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The large-scale execution of quantum algorithms requires basic quantum opera-

tions to be implemented fault-tolerantly. The most popular technique for accom-

plishing this, using the devices that can be realised in the near term, uses stabilizer

codes which can be embedded in a planar layout. The set of fault-tolerant operations

which can be executed in these systems using unitary gates is typically very limited.

This has driven the development of measurement-based schemes for performing log-

ical operations in these codes, known as lattice surgery and code deformation. In

parallel, gauge fixing has emerged as a measurement-based method for performing

universal gate sets in subsystem stabilizer codes. In this work, we show that lattice

surgery and code deformation can be expressed as special cases of gauge fixing, per-

mitting a simple and rigorous test for fault-tolerance together with simple guiding

principles for the implementation of these operations. We demonstrate the accuracy

of this method numerically with examples based on the surface code, some of which

are novel.

I. INTRODUCTION

Quantum computers can implement algorithms which are much faster than their classical

counterparts, with exponential speedup for problems such as prime factorisation [1], and

polynomial speedup for many others [2]. The main obstacle to constructing a large-scale

quantum computer is decoherence, which partially randomizes quantum states and opera-

aThese authors have made equal contributions to the research discussed herein.
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tions. Although state-of-the-art coherence times are now appreciably longer than gate times

[3, 4], they remain too short for useful quantum computation.

To counter the effect of decoherence on quantum states which are stored or manipulated

imperfectly, we can encode logical qubit states into several physical qubits, and perform non-

destructive multi-qubit measurements of the resulting system to extract information about

which errors have occurred, called the syndrome. The spaces of multi-qubit states used to

encode these logical states are called quantum error-correcting codes, and their ability to

correct errors is measured by the distance d, which is the number of independent errors (or

error weight) necessary to alter the state of the logical qubits without being detected. In

order to use one of these codes in practice, it is also necessary to account for the effect of

decoherence on operations. For example, a syndrome measurement may involve a sequence

of entangling gates, and the error caused by a faulty gate on a small set of qubits in the

beginning of the circuit may propagate onto many qubits, producing a high-weight error,

increasing the likelihood of a logical error. Measurement results can also be corrupted by

decoherence, so syndrome extraction often has to be repeated. In order to prevent error

propagation during repeated measurement, syndrome extraction circuits must be designed

such that a small number of faults (from imperfect gates or memory errors on data qubits)

will result in a small number of errors on the physical qubits, which can be corrected using

noisy syndromes. Given a family of codes of different distances, we can determine a threshold

error rate, the rate beneath which codes with higher distance produce lower logical error

probabilities.

Several such families of quantum error-correcting codes have been developed, including con-

catenated codes [5, 6], subsystem codes such as Bacon-Shor codes [7], and 2D topological

codes. The most prominent 2D topological codes are surface codes [8] derived from Kitaev’s

toric code [9], which we will focus on in the remainder of this manuscript. 2D topological

codes can be implemented using entangling gates which are local in two dimensions, allowing

fault-tolerance in near-term devices which have limited connectivity. In addition, 2D topo-

logical codes generally have high fault-tolerant memory thresholds, with the surface code

having the highest at ∼ 1% [10].

These advantages come at a cost, however. While other 2D topological codes permit certain

single-qubit logical operations to be implemented transversally, the surface code does not.

In addition, the constraint that computation be carried out in a single plane does not permit
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two-qubit physical gates to be carried out between physical qubits in different code blocks,

precluding the two-qubit gates which, in principle, can be carried out transversally.

These two restrictions have led to the design of measurement-based protocols for performing

single- and two-qubit logical gates by making gradual changes to the underlying stabilizer

code. Measurement-based protocols that implement single-qubit gates are typically called

code deformation [11], and protocols that involve multiple logical qubits are usually called

lattice surgery [12]. A separate measurement-based technique, called gauge fixing [13], can be

applied to subsystem codes, which have operators which can be added to or removed from the

stabilizer group as desired, the so-called gauge operators. During gauge fixing, the stabilizer

generators of the subsystem code remain unchanged, and can be used to detect and correct

errors; so decoding is unaffected by gauge fixing. This is in contrast to code deformation and

lattice surgery, where it is not a priori clear which measurement results to incorporate into

decoding, or how to process them. Recently, many different code deformation and lattice

surgery techniques have been devised, most of which use tailor-made analysis or decoding

techniques, see e.g. [14–21].

In this paper, we phrase existing lattice surgery and code deformation protocols as special

cases of gauge fixing, showing that the underlying subsystem code dictates the fault-tolerance

properties of the protocol. This perspective can simplify the analysis of new measurement-

based protocols, provided that they are based on stabilizer codes whose distances can be

easily calculated. Also, knowing the stabilizer of the underlying subsystem code results in

clear guidelines for decoding using the measurement results produced by such a protocol.

The remainder of this paper is organised as follows. In Section II, we review the ideas behind

code deformation and lattice surgery. In Section III, we review the formalism of gauge fixing.

Following this, in Section IV, we formulate lattice surgery and code deformation operations

as gauge fixing, demonstrating that fault-tolerant code deformation protocols are in fact

based on high-distance subsystem codes. We also show this explicitly using both well-

known and novel protocols. In Section V, we numerically determine the performance of

these protocols. We conclude and discuss potential future research in Section VI.

In all figures in this paper, qubits are located on the vertices of the drawn lattice. We refer

to the local generators of the stabilizer group of the surface code as stabilizers or checks. In

the figures, black regions signify X-stabilizers and light grey regions Z-stabilizers, with no

stabilizers measured on white plaquettes.
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II. CODE DEFORMATION AND LATTICE SURGERY

A. Code Deformation

Code deformation is a technique to convert one code into another by making a series of

changes to the set of stabilizer generators to be measured in each round of error correction.

Typically, these protocols use ancillae prepared in entangled and/or encoded states as a

resource. Also, a typical code deformation sequence proceeds gradually, first expanding the

code into a large intermediate code by entangling the original code block with the ancillae,

then disentangling some of the qubits (which may include some or all of the original data

qubits), producing a final code which can then be used for further computation. The initial

and final code may differ in their logical operators, in which case the deformation performs

a logical operation. Also, the initial and final code may differ in their position or orientation

within a larger quantum computer.

For example, consider the proposed fault-tolerant procedure for lattice rotation of surface

codes shown in Figure 1, similar to the one presented in [22]. One can see five steps which

gradually modify the surface code patch starting at the bottom right of Figure 1a and

ending at the top left of Figure 1e in a different orientation. First, three ancillary patches

are prepared in fixed states, and placed near the upper left corner of the target patch.

Then, the patch undergoes a two-step growing operation, followed by a two-step shrinking

operation. Advancing one step is done by measuring the operators corresponding to the

new stabilizers, some of which anti-commute with the old ones. Measurement of these

new stabilizers will return ±1 values at random. This means that additional corrections,

unrelated to errors that may have occurred, are needed in order to enter the new code space

(the mutual +1-eigenspace of all new stabilizers). Moreover, to account for noisy operations,

one must simultaneously perform error correction. After one is confident that the encoded

state is in the new code space, one can proceed to the next step.

