the first
equation of the left hand side of (26) is equivalent to:

‘Qf'
M = (o o) (BJ/ARX/ARMAX case)
Bi (30)

6T %; =0 (OE/FIR case)

The difference in the above equation follows from the fact
that Yy, ;; = 0 for OE/FIR model structures (see Lemma 6).
The second equation of the left hand side of (26) is equiv-
alent to:

6.,%6,=0 31)

As will be shown in Sections 6 and 7, the dimen-
sion and the elements of the matrices «f;, %8; and %;
will be function of the complexity of the model struc-
ture, the controller coefficients and the external excitation
parametrization.

Theorem 8 Consider the data x(t) generated as in Sec-
tion 3 with an external excitation r(t). Consider also Def-
inition 2, Theorem 7 and one of the model structures M
defined in Section 4. Consider finally the notations intro-
duced in Section 5.3 and, in particular, the equations (30)
and (31) that are respectively equivalent to the first and
second equations of the left hand side of (26). Then, the
data x(t) are informative with respect to ./ if, for each
i=1,--,ny, at least one of the mairices F}’i(“), 32’1.“’) and

P)’;C) defined below are full row rank.



,,Q{'
¢ (a) The matrix ?}’i(“) isequal to l for the BJ/ARX/ARMAX
@,

4
case and to %B; for the OE/FIR case.
e (b) The matrix 3?’[.“’) is equal to 6;.
; 0
e (¢0) The matrix 9’1.(“) is equal to ( ' ) for the

i ©j

BJ/ARX/ARMAX case and to (@i <€l~) for the OE/FIR case.

Moreover, when r =0, the data x(t) are informative
with respect to M if; for each i = 1,---,ny, the matrix ?)’i(”)
defined above is full row rank.

PROOE We will prove the theorem in the BJ/ARX/ARMAX
case. The proof for the OE/FIR case can be derived us-
ing the same argumentation. Note first that §;=(5y,;,64,1)
in (30)-(31) is constrained to lie in D;. When 5;’ € D;, hav-
ing a full row rank 32’1.(“) is a sufficient condition® for

éj i =0 to be the unique solution of (30). Note also that
6; =0is equivalent to (Yy,;; Y ;) = (0,0) (see (29)). Conse-
quently, using the equivalence recalled in the statement
of the theorem, when 29D is full row rank, we have also
that (Y,;:(2), Y 4,i(2))Ei(z) =0 = (Y},;;, Y4,;) = (0,0) for
all (Yy;;,Yy,;) €Y; . Itis clear by Theorem 7 that the latter
implies that x() is informative (in particular when r = 0).

Note now that (30) and (31) can be combined into
5?9)’1.(6) =0.If 9’1.(6) is full row rank, then 5?9’1.(”) =0 im-
plies §; = 0. Consequently, using the equivalence recalled
in the statement of the theorem, when 29 is full row
rank, we have also that (26) holds for all (Y,;;,Y,;) € Y;.
It is clear by Theorem 7 that the latter implies that x()
is informative.

Finally, if P}”l.(b ) is full row rank, the equation (31) implies
5.i = 0. Consequently, using the equivalence recalled in

the statement of the theorem, when 9’1@ is full row rank,

we have also that: E[I|Y,,;(2)r()]1?] =0= Y,,; =0 for
all Y, ;(2) € Y;. Since Y,,; =0, the first equation of the left
hand side of (26) reduces to Y,,;;(z)J(z) =0 where J(2)
is a given polynomial defined before in (24). The latter
always implies that Y ;; = 0. Consequently, by virtue of

Theorem 7, we have also data informativity when ,@l.(b) is
full row rank. O

Let us now show how we can rewrite the left hand side
of (26) into (30)-(31).

