Skip to Main content Skip to Navigation
Journal articles

Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei

Abstract : In Arctic regions, a major concern is the release of carbon from melting permafrost that could greatly exceed current human carbon emissions. Arctic rivers drain these organic-rich watersheds (Ob, Lena, Yenisei, Mackenzie, Yukon) but field measurements at the outlets of these great Arctic rivers are constrained by limited accessibility of sampling sites. In particular, the highest dissolved organic carbon (DOC) fluxes are observed throughout the ice breakup period that occurs over a short two to three-week period in late May or early June during the snowmelt-generated peak flow. The colored fraction of dissolved organic carbon (DOC) which absorbs UV and visible light is designed as chromophoric dissolved organic matter (CDOM). It is highly correlated to DOC in large arctic rivers and streams, allowing for remote sensing to monitor DOC concentrations from satellite imagery. High temporal and spatial resolutions remote sensing tools are highly relevant for the study of DOC fluxes in a large Arctic river. The high temporal resolution allows for correctly assessing this highly dynamic process, especially the spring freshet event (a few weeks in May). The high spatial resolution allows for assessing the spatial variability within the stream and quantifying DOC transfer during the ice break period when the access to the river is almost impossible. In this study, we develop a CDOM retrieval algorithm at a high spatial and a high temporal resolution in the Yenisei River. We used extensive DOC and DOM spectral absorbance datasets from 2014 and 2015. Twelve SPOT5 (Take5) and Landsat 8 (OLI) images from 2014 and 2015 were examined for this investigation. Relationships between CDOM and spectral variables were explored using linear models (LM). Results demonstrated the capacity of a CDOM algorithm retrieval to monitor DOC fluxes in the Yenisei River during a whole open water season with a special focus on the peak flow period. Overall, future Sentinel2/Landsat8 synergies are promising to monitor DOC fluxes in Arctic rivers and advance our understanding of the Earth's carbon cycle.
Document type :
Journal articles
Complete list of metadatas
Contributor : Simon Gascoin <>
Submitted on : Tuesday, January 12, 2021 - 4:43:03 PM
Last modification on : Wednesday, January 13, 2021 - 3:35:06 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License




P.-A. Herrault, L. Gandois, Simon Gascoin, N. Tananaev, T. Le Dantec, et al.. Using high spatio-temporal optical remote sensing to monitor dissolved organic carbon in the Arctic river Yenisei. Remote Sensing, MDPI, 2016, 8 (10), ⟨10.3390/rs8100803⟩. ⟨hal-02351634⟩



Record views