In Section IV, we will demonstrate that, following these five steps, one can fault-tolerantly

protect the logical information at all times with a distance-5 code. We also show that the

distance would be reduced to 3 if one were to omit step (b), going directly from (a) to (c),

as one would do when directly adapting the established surface code rotation method from

[12] to rotated surface codes.
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(a) (b) (c)

(d) (e) (f)

d× d

FIG. 1: Fault-tolerant procedure for rotating a surface code by 90◦ and reflecting it about

the x axis (see [12, Figure 10] for the corresponding protocol using smooth/rough

boundaries). (a) Initial layout where the 5× 5 lattice is to be rotated, the three 3× 4

patches are ancillas in fixed states, fully specified by the stabilizers shown. (b) Intermediate

lattice, this step is required to expand the lattice fault-tolerantly. (c) Fully expanded

lattice. (d) and (e) Splitting operations performed to shrink the lattice. (f) By using the

two steps from (a) to (c) at the same time on all corners, one can grow a lattice from

distance d to 3d− 4. The surrounding ancillary patches have (d− 2)× (d− 1) qubits each.

This lattice rotation followed by the lattice flip in Figure 2 are useful for performing a

transversal Hadamard gate. The transversal Hadamard gate on a surface code patch, per-

formed by applying a Hadamard gate on each qubit, interchanges X and Z plaquettes. This

code transformation can be undone by a lattice rotation, followed by a lattice flip. Moreover,

part of this rotation procedure can be used to grow a code with distance d to a code with

distance (3d− 4) in two steps by simultaneously growing all corners, see Figure 1f.

This type of code deformation does not, in itself, perform logical operations, but can be used
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(a) (b) (c)

FIG. 2: A procedure to flip a lattice using code deformation. (a) The lattice to be flipped,

and the physical qubits prepared in |+〉 states. (b) The flip operation is realised by

merging the original lattice with the physical qubits below. (c) Subsequently measuring

the physical qubits at the top in the X basis finishes the flip operation.

to move patches of code or to convert between codes where different gates are transversal

[16]. Other code deformation procedures such as moving holes or twists do perform unitary

logical Clifford operations [18, 23, 24]. In the next section, we present another similar

procedure which executes a logical measurement.

B. Lattice Surgery

Lattice surgery is a particular measurement-based procedure that acts non-trivially on logical

information. By going through two steps of deformation, it implements a joint measurement

of logical operators, typically X1X2 or Z1Z2, where Xj and Zj denote the logical operators

of the logical qubit j. We will focus on the Z1Z2 measurement and review the protocol used

for the surface code [12, 15].

Consider two patches of L×L rotated surface code, as in Figure 3a. Each has a Z along the

boundary which faces the other patch. In the merge step, one measures the intermediary

Z-plaquettes (in pink in Figure 3b). These plaquettes are such that the product of all out-

comes is the outcome of the Z1Z2 measurement, but any subset of these outcomes produces

a random result when multiplied together. This ensures that the only non-stabilizer operator

whose eigenvalue can be inferred from these measurements is Z1Z2. These measurements

do not commute with the weight-2 X stabilizers at the joint boundary (in Figure 3a). The

Gottesman-Knill theorem [25] prescribes how to update the stabilizer after such measure-
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(a)

Merge−−−−→

(b)

Split−−−→

(c)

FIG. 3: Lattice surgery for the rotated surface code. Grey plaquettes show Z-stabilizers,

black plaquettes represent X-stabilizers. A ‘±’ label indicates a random sign for the

corresponding plaquette in the stabilizer group. (a) Initial layout, two rotated surface

codes. (b) The merged lattice, which is a surface code with random ± signs on the

newly-measured (red) plaquettes. (c) The split lattices, in which the original stabilizers are

measured again. Random ± signs are produced on the boundary X-stabilizers.

ments, namely we only retain elements in the original stabilizer group which do commute

with the newly measured stabilizers. This implies that the code becomes a 2L × L patch

of surface code, apart from some minus signs on the newly-measured Z-checks. This merge

step is very similar to the rotation presented before, except that some logical information is

gained in the process and the additional corrections which fix the state into the new code

space may involve one of the original logical operators (when the number of intermediary

plaquettes with −1 eigenvalues is odd). To finish the protocol, the original code space must

be restored by performing a splitting operation, measuring the original stabilizers of the

two separate patches instead of the intermediary Z-plaquettes. Those Z-plaquettes, as in

the merge step, anticommute with the boundary X-stabilizers, and will be removed from

the stabilizer group. Their product, equal to Z1Z2, does commute, and will remain as a

stabilizer of the final state. In addition, the boundary X-plaquettes will have random ±
signs which are perfectly correlated between facing pairs. Therefore, one can eliminate these

± signs by applying some of the former stabilizers (those supported on the intermediary

Z-plaquettes).
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One can check (see the algebraic proof in Appendix A) that depending on the outcome (±1)

of the logical Z1Z2 measurement, the merge and split operations, respectively M± and S±

can be expressed as

M+ = |0〉 〈00|+ |1〉 〈11| , S+ = |00〉 〈0|+ |11〉 〈1| , (1)

M− = |0〉 〈01|+ |1〉 〈10| , S− = |01〉 〈0|+ |10〉 〈1| . (2)

They are related to the projections, P±, onto the ±1 eigenspace of Z1Z2 by composition:

P+ = S+ ◦M+, P− = S− ◦M−.

(a)

|C〉

|0〉

|T 〉

(−1)a

MXX

(−1)b

MZZ
(−1)c
MX

Za+c

Zc

Xb

|C〉

|+〉

|T 〉

(−1)a

MZZ (−1)b

MXX

(−1)c
MZ

Zb

Xc

Xa+c

(b)

C

A T

FIG. 4: (a) Two equivalent measurement-based circuits for the cnot gate. (b) The qubit

layout for a cnot gate between two surface-code qubits. C is the control qubit, T is the

target qubit, and A is a logical ancilla.

In particular, lattice surgery allows us to implement the measurement-based cnot gate [26]

in a 2D layout with only local operations as shown in Figure 4. We note that a more general

set of operations which can be implemented by lattice surgery can be constructed using the

relation between the merge and split operations considered here and the three-legged nodes

of the ZX-calculus [27]. For the purposes of this work, however, we will limit our discussion

to cnot gates.
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III. GAUGE FIXING

Gauge fixing [13] is an approach which has been used to implement universal fault-tolerant

gate sets in subsystem codes [28]. A subsystem code is equivalent to a stabilizer code in which

some of the logical qubits are not used to carry any logical information. These logical qubits

are called gauge qubits and they can be acted on or measured without disturbing the states

of the other logical qubits, which are used to store and process quantum information. Then,

one way to formally define a subsystem code, C, is to define a subgroup of the Pauli group,

called the gauge group G, containing all the Pauli stabilizers as well as the Pauli operators

defining the gauge qubits. This subgroup is non-Abelian as it contains anti-commuting Pauli

operator pairs which represent the gauge qubit logical operators. The stabilizer group, S,

can be derived from G as its center, denoted Z(·), i.e. containing all elements in G which

mutually commute

S = Z(G) = C(G) ∩ G, (3)

where C(G) denotes the centralizer of G in the Pauli group, i.e. all elements in the Pauli

group with commute with all elements in G. Elements in G which are not in S are the Pauli

operators acting non-trivially on the gauge qubits: this is the set of gauge operators Lg