3 If D; would be equal to RCi, this would be a necessary and
sufficient condition.

6 Rewriting of (Y ;;,Y,;)Z;(z) =0 into (30)

We will consider the BJ/ARX/ARMAX case since it is
the more general. Using (29) and (25), we have that:

(Y,i1(2), Yo i(2)Zi(2) = 5}, 6, )L(2) (32)

with L(z) a polynomial matrix of dimension {; x ny:

L(z) = Zy,i(2)Vi:(2)
Zu,i(2)N(2)

Each entry L;;j(z) of L(z) (m=1,---,{;, j=1,--+,ny)
is a polynomial in z7! and can therefore be rewritten
as /lz;l]ZL(Z) with ZL(Z) = (Z_ﬁmin’z_ﬁminﬂ’... ,Z_ﬁmax)T
where A,,; is a vector containing the coefficients* of the
polynomial L j(z) and z Pmin, z=Pmax are the smallest

and largest value of the monomials z~# among all entries
Ly of L. This yields to the following expression for L(z):

Z,i(2)Vi.(2) o
PR = T (M, e Z(2) (33)
Zu,i(dN@ | |

L(z) =

where ® represents the Kronecker product and the matrix
(szfl.T,%iT)T is such that its m-throw (m=1,---,{;) is given
by (A0 Au,)- Using now (32) and (33), we see that
(Yy,ii(2), Y4,i(2))E;(2) = 0 is equivalent to (30). The matrix
(«£,98])" has {; rows and a number of columns equal
to 1y (Bmax—Bmin+1). This number of columns therefore
depends both on the complexity of the controller and on
the complexity of the model structures (via Bmin, Bmax,
Nu,ik» Myi)- The more complex the model structure and
the controller, the larger this number of columns is.

Example 9 Consider the following ARX model structure
M with ny =2 inputs and ny = 1 output:

011270 012127 + 0120272
G(Z,G)z 11,1 —, 12,1 13,12
1+T]1,1.Z 1+7]1,1Z
1
H(Z,9)=—1
1+171y127

where 0 = (511,1,912,1,512,2,111,1)T € 9g. In this case,
we have the left-factorization of (AW),1.(2),—~AW,,1.(2))
in Lemma 6 of the form (AWy1.(2),—AW,1.(2) =
Ql‘1 (2)(Yy,1(2), Y ,1(2)) with Q,(2) = 1. From Appendix E,
the polynomial Y y1(z) = Y y11(2) has an order of ny,1 =1
and is given by

4 These coefficients correspond to the ones in N(z) and J(z)
of the right-factorization of the controller K(z) in (24).



Yy,11(2) =8y,1" Zy1(2)
with 8,1 = 17’1”1 —1)’1’1 and Zy,(2) = z1
From Appendix E, the polynomial entries Y ,,11(z) and

Y y,12(2) of Yy,1(2) have a degree of 11 =1 and 1,12 =2
respectively and are successively given by

Yy11(2)=6

Yy 12(2) =6

T
u,nzu,ll(z)

T
ullzzu,IZ(Z)

where

_ ll — -1
. 6u,11 = 611,1 911 1 and Zu,ll =z .

1 i " il T — (»—1 ,=2\T
* Ou12 =0, - 9121’912,2_912,2) and Zy,12=(z"",27°)".

Then, we have that

(Yy,11(2), Y 1 (2) = (B, 1,6,, ) bdiag(Zy,1, Zy, 1) (34)

»
51
where Zy,\ = bdiag(Z11, Zu,2) and 5,1 = (511,61, )7

The true system # is put under feedback control with
the following stabilizing controller K(z):

0.4+0.29z71 -0.07272 1
K(z) =
0.04+0.01z71 —0.3272| 1-0.62z71 +0.07272
-1
N v-l(z)

In this case, the least common multiple of the denomina-

tors of K(z) is directly J(z) =1-0.62z"' +0.07z2. Conse-
quently, the matrix =, (z) in Theorem 7 is equal to Z1(z) =