Lg = G \ S. (4)

Following this, one can define operators for the actual logical qubits which by definition are

elements in C(S) \ S. If these operators act trivially on the gauge qubits, we call these bare

logical operators. Bare logical operators can be multiplied by elements in Lg to become

dressed logical operators which also act on the gauge qubits. We can write

Lbare = C(G) \ G, Ldressed = C(S) \ G. (5)

Note that with this definition we have, Lbare ⊂ Ldressed. The distance of the subsystem code

C is the smallest weight of any of its logical operators,

dC = min
`∈Ldressed

wt(`). (6)

One advantage of subsystem codes is that to measure stabilizers, one is free to measure

any set of checks in the gauge group as long as this set generates the stabilizer group. By

measuring elements in the full gauge group, one can put the gauge qubits in specific states,
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permitting different sets of transversal logical gates. This act of putting the gauge qubits

in a specific state is called gauge fixing. The idea is to measure a commuting subset of

gauge operators (all the Z-type gauge operators, for example), obtaining ±1 outcomes and

applying the anticommuting, or conjugate partner operator (an X-type gauge operator in

the example), wherever a −1 outcome has been obtained. In the example, this would fix

all gauge qubits to the |0〉 state. While the gauge is fixed in this way, the Z-type gauge

operators become elements of the stabilizer group, so S is augmented to some larger Abelian

subgroup of G. Appendix B shows an example of how code conversion between the J7, 1, 3K

Steane code to the J15, 7, 3K Reed-Muller code can be viewed as gauge fixing.

IV. FAULT-TOLERANCE ANALYSIS WITH GAUGE FIXING

In this section, we show how both code deformation and lattice surgery can be viewed as

gauge fixing operations and therefore, one can use gauge fixing to analyze the fault-tolerance

of these operations.

We consider the QEC codes before and after an deformation step, denoted as Cold and Cnew,

with stabilizer groups Sold and Snew, respectively. Both codes are fully defined on the same

set of qubits. The logical operators of each code are defined as

Lold = C(Sold) \ Sold , Lnew = C(Snew) \ Snew.

The intuition we follow is to see the two stabilizer codes as two different gauges of the same

subsystem code. The first step, then, is to define a joint subsystem code, C̃, whose gauge

group, G̃, is generated by both Sold and Snew,

G̃ = 〈Sold,Snew〉.

The generated group, G̃, is not necessarily Abelian, since it contains elements of Sold which

may anti-commute with some elements of Snew.

The stabilizer group, S̃, defined as in Eq. (3), can be characterised as follows: Elements in

the center of G̃ also have to be in the centralisers of Sold and Snew. Moreover, being in both

centralisers and in G̃ is sufficient to be in the center, or

S̃ = C(Sold) ∩ C(Snew) ∩ G̃.
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(a)

(b)

FIG. 5: Venn diagrams depicting the relations between the different sets of Pauli operators

concerning the gauge group G of interest, see main text. (a) For one step, the yellow-green

set represents the old stabilizer group, Sold, and the blue-green set the new group, Snew.

Both are surrounded by the logical operators, Lold and Lnew respectively. The gauge group

generated by both, G̃ = 〈Sold,Snew〉, has S̃ as its center, shown by the down-left-dashed

region. The gauge group of interest, G, is outlined in purple and has S, in the

down-right-dashed region as its center. The set of gauge operators defining the gauge

qubits, Lg, is the dotted region. When switching from Sold to Snew one fixes the gauge for

the elements in the blue-green dotted region Mfix = G̃ \ Sold. (b) One possible scenario for

two successive steps of deformation. Doing it in two steps, i.e. from S0 → S1, and then

from S1 → S2 permits to use successively the stabilizer groups S01 and then S12 for error

correction. Skipping the intermediary steps, one can only use S02 which might offer less

protection.

See Figure 5a for a representation of S̃ as a Venn diagram. Note that, in addition to

containing Sold ∩ Snew, S̃ can also contain some logical operators from either Lold or Lnew.

This is the case for the merge operation of lattice surgery where the logical Z1Z2 ∈ Lold but

also Z1Z2 ∈ Snew and therefore Z1Z2 ∈ S̃. Similarly, for the split operation Z1Z2 ∈ Lnew

but also in Sold and therefore in S̃.

As defined above, this subsystem code C̃ indeed admits Sold and Snew as two distinct Abelian

subgroups of G̃. Therefore the codes Sold and Snew correspond to fixing two different sets

of states for the gauge qubits of G̃. However, for this to function as a subsystem code, one
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would have to be stabilized at all times by S̃ and thus be able to measure all values of the

stabilizers of S̃.

This is not the necessarily the case when S̃ contains some elements of Lold or Lnew, and we

have to further modify G̃ to a gauge group G whose center is solely

Z(G) = S = Sold ∩ Snew.

How do we obtain G from G̃? This new gauge group, G will be generated by Sold and Snew in

addition to (anti-commuting) conjugate partners of elements in the setsMprep = Sold∩Lnew

andMmeas = Snew ∩Lold. More precisely, one viewsMprep as a subset of Lnew, and for each

independent logical operator contained in Mprep adds a chosen conjugated partner within

Lnew. One operates similarly forMmeas by viewing it as a subset of Lold. If we then consider

the center of G, we see that all elements in Mprep and Mmeas are excluded from it since

they anti-commute with some elements in G. This means that the center of G is reduced to

Z(G) = Sold ∩ Snew as desired.

The namesMprep andMmeas are chosen to represent their respective roles in the deformation

procedure. In such a procedure one starts from a system encoded in Cold, i.e. stabilized by

Sold, and then one measures the new stabilizers, Snew. When Snew contains some elements of

Lold, then in general these elements will not stabilize the state of the system, since it can be

in any logical state at the beginning of the procedure. Measuring these operators will return

information about the logical state and cannot return information about errors. Thus, by

switching to Snew one also performs a logical measurement of the elements in Mmeas.

It is also possible for Sold to contain some elements of Lnew. In that case, the state of

the system is initially stabilized by these elements, and remains so, since we only measure

operators commuting with them. In this sense, the deformation procedure will prepare the

logical +1 state of elements in Mprep.

We denote the code underlying the code deformation step as C. Its gauge group, G, is

represented as a Venn diagram in Figure 5a. Thus the deformation operation that transforms

Cold into Cnew is realized by switching what gauge to fix of the code C: in one gauge one

obtains Cold, the other gauge gives Cnew. Since the deformation step can also transform

logical information, what gauge elements are fixed is subtle. Namely, note that in this gauge

fixing of C to either code Cold or Cnew the gauge elements in G \ G̃ will never be fixed. Said

differently, only the elements of Lg which are in the blue-green dotted region in Fig. 5 will
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be fixed, one can also view these as elements of Mfix ≡ G̃ \ Sold.

A. Fault-Tolerance of Code Deformation

Given an underlying subsystem deformation code C, one can ensure the fault-tolerance of a

code deformation operation by checking three criteria:

1. Code distance: The distance of the subsystem code, C, must be large enough for

the desired protection. Ideally it matches the distances of Cold and Cnew so the degree

of protection is not reduced during the deformation step.

2. Error correction: The error correction procedure follows that of the subsystem code

C through the code deformation step.

3. Gauge fixing: To fix the gauge, one has to use operators exclusively from Lg = G\S.

More specifically, criterion 2 means that to perform error correction, one has to reconstruct

from the measurements of Snew the syndrome given by S. Importantly, criteria 2 and 3

demonstrate that the processes of error correction and that of gauge fixing are two separate

processes with different functionality. Both processes require the application of Pauli oper-

ators (in hardware or in software) to make sure that stabilizer measurements are corrected

to have outcome +1. The error correction process does this to correct for errors, while the

gauge-fixing process does this to move from Cold to Cnew.

This description holds for one step of deformation, so that for each step in a sequence of

deformations one has to examine the corresponding subsystem code C and its distance.

Depending on the sequence, Figure 5b illustrates why skipping steps could lead to poor

distance and poor protection against errors. This discussion also assumes that stabilizer

measurements are perfect; the effect of noisy stabilizer measurements is considered in the

following section.

1. Noisy Measurements

When one considers noisy syndrome measurements, one needs to ensure that both the sta-

bilizer outcomes and the state of the gauge qubits can be learned reliably. For 2D stabilizer

codes such as the surface code this is simply done by repeating the measurements. To pro-
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cess this repeated measurement information for the surface code, one no longer uses the

syndrome but the difference syndrome: the difference syndrome is marked as non-trivial (we

say that a defect is present) only when the syndrome value changes from the previous round

of measurement. This difference syndrome or defect gives information about both qubit

errors as well as measurement errors.

     

Time

Measured stabilisers Processing defects

x

x
x

x

x

x

x
x

x

x Fix Gauge

Errors

FIG. 6: Schematic drawing of a code deformation procedure with repeated noisy

measurements, with time increasing upwards. Td designates the time step at which the

code deformation (the switch from measuring the checks of Sold to those of Snew) is

performed. Tg is the time at which one is confident enough about the state of the gauge

qubits, taking into account errors, to fix their states. This means that, after Tg, another

logical computation can be performed. (Right) The first round of measurement of Snew at

time Td does not have a previous value to compare to in order to construct a difference

syndrome, i.e. one can only construct defects for S. Immediately after this step, one can

derive the difference syndrome of the full Snew, placing defects accordingly. Using defects

before and after Td, one processes error information to infer the value of the gauge

operators in Mfix at time Tg, thus fixing the gauge at Tg.

How do we construct the difference syndrome at the code deformation step Td in Fig. 6?

At Td one obtains the syndrome for the code Snew. For those elements in Snew which are

in S, we know what this syndrome should have been if no measurement or data errors had

occurred since the previous QEC round which measured the stabilizers of Sold. Therefore,
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we can place defects when the found syndrome changes from what it was expected to be

based on the last round of measurements with Sold. Snew also contains a subset of elements

in Lg, namely the blue-green dotted regionMfix in Fig. 5a. Some of these elements are also

contained in Lold (down-right-dashed area in Fig. 5a), i.e. they are elements ofMmeas. The

eigenvalues of these elements in Mmeas depends on the logical state and are therefore not a

proper syndrome for Sold. So only after one more round of QEC with Snew one can mark

whether the syndrome for these elements inMmeas changes, and either place a defect or not.

In addition, the eigenvalues of the gauge operators in the remaining blue-green dotted region

take random ±1 eigenvalues (since they anticommute with some elements in Sold): for these

checks, like for the elements in Mmeas, there is no previous record to construct a difference

syndrome right away. Again, only after one round of QEC with Snew one can again mark

whether the syndrome changed, placing a defect for an element or not. In processing these

new syndromes of Snew to do error correction, we should also allow them to be matched

with virtual defects placed beyond the past-time boundary Td. For example, a measurement

error in the first step when the syndrome is randomly +1 or −1, followed by many rounds

without measurement error, produces a single defect and should be interpreted as the first

measurement being incorrect. In this sense, there is only one layer of time where the defects

are those of S as indicated on the right in Fig. 6.

Given all defect syndromes, minimum-weight matching can be used to decode (see Fig. 6),

to infer some errors as they have occurred in a window of time before and after Tg and Td

(one may use a sliding window as in [22]). Let us then imagine that by matching defects in a

window which goes beyond a so-called gauge-fixing time Tg, one infers a set of measurement

and data errors. These errors are projected forwards to the time-slice Tg and they are used to

do three things. One is to correct the value of elements in Mmeas (if any), so that the logical

measurement has been completed and properly interpreted. The second is to determine or

fix the gauge, i.e. determine the outcome of elements Mfix in the blue-green dotted region

of Fig. 5. As we have argued, these gauge values may be ±1 at random and hence Pauli

gauge-fixing corrections can be added in software to make the outcomes all +1 if one wishes

to work with the frame where all elements in Snew have +1 eigenvalue. These Pauli gauge-

fixing corrections are not error corrections and any set of Pauli operators can be chosen

as long as they solely fix the values of the elements in Mfix. Thirdly, the projected errors

provide the usual update of the Pauli frame for the code S, so together with the gauge-fixing
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corrections, for the code Snew. The whole procedure is represented schematically in Fig. 6;

at time Tg, the code deformation step is finished.

Note that, after Td, the elements in Mprep are no longer measured, but their fixed values

before the code deformation now represent logical states prepared by code deformation.

Typically, for 2D stabilizer codes, the time window between Tg and Td needs be of size O(d)

in order to fix the gauge, where d is the distance of code C. In some cases, the measurements

contain enough redundant information about the gauge operators so that Tg can be equal

to Td (e.g. in single-shot error correction schemes based on redundancy of the checks). For

example, this is the case when performing the logical measurement of a patch of code by

measuring every single qubit in the Z basis. This is also the case for the logical measurement

step of the plain surgery technique explained below.

In the remainder of this section, we apply this formalism to the code deformation and lattice

surgery operations discussed earlier.

B. Code Deformation Examples

1. Grow Operations

(a) (b)

X ′
1

X ′
2

X ′
3 X ′

4

Z ′
1

Z ′
2

Z ′
3 Z ′

4

X

Z

FIG. 7: Description of the subsystem code, C, which holds during the first step of the grow

operation depicted in Figures 1a and 1b. (a) Generators for the stabilizer group, S, of C.

(b) Generators for the whole gauge group G of C. Highlighted in red and blue,

respectively, are gauge operators, elements of Lg, of Z-type and X-type, respectively. The

logical operators, X,Z ∈ Lbare, are also represented in brighter colours.
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Gauge fixing, when applied to the growing operations of Figure 1 and Figure 2, reveals an

underlying subsystem code with a small number of widely-spaced holes and large boundaries,

resulting in a high distance. The stabilizer group, S, as well as the gauge operators, Lg,

for the subsystem code C which governs the deformation from Figure 1a to Figure 1b, are

shown in Figure 7.

In all figures of this paper, light blue and light red patches individually represent X-type

and Z-type gauge operators, and bright blue and bright red qubit chains are X and Z

operators respectively. The grow operation is changing the gauge from one in which the

gauge operators not overlapping between the initially separate patches are fixed, denoted

as {X ′1, X ′2, Z ′3, Z ′4} in Figure 7b, to one in which the overlapping ones are fixed, denoted

as {Z ′1, Z ′2, X ′3, X ′4} in Figure 7b. The distance of C is still 5, matching the distance of the

initial code.