UT(2), NT(2)T. Therefore, (Y ,11(2),Y 4,1(2))Z1(z) can be
rewritten as
{ z71-0.62z72+0.07z73 \

Zy1(2)](2) 0.4z71+0.29z72 - 0.07273
@7 5T )(J"l)_ 5T 5T1) 4 z z

1’ 1
» Zu1@N@| 7 0.04z71+0.01272-03273
1(2) 0.04z72+0.01z73-0.3z7%
L(z)

The smallest and largest value of the monomials z™P
among the entries of L(z) are Bmin =1 and Byax =4 re-
spectively. Therefore, the latter can be rewritten as follows

~Bmin ( 1 -062 007 0 \ z71
o 04 029 -007 0 ||z2
(6T1y6T1) —| :(5T1y5T1)
g . g -3
B, 0.04 001 -03 0 ||z
Z’ﬁmax

0 004 001 -03/\z*

The entries in the matrices «f1 and 98, are the polyno-
mial coefficients of the numerators in N(z) and the least
common multiple denominator J(z) of the controller K(z).
The number of rows of </ and 9%, are respectively equal
to the dimension of 6y, and 5u 1, Which are 1 and 3 re-
spectively.

The matrix @f”) = (dT,%lT)T has a rank of 4: it is full-
row rank. Therefore, from Theorem 8, the data x(t) are
informative with respect to 4 in the costless framework
(r =0). The paper [2] proposes another (sufficient) con-
dition to verify whether r =0 can yield informative data.
Here, this condition is not satisfied. Consequently, the suf-
ficient condition of Theorem 8 is in this example less re-
strictive than the one in [2].

7 Rewriting of E[||Y,,;(2)r(9]?] =0 into (31)

7.1 Main idea of the rewriting of E [||Y ,;(2)r(D)|1?] =

This equation has already been studied in the
open-loop case [5]. The idea for the rewriting of
E[IIY4,i(2)r(0)]?] =0 is based on the introduction of the
regressor concept [5,7]. For this purpose, let us observe
that the n, entries Y, ;x of the polynomial vector Y, ;
are the FIR filters given in (28) with the orders 1, ;x given
in appendix E. Hence, we have that

ny
Y Yuik(@re()

Yy,i(2)r (1) =
k=1
Ny
= Z 6£,ik¢rk,i(t)
(6511 517;l2 uln )(rbl’l(t) (35)
ST.
where
Prui () et =pir)
(Prz,i(t) re(t—pip=1
Qbr,i(t): . with (’brk,i(t)z ) (36)
(Prnu,i(t) rk(t_nu,ik)

The signal vector ¢;,;(¢) is is generally called regres-
sor or regressor vector in the literature [7]. We have

that E[||Y i (2r(0)I*] =0« 5LTH-E Gri(DP; (£ 64,i =0
In [5], we have shown that, when r(f) is given either
by (3) or (4), the regressor vector ¢,; can be rewrit-
ten as ¢y;(t) = €;p;(f) where ¢;(f) is a complex or
real-valued signal vector of dimension d such that



E[pi(D¢} ()] >0 and 6; a complex or real-valued time
independent deterministic matrix of dimension ¢, ; x d.
Consequently, we have that E [IIYu,i(z)r(t)llz] =0e
65;5,-}9 (@i} (D] 6] 6u,i =0 8] 6 =01x,,. There-
fore, E[|1Y,,i(2)r()]*] =0 is rewritten as

81, i =01, 37

As shown in [5], when the external signal is given by (3),
we have that ¢,; = €;p; with ¢;(1) = 3(e/*1!,e7 /11, ...
el®st g=josty and €; = (<€i,T1,~- ’(gi,Tn,,)T a column block
matrix of dimension {,,; x 2s such that:

Nppe IPike1 oKy e~ IMuik®1

A elPikor . Ny elMuiker

T _
(gi,k -

Npse IPikOs .. Ny ™ INuiks

K;zsejpikws . K]tsejrlu,ikws
where the phasors Ay; are given by A = Agje/Vx (k=
1,---,ny, I=1,---,5). Note that the larger the number s of
sinusoids in r, the larger the number of columns in %;.