Now consider what happens if we would go directly from Figure 1a to Figure 1c. The

stabilizers and the gauge operators for this operation are shown in Figure 8. Similarly, one

fixes the gauge going from separate patches to a single patch. The distance of the subsystem

code for this operation is only 3. Indeed one of the minimum-weight dressed logical operators

is the Z on the qubits in the green box in Figure 8b. That means that, in order to preserve

the code distance, one should perform the intermediary step.

(a) (b)
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X ′
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X ′
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6 X ′
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Z ′
3

Z ′
4

Z ′
5

Z ′
6 Z ′

7

X

Z

FIG. 8: The operators of the subsystem code for the one-step grow operation from Fig. 1a

to Fig. 1c, skipping Fig. 1b: (a) The stabilizers which generate S and (b) the whole gauge

group, G, with highlighted gauge operators and logical operators.



18

2. The merging and splitting operations

(a) (b)

X ′
1 X ′

2 X ′
3

Z ′
1 Z ′

2 Z ′
3

X

Z

(c) (d)

FIG. 9: The operators of the subsystem code, C, for the joint measurement ZZ. (a) The

generators of stabilizer group S. (b) The highlighted operators are either gauge operators

in Lg or logical operators in Lbare. We start in the gauge where the products X ′1X
′
2 and

X ′2X
′
3 are fixed, and end in the gauge where Z ′1, Z ′2, and Z ′3 are fixed. The distance of the

subsystem code is 5, since one can construct a logical X with this weight by multiplying it

with X gauge operators. (c) and (d) Two different scenarios with errors of weight d/2 with

the same observed measurements.

In this section, we interpret the joint measurement of ZZ by lattice surgery in Figure 3b

as gauge fixing. The stabilizer group S is generated by all the stabilizers in Figure 9a. The

gauge operators, Lg, of the gauge group are given by three representatives of the logical X

of the top patch and the intermediary Z plaquettes that anti-commute with them. They

are denoted as 〈X ′1, Z ′1, X ′2, Z ′2, X ′3, Z ′3〉 in Figure 9b. Representatives of the bare logical

operators, X,Z ∈ Lbare, are the logical Z of the bottom patch and the logical X of the

merged patch (joining the very top to the very bottom), see Figure 9b. The merge and

split operations are realised by fixing some gauge operators of Lg, resulting in new codes

Cmerged or Csplit, respectively. Note that the weight of X of the subsystem code, C, is only

d and not 2d which is the distance for X of the merged code. Indeed, by using the gauge

operators like X ′1 and stabilizers, one can construct a dressed logical X of weight d. Another

way of seeing this is by realizing that one cannot distinguish between two errors of weight
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d/2 depicted in Figure 9c and Figure 9d. In the first one, the logical measurement outcome

is −1 and there is a string of d/2 X-errors from the bottom to the middle of the bottom

patch. In the second one the logical measurement outcome is +1 and there is a string of d/2

X-errors from the middle of the bottom patch and the middle (changing the observed logical

measurement outcome to −1). Note also that when performing the splitting operation, one

wants to correct the −1 outcomes for some of the intermediary X stabilizers. They are gauge

operators equivalent to, say X ′1X
′
2. They have to be corrected using the Z gauge operators,

say Z ′1 in this case. Otherwise one would introduce a logical Z error.

3. Plain surgery

(a) (b) (c) (d)

FIG. 10: (a) and (b) The qubit layouts before and after the plain merge operation. The

number of logical qubits is kept constant during this merge operation. (c) The stabilizers of

the subsystem code. (d) The gauge operators and logical operators of the subsystem code.

One can see that the distance is guaranteed by the offset between the two blocks. The

distance of the separate surface codes is 11, and the distance of the subsystem code is 4.

We now introduce a new technique with the same goal as lattice surgery, namely performing

joint measurements of logical operators, but following a different procedure. The difference

between lattice surgery and the new procedure, plain surgery, will be that the logical mea-

surement is performed with redundancy, so that this part of the protocol can be made more
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robust to noise, at the cost of qubit overhead.

The idea is to separate the merging and logical measurement of lattice surgery into two

distinct steps. The first step deforms the two separated blocks into a single code block

where the joint logical operators can be measured redundantly. Since this step merges the

codes, but leaves the logical information unchanged, we call it a plain merge. In the second

step, we measure the desired logical operator destructively, similar to the standard logical

measurement of a surface code block. A final deformation step can be used to return to the

original code space.

The layout for the plain merge operation is shown in Figure 10a. The patches are placed

with an overlap of approximately 2d/3, the X-boundary of one facing the Z-boundary of the

other. Then they are merged into a single patch with 3 X-boundaries and 3 Z-boundaries, so

two logical qubits. Logical operators far away from the interface are left unchanged, and the

logical information is untouched. When looking at the subsystem code for this deformation,

shown in Figure 10d, one can see that the distance is guaranteed by the offset between the

two patches.

(a) (b) (c)

FIG. 11: (a) The layout where the qubits in the region highlighted are each to be

measured in the X basis. (b) The stabilizers of the underlying subsystem code C. (c) The

gauge operators (in pink) and logical operators of the code. One can see that the distance

is guaranteed by the amount of overlap between the two blocks. The distance of the

subsystem code is 4.
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Then, in this new code, the logical operator X1X2 is given by a string starting from the top

boundary of the top patch and ending on the right boundary of the bottom patch. So, by

measuring qubits in the X basis in a region away from the third X-boundary, one can learn

X1X2 but not X1 or X2. This measurement procedure is depicted in Figure 11. One can

check that the associated subsystem code has a distance of at least half the overlap between

the patches, ∼ d/3. The amount of redundancy in the measurement is also ∼ d/3, which

makes this procedure costly in qubit overhead but as we show in the next section, it offers

a better threshold than the standard lattice surgery technique.

V. NUMERICS

To numerically evaluate the fault-tolerance of quantum computation on rotated planar sur-

face codes, we simulate logical measurement, rotation, logical cnot, and plain surgery, using

the Gottesman-Knill formalism [25]. These simulations are carried out using two different

error models, the phenomenological model and the circuit-based model. The phenomenolog-

ical error model inserts independent X and Z errors on data qubits with equal probability

p, and measurements output the wrong classical value with probability p. The circuit error

model inserts errors with probability p after each operation of the error correction circuit

as follows: each single-qubit gate is followed by a X, Y , or Z with probability p/3, each

two-qubit gate is followed by an element of {I,X, Y, Z}
⊗

2\{II} with probability p/15, and

each measurement returns the wrong result with probability p. In this work, except when

stated otherwise, the initial logical qubits are prepared without errors when simulating these

logical operations.

In section IV A, we have introduced how to construct defects (difference syndromes) for a

code deformation step and how to process these defects to infer errors and fix gauge operators

(Figure 6). For a realistic implementation of logical operations, a decoder will infer errors in a

time window which may include Td or Tg, by processing the defects within the window. This

means the decoder should be able to match defects across time boundaries, e.g., the defects

before and after code deformation time Td. In addition, it needs to construct matching

graphs with edges whose endpoints are on different lattices, e.g., defects of Snew may be

matched to virtual defects beyond the past-time boundary Td. However, such a decoder is

difficult to implement. In our simulations, we insert perfect measurement rounds after blocks
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of d rounds of measurement (Figure 12) for ease of implementation, where d is the distance

of the underlying subsystem code. A decoder using the minimum-weight perfect matching

(MWPM) algorithm is used and its performance for a fault-tolerant memory operation, that

is, d noisy QEC cycles followed by 1 noiseless cycle, is shown in Figure 13. For each operation

(except for plain surgery), 105 (104) iterations were run per point and confidence intervals

at 99.9% are plotted in the figures.