As shown in [5], when r is given by (4), we can also
derive an expression for the matrix 6; 5 In this case, the
larger the complexity of the M(z) and the number f of
white noises generating r are, the larger the number of
columns of €; is.

8 Interpretation of Theorem 8 for data informativity

Theorem 8 shows that we can verify whether a given
external excitation r(f) yields informative data by check-

ing, for each channel, if one of the three matrices @;“),
?}’i(b) or ?}’i(c) is full row rank.

In particular, if Q’i(“) is full row rank for each channel
i, then the data x(#) generated as in Section 3 will yield
informative data even if the external excitation r(#) is
equal to zero.

To have that .@l.(”) is full row rank, the number of its
columns should be larger than (;. If the complexity of the
controller and of the model structure (which determines
the number of columns of @i(a)) is not sufficient, @;m
will not be full row rank.

Even if ,@i[“) is not full row rank, we can of course obtain
informative data by adding a nonzero excitation r(f) of
the type (3) or (4). In this case, the data informativity can

be checked by verifying whether 97’;0) is full row rank.

5 In [5], this matrix is denoted Z.

We observe that 9‘1@ and 32’1.(6) have the same number
of rows, but the number of columns of @i(c) is larger
than the one of 9’1.(“) (due to the matrix %; linked to the

external excitation). Consequently, even if 9”;“) has too
few columns, the addition of the external excitation can
allow ,@i(c) to have more columns than rows (and thus to
imply (in the vast majority of the cases) that the data x(¢)
are informative.

To do that, we can choose an excitation signal yielding
a full row rank matrix %;, but it is as such not necessary
since it is in theory sufficient to have that the sum of the
number of columns in %¥; and the number of columns
in ?}’i(“) is larger than {;. A similar phenomenon was ob-
served in the SISO case [7,8] with the external excitation.

As already mentioned, in the vast majority of the

cases, the matrices @;“’, Q’i(b), 9?[.“) will be full row rank
when the number of rows is smaller than the number
of columns. However, for some badly chosen external
excitations, controllers, ..., a rank deficiency can occur
(as was also observed in in the open loop case [5]) and
it is thus important to formally verify the rank of these

matrices.

9 Numerical example
9.1 True system to be identified

Consider the following BJ system ¥ with n,, = 2 inputs
and ny =1 output given by

-1

N0 =5 227 um+ rel()
—_——

1-0.42 1+0.52"

=Go(2)

where u(t) = (u1 (1), uz(t))T. The system . is put under
feedback control with a stabilizing controller K(z) given

by

J(z) = 1-0.32z"1-0.49272 +0.15527% + 0.062"% - 0.022 >
Ni1(z) = 1+0.1z271-0.24272 - 0.004z~3 +0.0082 %
Noi(z) = 0.7+0.13z271 —0.033272 +0.011623 - 0.004z ™4

We will identify . within a full-order model structure
A as in (13) with p;; =p12 =1,



éll =éll,l élz =912,1
F11=1+éllygz_1 Fio=1
Ci=1 D1:1+n1,1z_1

where 6 = (éll,l;éll,Zrélz,l;nl,l)T~ With this model struc-
ture, from Lemma 6, the vector §, = (651,65 DT eDy con-

tains 10 polynomial coefficients with 3 in 5 y1and7in 5 ul
since 1y,1 =3, Ny,11 =3 and 7,12 =4 (see Appendix E).

9.2 Costless identification

Let us study if we can get informative data with a cost-
less experiment, i.e., without external excitation (r = 0).