     

Time
(QEC cycles)

Measured stabilisers Processing defects

x

x

x

x

x

x
x

x

Errors

Fix GaugeCorrect errors

Correct errors

Errors

FIG. 12: The simulated version of a code deformation procedure in Figure 6. A perfect

round (a small time window from red to black dashed lines) is inserted after each block of

noisy d rounds of stabilizer measurements. One processes the defects for Sold and corrects

errors before the code deformation step Td. Then the defects for S are constructed at time

Td to time Tg and the ‘defects’ for Mfix are constructed one round of measurement later.

At time Tg, one processes error information to infer the value of the gauge operators and

then fixes the gauge.

Single-qubit operations: Transversal operations (preparation, Pauli gates, measurement)

are usually realised by performing qubit-wise physical operations. They are intrinsically

fault-tolerant and their logical error rates will be only slightly higher than a logical identity

gate (memory). Notably, a transversal MZ (MX) measurement does not require quantum

error correction cycles (i.e., Td = Tg) since error syndromes of Z(X)-stabilizers can be re-

constructed from the measurement outcomes of data qubits, this is also the case for the

logical measurement step of plain surgery. For instance, one can measure all the data qubits

in the Z basis to realise a MZ on a planar surface code. Afterwards, one can compute the
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FIG. 13: Numerical simulations of a fault-tolerant memory operation with the

phenomenological error model near its threshold (∼ 2.75% (a)) and the circuit-level error

model near its threshold (∼ 0.5% (b)).
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FIG. 14: Numerical simulations of a transversal MZ measurement near its threshold

(∼ 10%).

Z-syndromes by multiplying the outcomes of corresponding data qubits of each Z-stabilizer

and then correct the X errors and deduce the value of Z. The performance of a MZ mea-

surement for planar surface codes is shown in Figure 14. In this simulation, we first prepare

a logical qubit in state |0〉 without errors and then perform a MZ measurement on it with
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FIG. 15: Numerical simulations of the rotation procedure in Figure 1 without a final flip

operation. (a) and (b) The logical error rates of the rotation procedure with

phenomenological error model (The error threshold is around ∼ 2.5%) and circuit error

model (The error threshold is around ∼ 0.45%), respectively.

physical measurement error probability p. We further numerically simulate the proposed

rotating procedure (Figure 1) and show the results in Figure 15. For the phenomenological

error model, the error threshold of a rotation is slightly lower than the threshold of quan-

tum memory. For the circuit-level error model, its threshold is similar to that of quantum

memory.

Two-qubit operations: We also simulate the measurement-based cnot circuits in Fig-

ure 4a where the split operations of the first joint measurements are parallelised with the

merge operations of the second joint measurements (see the decomposed circuits in Ap-

pendix C). The overall error rates and the error thresholds for a cnot gate by lattice

surgery are shown in Figure 16. For each error model, the error threshold of cnot gates is

similar to the threshold of quantum memory. Moreover, logical errors propagate through the

measurement-based cnot circuits, leading to a disparity of logical error rates on control and

target qubits, which is demonstrated numerically in Appendix C. In addition, we compare

the joint MXX measurement using lattice surgery with the measurement using plain surgery.

Figure 17 shows that plain surgery achieves a higher error threshold than lattice surgery,
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FIG. 16: Numerical simulations of a measurement-based cnot gate by lattice surgery

(The top circuit in Figure 4a). (a) Total error rates for cnot gates with the

phenomenological error model near the threshold (∼ 2.7%). (b) Total error rates for

cnot gates with the circuit-level error model near the threshold (∼ 0.45% ).

but with higher logical error rates as a consequence of the increased lattice size required to

achieve a given code distance.

VI. DISCUSSION & CONCLUSION

We have illustrated how to describe current measurement-based operations in 2D topological

quantum computing using the gauge fixing technique. We have shown that, by using the

formalism of gauge fixing, the fault tolerance analysis of these code deformation and lattice

surgery protocols is considerably simplified, their error correction and gauge fixing schemes

also become clear. Furthermore, we numerically examined this method with examples on

planar surface codes, including some well-known operations such as lattice-surgery-based

cnot gates and some novel protocols such as lattice rotation and plain surgery. Although

this gauge fixing formalism does not provide direct guidlines on how to design code defor-

mation protocols for a desired logical operation, it does provide an easy way to check the

fault-tolerance of protocols and search for new ones via iterations of trial and error.



26

(a)

1.5 2 2.5 3 3.5

·10−2

0.2

0.4

0.6

0.8

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of MXX , Phenomenological

PS, d = 4
PS, d = 6
LS, d = 3
LS, d = 5

(b)

0 0.5 1

·10−2

10−2

10−1

100

Physical error probability

L
og
ic
al

er
ro
r
ra
te

Performance of MXX , Circuit-level

PS, d = 4
PS, d = 6
LS, d = 3
LS, d = 5

FIG. 17: Numerical comparison of the MXX joint measurements by lattice surgery (LS)

and plain surgery (PS), near the points where the two lowest-distance implementations of

the two protocols produce the same logical error rate. The logical error rates of MXX with

the (a) phenomenological error model ((b) circuit-level error model) by LS with a crossing

between the d = 3 and d = 5 near the physical error probability ∼ 2.2% (∼ 0.25%)) and by

PS with a crossing between the d = 4 and d = 6 near the physical error probability ∼ 3.2%

(∼ 0.65%).

Moreover, this formalism applies not only to 2D topological codes, but more generally to any

stabilizer code. In the general case (non-topological codes), the analysis of fault-tolerance

in the presence of measurement errors becomes more involved, in particular with respect to

how much repetition is really needed, see for example [29, 30]. We leave for future work how

to obtain general and simple criteria for fault-tolerance.
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Appendix A: Algebraic proof of the correctness of the merge and split operations

In this appendix, we denote the set of physical qubits as Q. For any subset of k qubits,

s = {j1, . . . , jk} ⊂ Q, we denote the operator composed of a Pauli Z resp. X on each qubit

in s as Z(s), resp. X(s), i.e.

Z(s) = Zj1 ⊗ · · · ⊗ Zjk , X(s) = Xj1 ⊗ · · · ⊗Xjk .

1. Merge operation

The setting for the merge operation is drawn in Figure 3a. The starting code, Csplit, with

stabilizer Ssplit, consists of two adjacent L × L patches of rotated surface code with the

opposite boundaries being supports for their Z operators. We label the upper logical qubit

as 1 and the lower qubit as 2. The new code, Cmerged, with stabilizer Smerged, consists of only

one 2L× L patch of rotated surface code.

We define the subsystem code, C, and its gauge group, G, as specified in section IV, see

Figure 9. Notably, we exclude from the center of G̃ the logical operator Z1Z2 ∈ Smerged.