For that, we should calculate the rank of the matrix 3?’1(“)

in Theorem 8 since r = 0. But, first, let us observe that
the controller has been chosen such that

H'(2,0") - Hy' (2) = (Hy ' (2)Go(2) - H(2,0")G(2,0")) K (2)

AWy, (2)

AWy (2)

with 6” = (0.2,0.7,0,0.7)T. From Theorem 3, a zero exci-
tation (i.e, r = 0) will therefore not yield informative data
with respect to .. Let us verify that the condition in
Theorem 8 allows one to check this fact. By following the
steps given in Section 5.3, we obtain the following matrix

@ _ |
P = 2
1 -03 049 -0.155 0.06 -0.02 0 0
0 1 -03 049 -0155 0.06 -002 0
0 0 1 -03 049 -0.155 0.06 —0.02
1 01 -024 -0.04 0008 0 0 0
0 0 1 01 -024 —-0.04 0008 0 0
0 0 1 01 -024 -0.04 0008 0
0.7 0.13 —0.033 0.0116 —0.004 0 0 0
0 07 013 -0.033 0.0116 —0.004 0 0
0 0 07 013 -0033 00116 —0.004 0
0 0 0 0.7 013 —0.033 0.0116 —0.004

The matrix .@1(“) has 8 columns for 10 rows. Conse-
quently, it cannot be full row rank. In this example, the
(sufficient) condition for data informativity given in The-
orem 8 allows to verify without any problem that r =0
cannot yield informative data.

10

9.3 Identification with external excitation (r # 0)

As the costless identification cannot yield informative
data, we need to add an external excitation r. In this
paragraph, we will propose 2 cases.

Case 1: Let us consider a multisine excitation. To make
32’1”') full row rank, we need at least four sinusoids in r(f)
since (1 = 7. However, to make 9?1(6) full row rank, one
sinusoid should be sufficient (two columns in %) since
3?’1(“) has already 8 columns. Let us verify this property.
Let us therefore choose a signal (r1 (), r2(8)) T with one
sinusoid at w; = 0.1rad/s and with the following phasors
A (k=1,2,1=1)
Kll = 2ej0'2 K21 = Zejo'z

i.e., r1 () = ra(t) =2cos(w; t+0.2) Vt. Here, the matrix €6
is given by

Anefor Ayeior) (26001 2emi01
Klle—ijl Krlezjwl 2 2
Klle—sjwl Krlesjwl 20701 9,j0.1
G =| Ay eI K;lej‘”l =| 2e/01 27701
Kgle_zj‘”l K;lerwl 2 2
Appe3ien K;‘lesjwl 20=J01 9,01
K219—4jw1 K;1e4jw1 207702 9,j02

Let us calculate the rank of the corresponding matrix
?}’I(C). With this excitation, the matrix ?}’1(“) has a rank of
10: it is full-row rank. From Theorem 8, the data x(t) =
(T @), u” ()T generated with this excitation r are thus
informative with respect to 4.

Case 2: Consider now the same frequency as in Case 1
with these following phasors Ag; (k=1,2, [=1)
KH = 26j0'2 K21 =0

i.e., only one entry of r is excited and the other is set to
0. The matrix %) is given by

Rueion Kiyeion) [ 2ei01 2e-iod
K11872ju)1 Krlezjwl 2 2
Rpedior Koyedion | | 2e-i01 pei0
@1 =| Ayje i K;lejwl = 0 0
K21e_2jw1 K;lezj‘"l 0 0
Kglei?’jwl K;1€3jw1 0 0
K216_4jw1 K;le‘lj‘"l 0 0




The rank of the corresponding matrix 3?’1(6) is equal to
10: the data x(¢) generated with this excitation r are thus
also informative with respect to .. It is important to see
that we can generate informative data by only exciting
one signal in r (as was observed in [11]) or, as in the
previous case, by putting ry = r».

9.4 Monte-Carlo simulations

In order to confirm that the input choices in Cases 1
and 2 yield informative data, we have applied each of
these external excitation vectors to the true system in 1000
identification experiments (with different realizations of
the white noise e, assumed to be Gaussian with of vari-
ance of 0'% =0.01) and we have identified 6 (see (9)) for
each experiment. For each input vector, we have com-
puted the mean of these 1000 estimates and we have in
each case observed that this mean is almost equal to 6,
given in Table 1, illustrating the consistency.

Table 1
Mean of the identified parameter vector with N = 10000 for
different cases over 1000 experiments.

On 0111 6111 6121 1,1
6o -1 -0.4 2 0.5
Case 1 | —1.0010 | —0.3999 | 1.9996 | 0.4994
Case 2 | —1.0045 | —0.3987 | 2.0034 | 0.5033

10 Conclusion

In this work, we have developed a condition that al-
lows one to check if a closed-loop identification experi-
ment could yield informative data with respect to MIMO
model structures. We have addressed this study for clas-
sical model structures and classical external excitations
(multisine or filtered white noise). This condition can be
easily verified and depends on the controller complexity,
the external excitation parametrization and the complex-
ity of the model structure. Based on this condition, we
give also hints to design the experiment to yield informa-
tive data.
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A Proof of Theorem 3

The proof is adapted from the one in [2]. The idea
is to prove that the left hand sides of (8) and (21) are
equivalent and that the same holds for the right hand
sides. Note that the latter is straightforward since AW (z) =
0 < (AW, (2), AWy (2)) = (0,0).

First, combining (1) and (2) leads to
y(5)

x(t) = =
u(r)

Sy(2)Go(2)1 (1) + Sy (2) Hy(2)e(r)
Su(2)r (1) — Su(2)K(2) Hy(2)e(1)

(A1)

where S, and S, are respectively the input and out-
put sensitivity transfer functions of the closed-loop
depicted in Fig. 1, defined respectively by S,(z) =
(I, + K(2)Go(2) ™" and Sy(2) = (I, + Go(2)K(2)~!. Us-
ing (A.1) and the independence assumption between r
and e, E[[|AW (2)x(2)[1?] = 0 leads to

E[II (AWy(2)Sy(2) - AWy (2)Su(2)K(2)) Ho(2)e()l1?] =0

E[I1(AWw(2)Su(z) + AWy (2) Sy (2)Go (2)) r(D11?] =0
(A.2)



We are going to prove that (A.2) is equivalent to the left
hand side of (21).

Let us first prove that the first equation of (A.2) is equiv-
alent to AW, (2) — AW, (2)K(z) = 0. Since E [e(t)e’ (1)] >0
and Hy(z) is stable and inversely stable, we have that the
power spectrum matrix ®; of 7(f) = Hy(z)e(?) is strictly
positive definite at all frequencies. Consequently, the first
equation of (A.2) is equivalent to

AWy (2)Sy(2) — AWy (2)Sy(2)K(2) =0 (A.3)

From the push-through rule [13, Chapter 3], S, (2)K(z) =
K(2)Sy(z). Consequently, (A.3) is equivalent to

(AW, (2) - AW, (2)K(2)) S, (2) =0 (A.4)
Finally, by post-multiplying by S, (z), we obtain
AWy (z) - AW, (2)K(2) =0 (A.5)

which is the first equation of the left hand side of (21).

Let us now prove that the second equation of (A.2)
is equivalent to E[|[[AW,(2)r(1)|[?] = 0. Combining the
second equation of (A.2) with (A.5) leads to

E[IIAWM(Z) (Su(z) +K(Z)Sy(Z)G0(Z)) r(t)||2] =0 (A6)
Again, from the push-through rule [13, Chapter 3],
Sy(2)Go(z) = Go(2)Sy(z). Consequently, (A.6) is equivalent
to

E[IIAW,(2) (Iy, + K(2)Go(2)) Su(T(DI*] =0 (A7)

Finally, by observing® that I,,, + K(2)Go(2) = S (2), we

qbtain that the second equation of (A.2) is equivalent to
E[IIAW,(2)r(1)]|?] = 0. This concludes the proof. [ ]

B Proof of Theorem 5

We are going to prove that the property (21)
for all AW(z) = (AW (2),AWy(2)) € Aw is equiva-
lent to the fact that the property (22) holds for
all AW;.(z) = (AWy,;.(2),AWy,;.(2)) € Aw,;i and for all
i=1,---,ny.