We therefore add X1 to G̃ to form G, and so have X1 ∈ Lg. Call I the set of intermediary

plaquettes (red plaquettes in Figure 3a) to be measured to perform the merge operation. For

p ∈ I we have Z(p) ∈ Lg, these are the gauge operators to be fixed by the merge operation.

For each p ∈ I, one measures the operator Z(p) and let its outcome be mp.

To explain the action of the merge operation at the logical level, we first prove that this

operation transforms code states of the two original L×L patches of surface code into code

states of the 2L × L patch surface code with some X errors. To accomplish this, we use

the standard prescription from the Gottesman-Knill theorem [25]. It is straightforward to

see that the original Z checks stay unchanged, and the newly-measured checks, the p ∈ I,

are added, with sign mp. The original X checks all commute with the new intermediary Z

checks except for the two-body boundary checks between the two patches, which are also

part of Lg. Those boundary checks can be merged in pairs in order to commute with the

new Z checks. The situation is then the same as depicted in Figure 3b.

The product of all measurement outcomes gives the desired outcome for the Z1Z2 measure-
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ment, we denote it as

mL =
∏

p∈I
mp.

Then one fixes the gauge by applying the conjugate X-gauge operators to the Z(p) with

mp = −1. Let’s call cmL
the set of qubits involved in this fixing operation. Note that when

mL = +1 then the correction is equivalent to a stabilizer in Ssplit whereas when mL = −1,

the correction is equivalent to X1. Then, the full merge operation at the physical qubit level

is easily written as

X(cmL
) ·
(∏

p∈I

1 + (−1)mpZ(p)

2

)
=

(∏

p∈I

1 + Z(p)

2

)
·X(cmL

).

Due to the definition of X(cmL
), commuting it through the Z projections eliminates the

(−1)mp terms.

To determine the logical operation realised by this procedure, we use encoding isometries of

Csplit and Cmerged, called Esplit and Emerged, respectively. These isometries map unencoded

logical states to code states in the full physical Hilbert space. Since Csplit contains two logical

qubits and Cmerged contains only one, the isometries have the following signatures:

Esplit : C2 ⊗ C2 → C2Q, Emerged : C2 → C2Q.

Let M̃mL
be the operation on the logical level, which can be expressed as

M̃mL
: C2 ⊗ C2 → C2,

M̃mL
= (Emerged)† ·

(∏

p∈I

1 + Z(p)

2

)
·X(cmL

) · Esplit. (A1)

An important fact about encoding isometries E is that, if S is a stabilizer of the code and

L a representative for the logical operator L, then

S · E = E, (A2)

L · E = E · L, (A3)

where L is the corresponding physical operator. This means that M̃mL
, defined in Equa-

tion A1, simplifies to

M̃mL
= (Emerged)† · Esplit ·X(1−mL)/2

1 . (A4)
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To show this, we use the fact that for all p ∈ I, Z(p) is a stabilizer of Cmerged and the

correction X(c+) is in Ssplit whereas X(c−) is a representative of X1 in Csplit.

To show that the operation M̃mL
is equal to MmL

, as defined in Eq. (1) and Eq. (2), one

can analyse how M̃mL
acts on the computational basis, i.e. we track how it transforms the

stabilizers of those states. For example, the state |00〉 is stabilized by Z1 and Z2, this means

that

M̃+ |00〉 = (Emerged)† · Esplit |00〉

= (Emerged)† · Esplit · Z1 |00〉

= (Emerged)† · Z1 · Esplit |00〉

= Z · (Emerged)† · Esplit |00〉

= Z · M̃+ |00〉 ,

and therefore M̃+ |00〉 is stabilized by Z. Here, we have used the properties of the encoding

isometries and the fact that a representative Z1 for Csplit is also a representative Z for

Cmerged. Doing the same with the other stabilizer, Z2, also yields Z as a stabilizer (so Z1Z2

yields the identity). One can also verify that M̃+ |00〉 is not stabilized by −Z by reversing

the previous equalities and therefore 〈Z〉 is the full stabilizer group of M̃+ |00〉. Looking

now at M̃− |00〉 one can see that Z2 also yields Z but Z1 will yield −Z, indeed

M̃− |00〉 = (Emerged)† · Esplit ·X1 |00〉

= (Emerged)† · Esplit ·X1 · Z1 |00〉

= − (Emerged)† · Z1 · Esplit ·X1 |00〉

= −Z · (Emerged)† · Esplit ·X1 |00〉

= −Z · M̃− |00〉 .

Hence, M̃− |00〉 is both stabilized by Z and −Z, and is therefore the null vector. In other

words, the state |00〉 will never give an outcome −1 for mL, which is what we expect. The

full results (shown in Table I) indicate that

M̃+ = α+ |0〉 〈00|+ β+ |1〉 〈11|

M̃− = α− |0〉 〈01|+ β− |1〉 〈10| ,

for some non-zero complex numbers α± and β±. To complete the proof, we verify that

there are no relative phases or amplitude differences between α± and β±. To see that,
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M̃+ M̃−

S State S State S State

〈Z1, Z2〉 |00〉 〈Z〉 |0〉 〈Z,−Z〉 0

〈Z1,−Z2〉 |01〉 〈Z,−Z〉 0 〈Z〉 |0〉

〈−Z1, Z2〉 |10〉 〈−Z,Z〉 0 〈−Z〉 |1〉

〈−Z1,−Z2〉 |11〉 〈−Z〉 |1〉 〈−Z,Z〉 0

TABLE I: How M̃± transforms the computational basis states characterised by their

stabilizer group.

one can look at the action of M̃mL
on the Bell states. For M̃+ we look at the Bell state

(|00〉+ |11〉) /
√

2, stabilized by 〈X1X2, Z1Z2〉 and for M̃− the Bell state (|01〉+ |10〉) /
√

2

stabilized by 〈X1X2,−Z1Z2〉. The important fact is that a representative X1X2 for Csplit is

also a representative of X for Cmerged. That is to say

M̃+
|00〉+ |11〉√

2
= γ+

|0〉+ |1〉√
2

M̃−
|01〉+ |10〉√

2
= γ−

|0〉+ |1〉√
2

,

for some non-zero complex numbers γ±. By linearity of M̃mL
we can conclude that α+ =

β+ = γ+ and that α− = β− = γ−. In conclusion, we have shown that M̃mL
∝MmL

, meaning

that it performs the desired logical operation.

2. Split operation

For the Z-split operation one reverses the roles of Csplit and Cmerged. The starting point is

the same as shown in Figure 3b, without ± terms in the middle. Then, in order to split the

patch, one has to split each four-body X stabilizer in the middle row into a pair of two-body

X stabilizers. Those stabilizers are shown with ± signs on Figure 3c. They commute with

everything except for the central row of Z-plaquettes. One can see that measuring them

will remove those Z-plaquettes from the stabilizer group, but keep the product of all those

plaquettes, the logical Z1Z2 of the two separate patches. Note that it is sufficient to measure

only the top (or bottom) row of two-body X-checks as the bottom (or top) one is then the

product of those and the previous four-body X-checks. This also means that the outcomes
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of those two-body checks are perfectly correlated between facing pairs. Letting I be the

set of the top row of those checks and mp = ±1 the measurement outcome of the two-body

plaquette p, the operation performed is then

∏

p∈I

1 + (−1)mpX(p)

2
.