Let us first observe that AW(z) = 0 is equivalent to
AW;.(2) =0 Vi € [1,n,]. Secondly, it is also straightfor-
ward to see that AW, (z) - AWy (2)K(z) =0 is equivalent
to AW,,;.(2) — AW, ;.(2)K(2) = 0 Vi € [1,n,]. Finally, let
us prove that E[||AW,(2)r(9l|?] = 0 is equivalent to
E[IIAW,,;:(2)r(01I?] =0 Vi € [1, n,]. For this purpose, ob-
serve that the term E[||AW,(2)r(1)]I?] =0 can be recast

6 And by assuming that S, (z) does not filter out any part of r.
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as follows

- ny -
E[IAW, (2 r(D11] = Y E[IIAW,,i:(2)r (D%
i=1

Since the term E [[[AW,;.(2)r(2)|1?] is non-negative (i =
1,---,ny), we have indeed that E[||AW,(2)r(1)|*] =0 is
equivalent to E [[|AW,,;.(2)r(DI*] =0 (i=1,--+,n)).

We have thus proven that the property (21) for all
AW (z) € Aw is equivalent to

(i=1,--- (B.1)

{ AW,(2) — AW, 1)K (2) =0
,ny)

E[IAW,(2u)]?] =0
= AW;.(2) = (AWy,;.(2), AWy, ;:(2)) =0 (i =1,---, ny)

forall AW;.(2) = (AW),;.(2), AWy, 1:(2)) € Aw,i (i =1,-++, ).

Using the parametrization introduced in Section 4,
we observe that there are no common parame-
ters in AW;.(z) = (AW,,;.(2),AW,;.(2)) and AWj.(z) =
(AW, .(2),AW,),;.(2)) (j # i). Therefore, (B.1) is equiva-
lent to the fact that property (22) holds for all AW;.(z) =
(AWy,;.(2), AWy, ;.(z)) € Aw,; and for all i = 1,---, ny, com-
pleting the proof. |

C Proof of Lemma 6

For the right factorization of (AW, ;.(z),-AW,;.(2)) €
Aw i, we will consider the one that consists on putting all
entries of (AW, ;.(z),—AW,,;.(z)) on the same denomina-
tors.

First, the matrix H(z,6) is diagonal for all 8 € &y and so
only the i-th entry of the 1x n, row-matrix AWy, ;. is possi-
bly non-zero. Let us denote AW, ;; the i-th entry of AW, ;..
Observe first that AW),;;(2) = W),;;(2,0") — Wy,;;(2,0") =
1-H;'(2,0) - (1- H; '(2,0") = H ' (2,0") - H; *(2,0").

Let us first study the case of the ARMAX model struc-
ture (see (12)). For all AW;.(2) = (AWy,;.(2), AWy,;.(2)) €
Aw;, we have that

C;1(z,0MAi(2,6") - C; (2,0 Ai(2,0)
C;I(Z,H”)Bi;(zﬂ") - C{I(Z,Q’)Bi;(zﬁl)

(C.1)
Therefore, by posing Q; = C;C!, we obtain the factoriza-
tion proposed in the lemma. Since ARX and FIR model
structures are special cases of ARMAX model structures
with C;(z,n) =1 and Ci(z,n) = Ai(z,m) =1 (i=1,--,ny)
respectively, we also obtain the factorization proposed in
the lemma for these two model structures.