Then, to correct to standard surface codes with no remaining minus signs, one has to apply

some of the previous Z-plaquettes that were removed from the stabilizer, correcting the

correlated facing X-checks. Labeling the set of qubits affected by the correction c, one has

Z(c) ·
∏

p∈I

1 + (−1)mpX(p)

2
=
∏

p∈I

1 +X(p)

2
· Z(c).

This operation corresponds to S+, defined in Eq. (1). If one wants to implement S−, defined

in Eq. (2), then one has to additionally apply a logical representative of X on the first patch,

X1. The choice of one or the other version is conditioned by the previous mL outcome that

we received during the merging step. Then, to show that this performs the correct logical

operation, we analyse

S̃mL
= (Esplit)

† ·X
1−mL

2
1 ·

∏

p∈I

1 +X(p)

2
· Z(c) · Emerged,

which, using the properties of the encoding isometries, S̃mL
simplifies to

S̃mL
= X

1−mL
2

1 · (Esplit)
† · Emerged. (A5)

At this point, recalling Eq. (A4), we can see that

S̃± =
(
M̃±
)†

= (M±)† = S±,

which concludes the proof of correctness for the split operation. Note that it was crucial to

apply the intermediary Z-plaquettes (in Lg) as the correction. If we had instead applied a

string of Z-flips between the faulty X-plaquettes, the correction would not be absorbed in

the encoding map of Cmerged and moreover would anti-commute with any representative X

of Cmerged or X1X2 of Csplit and therefore flip the phase between the |0〉 and |1〉 states.

Appendix B: Example: Code Conversion as Gauge Fixing

To see the utility of gauge fixing for analysing code conversion protocols, we consider two

protocols for converting from the J7, 1, 3K Steane code to the J15, 7, 3K Reed-Muller code
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with six gauge Z operators fixed (see Figure 18 for the stabilizers and gauge operators that

define these codes). The first, from Anderson et al [31], is based on the realisation that the

Steane stabilizers Reed-Muller stabilizers Reed-Muller Gauge Operators

FIG. 18: stabilizers of the Steane and Reed-Muller codes, and Z gauge operators of the

Reed-Muller code. Red tinting on a face or volume indicates the presence of a Z operator

on the vertices which make up that face or volume. For example, there are six Reed-Muller

gauge operators of the form Z⊗4, supported on the red-tinted quadrilaterals seen on the

right. Green tinting indicates the presence of both an X and a Z stabilizer operator.

state |ψ〉Steane ⊗ 1√
2

(|0〉Steane |0〉+ |1〉Steane |1〉) is a code state of the Reed-Muller code with

its horizontal X gauge logical operators fixed, see top-right of Figure 19. Conversion from

the Steane code to the Reed-Muller code then involves fault-tolerantly preparing the eight-

qubit ancilla state and fixing the three appropriate Z gauge operators. The state is always

stabilized by the Reed-Muller stabilizers, whose eigenvalues can be reconstructed from the

checks which are measured at every round, preserving the code distance and allowing error

correction by syndrome decoding.

The second scheme, from Colladay and Mueller [32], is not based on gauge fixing, and

begins with the eight qubits needed for conversion initialised in the state |0〉⊗8. This ensures

that the initial checks anticommute with any potential X stabilizer supported on the final

eight qubits, so that the only operators whose eigenvalues can be reconstructed from the

measured operators are Z operators, preventing the correction of Z errors (see Figure 19 for

a graphical comparison of these code conversion protocols). The difference in fault tolerance

between these two protocols which accomplish the same task provides us with a good motive

to incorporate subsystem codes into the analysis of code deformation and lattice surgery,

considered in the main text.

Examining the Criterion 1 from section IV A, one can see that the Anderson scheme has
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an underlying subsystem code with distance 3, whereas not having any X-stabilizers, the

Colladay scheme has an underlying subsystem code with distance 1.

Initial Checks (Sold) Final Checks (Snew) stabilizers (S) Gauge Operators (Lg)

FIG. 19: Comparison between Steane-to-Reed-Muller conversion schemes from [31] (top)

and [32] (bottom). Red and green tinting match Figure 18, blue tinting indicates an X

operator supported on the vertices of the tinted face or volume. Tinted vertices/edges

indicate weight-one/two operators supported on the tinted vertex/edge. In the Anderson

scheme, the subsystem code which applies during the code deformation is made explicit; it

is the distance-three Reed-Muller code. The Colladay scheme, however, does not have any

X operators in the relevant stabilizer, S, so the distance of the relevant subsystem code is

only 1, see section IV. Note: Gauge operators in the top right should also be present in the

bottom right, they are not drawn here for clarity.

Appendix C: Disparity in error rates of CNOT gates

A joint measurement is realised by performing a merge and a split operation in sequence.

In our simulation, the circuits in Figure 4a are decomposed into the ones in Figure 20.

Figure 21 shows that the rates of X/Z errors on the control and target qubits are different

for the rotated surface code with d = 5. This disparity can be explained using a toy model
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to account for propagation of logical errors through measurement-controlled corrections.

In this toy model, identity gates result in an X or Z error with probability p (Y errors are

assumed to occur with probability ∼ p2, since the minimum-weight Y operator has weight

2d − 1 in the surface code). The merge operations are modeled as ideal joint measure-

ments, followed by an error of the form X ⊗ 1, 1⊗X, Z ⊗ 1, or 1⊗ Z, each occurring with

probability p, since these are the likeliest logical errors. If a logical Pauli error occurs, it

propagates forward through the circuit, changing the measured eigenvalue for any measure-

ment operator with which it anticommutes. For example, if an X ⊗ 1 error occurs after the

MXX operation in Figure 4a (in which the ancilla begins in the |0〉 state), the measured

value b will be mapped to 1 − b, causing an X operator to be incorrectly applied to the

target qubit at the end of the cnot. It is easy to confirm that there are 7 such first-order

errors which result in an X error on the target qubit, 6 errors which result in a Z error on

the control qubit, and 3 errors which result in the other logical errors shown in Figures 21a

and 21c (a similar analysis holds for the error rates shown in Figures 21b and 21d). The

biased logical error rates predicted by this simplified model are in good agreement with the

logical error rates observed in simulation, shown in Figure 21. Preventing this bias from

growing during the execution of a long algorithm, by appropriate selection of decomposi-

tion for cnots, is likely an important step in the design of high-performance fault-tolerant

circuits for quantum computation.

(a)

|C〉

|0〉

|T 〉

I

(−1)a

MergeXX

(−1)b

MergeZZ

I

I

I

I

(−1)c
MX

Za+c

Zc

Xb

(b)

|C〉

|+〉

|T 〉 I

(−1)a

MergeZZ

(−1)b

MergeXX

I I

I

I

(−1)c
MZ

Zb

Xc

Xa+c

FIG. 20: The decomposed circuits (a) and (b) of the top and bottom measurement-based

cnot circuits in Figure 4a.
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FIG. 21: X and Z error rates on the control and target qubits for lattice-surgery-based

cnot operations at distance 5. (a) and (b) correspond to the phenomenological error

model, (c) and (d) correspond to the circuit-based error model. The disparity in error

rates is explained by error propagation through the measurement-based circuit

implementing the cnot.
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