AWy, ;i (2)
_AWu,i:(Z)

Let us now consider the BJ model structures in (13). For



all AW;.(2) = (AW, ;.(2), AW, ;.(2)) € Aw,i, we have that

3 _ _1" _ -1
{Awy,”(z)—Ci Di-C; D; (C.2)

AW,i:(2) = C;VDG, -7V DG

where G). and G, are respectively the i-th row of G’ and
G". Since C}, C!, D} and D! are scalars, we have that

(AWy,ii(Z); —AWy,;.(2))

=c7'c;V(c,p!-C'D}, C\D'G! -C/D|G,) (C.3)

Let us put each entry of G;.(z,0’) and G;.(z,0”) on the
same denominator as follows

Gi.(2,0") = F; 1 (2,0)9;(2,0))
Gi:(2,0") = F; ' (2,0")%:(2,0")

(C.4)
(C.5)

where Z;(2,0") = [1;“ Fj, and %;(2,0") = (9] Die[1,n.]

is a row vector of polynomials with %;(z,0) =
Bik(z,H’)Hyjl l#kF”(Z'gl)' The matrices Z;(z,0"”) and

%;(z,0") are defined similarly.

Since Zi(z,0") and Z;(z,0") are scalars, (C.3) can be
recast as follows

AWy = Q; Y1 = Q) (F1 7/ CD] - FF] ¢ D)
—AWyi:=Q; 'Yy, =Q; ' (C.D! #!4! - C!D.F!'4))
where Q; = Cl’.c;'yl.’gg’. For OE, C; = Cl’.’ = D;. = D;.’ =1.

Hence, for OE model structures, Y,,;; =0 and Y,; is the
one defined in the statement. This concludes the proof. Bl

D Proof of Theorem 7

We will prove that the property (22) is equiva-
lent to (26). First, (Yy,i;,Yy,;) = (0,0) is equivalent to
(AW, AW, ;) = (0,0) since Q; is invertible. Hence the
right hand sides of (22) and (26) are equivalent.

Secondly, the equation AW, ;.(z) — AW, ;.(2)K(z) = 0
can be rewritten as follows

L,
(aWy,1.(2), ~aW,,1(2) (N(Z) " l(z)) = 0,0

By post-multiplying by V(z) and by pre-multiplying by
Q;(2), the latter is equivalent to

V(2)
(Vi Yus@)| |~ = 0.0

By observing that all entries Y,,;; (j # i) of the row vector
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Y,,; are equal to 0, the latter is equivalent to

Vi.(2)
(i@, Yui@)|

(2)

) =(0,0) (D.1)

Zi(2)
which is the first equation of the left hand side of (26).

Finally, E[||AW,.(2)r(5)|’)] = 0 is equivalent to
E_[IIQ;I(z)Yu,i(z)r(t)IIZ] = 0. The latter is equivalent to
El1Qi(2)Q; ' (2)Y i (2)r (1*] = 0 which is in turn equiva-
lent to E[||Y i (2)7(1)]]?] = 0, which is the desired result.l

E Degrees of the polynomials Y,,;; and Y, ;i

When non-zero (i.e., for the BJ/ARX/ARMAX case),
Y y,ii(2z) ca be written as in (27) with 17,,; (see Lemma 6):

e 1,,; =deg(A;) for the ARX case.
e 7y,; = deg(A;) + deg(C;) for the ARMAX case.
s 1y,i =deg(C;) +deg(D;)+2Y. 7" deg(F;;) for the BJ case.

The polynomials Y, ;x(z) can be written as in (28) with
pik as defined in Section 4 and with 1, ;x (see Lemma 6):

e 7,k = deg(B;x) for the FIR/ARX case.

e Nyik = deg(B;x) +deg(C;) for the ARMAX case.

* Ny,ikx = deg(Bix) + deg(Fix) +2X", |, deg(F;)) for the
OE case.

o Nyir = deg(C;) + deg(D;) + deg(B;i) + deg(Fx) +
ZZ?ﬁlll#kdeg(F”) for the BJ case.



